MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 12, 2017
Simple inductive types (datatypes):

\textbf{Inductive} \texttt{nat} : \texttt{Type} := \texttt{O} : \texttt{nat} | \texttt{S} : \texttt{nat}\rightarrow\texttt{nat}.
\textbf{Inductive} \texttt{bool} := \texttt{true} | \texttt{false}.
\textbf{Inductive} \texttt{list} (\texttt{A:Type}) : \texttt{Type} :=
 \texttt{nil} | \texttt{cons} (\texttt{hd:A}) (\texttt{tl:list A}).
\textbf{Inductive} \texttt{tree} (\texttt{A:Type}) :=
 \texttt{leaf} | \texttt{node} (\texttt{_:A}) (\texttt{_:nat}\rightarrow\texttt{tree A}).

Smallest type closed by introduction rules (constructors)

\textbf{Parameters}: \texttt{cons} : \texttt{forall A:Type, A -> list A -> list A}
\textbf{Coq prelude}: \texttt{cons 0 nil : list nat}
Generated elimination scheme (not primitive):

\[
\text{nat_rect}
\]

\[
: \forall P : \text{nat} \to \text{Type},
\]

\[
P \ O \to (\forall n, P \ n \to P \ (S \ n)) \to
\forall n, P \ n.
\]

\[
:= \text{fun } P \ h0 \ hS \Rightarrow \text{fix } F \ n \Rightarrow
\]

\[
\text{match } n \ \text{return } P \ n \ \text{with}
\]

\[
| O \Rightarrow h0
\]

\[
| S \ k \Rightarrow hS \ k \ (F \ k)
\]

end

Eliminator of recursive type =
dependent pattern-matching + guarded fixpoint
Logical connectives

Logical connectives and their non-dependent elimination schemes:

Inductive True : Prop := I.
 True_rect : forall P:Type, P -> True -> P.

Inductive False : Prop := .
 False_rect : forall P:Type, False -> P

Inductive and (A B:Prop) : Prop :=
 conj (=:A) (=:B).
 and_rect : forall (A B:Prop) (P:Type), (A->B->P)-> A/\B
 -> P

Inductive or (A B:Prop) : Prop :=
 or_introl (=:A) | or_intror (=:B).
 or_ind : forall (A B P:Prop), (A->P) -> (B->P) -> P.
Plan

Inductive families
 Predicate defined by inference rules
 Definition of equality
 Vectors

Non-uniform parameters

Theory of Inductive types
 Strict Positivity
 Dependent pattern-matching
 Guarded fixpoint
 The guardedness check
Limitations of parameters

Defining a predicate:

```
Inductive even (n:nat) : Prop :=
  even_i (half:nat) (_:half+half=n).
```

Inductive types with parameters are some kind of “template”

```
Inductive listnat :=
  nilnat | consnat (_:nat) (_:listnat).
Inductive listbool :=
  nilbool | consbool (_:bool) (_:listbool).
```

No dependency between both types.

But in the definition of `even:nat->Prop` as an inductive type/set

```
E_0:even 0
```

even \((S\ (S\ 0))\) depends on even 0.
Inductive families

Family = indexed type

\(P : \text{nat} \to \text{Type} \) represents the type family \((P(n))_{n \in \mathbb{N}}\)

Inductive family:

- Constructors do not inhabit uniformly the members of the family
- Recursive arguments can change the value of the index

Even numbers:

\[
\text{Inductive even : nat} \to \text{Prop} := \\
\quad \text{E0 : even } 0 \\
\mid \text{ESS (n:nat) (e:even n) : even (S (S n))}.
\]

Syntax very close to inference rules!
Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
P O -> (forall n, P n -> P (S (S n))) ->
forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme
Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
 P O -> (forall n, P n -> P (S (S n))) ->
 forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme

Even’s dependent scheme (refers to constructors E0 and ESS):

forall (P : forall n, even n -> Prop),
P 0 E0 ->
(foreall n (e:even n), P n e -> P (S (S n)) (ESS n e)) ->
forall n (e:even n), P n e

Definable in Coq, but not automatically generated (why? wait and see...)
Defining the dependent elimination scheme

Even more complex return clause: in

\[
\text{Definition even_ind_dep } (P:\forall n, \text{even } n \rightarrow \text{Prop}) \\
\text{ (h0:} P \ 0 \ \text{E0)} \\
\text{ (hSS:} \forall n \ e, P \ n \ e \rightarrow P \ (S \ (S \ n)) \ (\text{ESS } n \ e)) \\
: \forall n, \text{even } n \rightarrow P \ n := \\
\text{fix } F \ n \ e := \\
\text{match } e \ \text{as } e' \ in \ \text{even } k \ return \ P \ k \ e' \ with \\
| \ E0 \Rightarrow \ h0 : \ P \ 0 \ \text{E0} \\
| \ \text{ESS } k \ e' \Rightarrow \ \\
\ \text{hSS } k \ e' \ (F \ k \ e') : \ P \ (S \ (S \ k)) \ (\text{ESS } k \ e') \\
\text{end}
\]

\text{Notation as } e' \ in \ \text{even } k \ return \ P \ k \ e' \ is \ just \ a \ way \ to \ write \ the \ term \ \text{fun } k \ e' \Rightarrow P \ k \ e'.

Becomes natural with time...
Equality: the paradigmatic indexed family

Propositional equality is defined as:

\[
\text{Inductive } \text{eq} \ (A : \text{Type}) \ (a : A) : A \to \text{Prop} := \\
\text{eq}_\text{refl} : \text{eq} \ A \ a \ a.
\]

Notation "\(x = y\)" := (\(\text{eq} \ x \ y\)).

Its dependent elimination principle is of the form:

\[
\begin{align*}
\Gamma \vdash e : \text{eq} \ A \ t \ u & \quad \Gamma, y : A, e' : \text{eq} \ A \ t \ y \vdash C(y, e') : s \\
\Gamma & \vdash t : C(t, \text{eq}_\text{refl}_{A,t})
\end{align*}
\]

\[
\Gamma \vdash \left(\begin{array}{c}
\text{match } e \text{ as } e' \text{ in } \text{eq_y} \ \text{return } C(y, e') \text{ with } \\
\text{eq}_\text{refl} \Rightarrow t \\
\text{end}
\end{array} \right) : C(u, e)
\]
Tactics related to equality

Tactics:

- **f_equal** (congruence) \(\frac{x=y}{f(x) = f(y)} \)
- **discriminate** (constructor discrimination) \(\frac{C(t_1, \ldots, t_n) = D(u_1, \ldots, u_k)}{A} \)
- **injection** (injectivity of constructors) \(\frac{C(t_1, \ldots, t_n) = C(u_1, \ldots, u_n)}{t_1 = u_1 \ldots t_n = u_n} \)
- **inversion** (necessary conditions) \(\frac{\text{even } (S(Sn))}{\text{even } n} \)
- **rewrite** (substitution) \(\frac{x=y}{P(y)} \)
- **symmetry, transitivity**
Inductive types with parameters and index

Example of vectors with size

Inductive vect (A:Type) : nat -> Type :=
| niln : vect A O
| consn :
 A -> forall n:nat, vect A n -> vect A (S n).

which defines

▶ a family of types-predicates:
 Γ ⊢ vect : Type → nat → Type
▶ a set of introduction rules for the types in this family

Γ ⊢ A : Type
 Γ ⊢ niln_A : vect A O

Γ ⊢ A : Type Γ ⊢ a : A Γ ⊢ n : nat Γ ⊢ l : vect A n
Γ ⊢ consn_A a n l : list A (S n)
Inductive types with parameters and index

vectors : elimination

- an elimination rule (pattern-matching operator with a result depending on the object which is eliminated)

\[
\Gamma \vdash v : vect A n \\
\Gamma, m : nat, x : vect A m \vdash C(m, x) : s \\
\Gamma \vdash t_1 : C(O, \text{nil}_n A) \\
\Gamma, a : A, n : nat, l : vect A n \vdash t_2 : C(S n, \text{cons}_n A a n l) \\
\Gamma \vdash \left(\begin{array}{l}
\text{match } v \text{ as } x \text{ in } vect _ p \text{ return } C(p, x) \text{ with } \\
\text{ niln } \Rightarrow t_1 \mid \text{ consn } a n l \Rightarrow t_2 \\
\text{end}
\end{array} \right) : C(n, v)
\]
Inductive types with parameters and index

- reduction rules preserve typing (ι-reduction)

\[
\begin{align*}
\text{match } \text{niln}_A \text{ as } x \text{ in } \text{vect}_p & \text{ return } C(x, p) \text{ with} \\
\text{niln} & \Rightarrow t_1 | \text{consn } a \ n \ l & \Rightarrow t_2 \\
\text{end} \\
\rightarrow_\iota & t_1
\end{align*}
\]

\[
\begin{align*}
\text{match } \text{consn}_A a' \ n' \ l' \text{ as } x \text{ in } \text{vect}_p & \text{ return } C(x, p) \text{ with} \\
\text{niln} & \Rightarrow t_1 | \text{consn } a \ n \ l & \Rightarrow t_2 \\
\text{end} \\
\rightarrow_\iota & t_2[a', n', l'/a, n, l]
\end{align*}
\]
Non-uniform parameters

Non-uniform parameter:

- Like parameters: uniform conclusion
- Like indices: value can change in recursive subterms

\[\text{Inductive } \text{tuple } (A:Type) := \]
\[| \text{H0} (_:A) \]
\[| \text{HS} (_:\text{tuple} (A*A)). \]

\[\text{Definition } t4 : \text{tuple} \text{ nat} := \]
\[\text{HS nat} (\text{HS} (\text{nat*nat}) (\text{H0} _ ((1,2),(3,4)))).\]
Elimination rules

Pattern-matching:

\[
\begin{align*}
\Gamma & \vdash e : \text{tuple } A & \Gamma, h : \text{tuple } A & \vdash P(h) : s \\
\Gamma, x : A & \vdash t_0 : P(H0 A x) & \Gamma, h : \text{tuple}(A \times A) & \vdash t_S : P(HS A h)
\end{align*}
\]

\[
\Gamma \vdash \left(\begin{array}{l}
\text{match } e \text{ as } h \text{ return } P(h) \text{ with } \\
\quad H0 x \Rightarrow t_0 \\
\quad HS h \Rightarrow t_S \\
\text{end}
\end{array} \right) : P(e)
\]

Elimination:

tuple_rect :
\[
\text{forall } (P : \text{forall } A, \text{ tuple } A \rightarrow \text{ Type}), \\
\quad (\text{forall } A x, P A (H0 A x)) \rightarrow \\
\quad (\text{forall } A h, P (A \times A) h \rightarrow P A (HS A h)) \rightarrow \\
\quad \text{forall } A (h : \text{tuple } A), P A h.
\]

Non-uniform parameters:

- In pattern-matching, behaves like a parameter
- In recursive principles, behaves like an index
Non-uniform parameters can encode inductive families:

```plaintext
Inductive even (n:nat) : Prop :=
  E0' (n:=0)
| ESS' (k:nat) (e:even k) (n:=S (S k)).
Definition E0 : even 0 := E0' 0 eq_refl.
Definition ESS n e : even (S (S n)) :=
  ESS' (S (S n)) n e eq_refl.
```
Well-formed inductive definitions
Constructors of the inductive definition I have type:

$$
\Gamma : \forall (z_1 : C_1) \ldots (z_k : C_k). I \ a_1 \ldots a_n
$$

where C_i can feature instances of I.
Question: can these instances be arbitrary?
Constructors of the inductive definition I have type:

$$\Gamma : \forall (z_1 : C_1) \ldots (z_k : C_k). I \ a_1 \ldots a_n$$

where C_i can feature instances of I.

Question: can these instances be arbitrary?

Example:

```hs
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```
Constructors of the inductive definition I have type:

$$\Gamma : \forall (z_1 : C_1) \ldots (z_k : C_k). I \ a_1 \ldots \ a_n$$

where C_i can feature instances of I.
Question: can these instances be arbitrary?
Example:

```
Inductive lambda : Type :=
  | Lam : (lambda -> lambda) -> lambda
```

We define:

```
Definition app (x y:lambda) :=
  match x with (Lam f) => f y end.
Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.
```

and the evaluation of Ω loops.
Necessity of restrictions

Things can even be worse:

```coq
Inductive lambda : Type :=
    | Lam : (lambda -> lambda) -> lambda

Now define:

Fixpoint lambda_to_nat (t : lambda) : nat :=
  match t with Lam f -> S (lambda_to_nat (f t)) end.
```
Necessity of restrictions

Things can even be worse:

```plaintext
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```

Now define:

```plaintext
Fixpoint lambda_to_nat (t : lambda) : nat :=
  match t with Lam f -> S (lambda_to_nat (f t)) end.
```

What happens with \((\text{lambda_to_nat}\ (\text{Lam}\ (\text{fun}\ x\ \Rightarrow\ x)))\)?
The way out: (strict) positivity condition

- An inductive type is defined as the smallest type generated by a set \((\Gamma_i)_{1 \leq i \leq n}\) of constructors.
- We can see it as \(\mu X, \bigoplus_{1 \leq i \leq n} \Gamma_i(X)\) (with \(\mu\) a fixpoint operator on types).
- The existence of this smallest type can be proved at the impredicative level when the operator \(\lambda X, \bigoplus_{1 \leq i \leq n} \Gamma_i(X)\) is monotonic.
- In order both to ensure monotonicity and to avoid paradox, Coq enforces a strict positivity condition: \(X\) should never appear on the left of an arrow in the type of its constructors.
The way out: (strict) positivity condition

More precisely, if the type (a.k.a arity) of a constructor is:

\[c : C_1 \to \ldots \to C_k \to I \ a_1 \ldots a_k \]

it is well-formed when:

▶ \(I \ a_1 \ldots a_k \) is well-formed w.r.t. the uniformity of parametric arguments and typing constraints;
▶ \(I \) does not appear in any of the \(a_1, \ldots, a_k \);
▶ Each \(C_i \) should either not refer to \(I \) or be of the form:

\[C'_1 \to \ldots \to C'_m \to I \ b_1 \ldots b_k \]

well typed and with no other occurrence of \(I \).

And the rule generalizes as such to dependent products (instead of arrow).
More well-formation conditions...

There are more constraints, that will be explained later:

1. predicativity/impredicativity
 An inductive is predicative when all constructor argument types live in a sort not bigger than the declared sort for the inductive

2. restriction on eliminations
Dependent pattern-matching

\[\text{Inductive } I \ (p: \text{Par}) : A \rightarrow s := \]
\[\ldots \mid \Gamma \ (x_1:C_1)\ldots(x_n:C_n) : I \ p \ u \]
\[\mid \ldots\]

\[\text{match } t \text{ as } h \text{ in } I \ a \ \text{return } P(a,h) \text{ with }\]
\[\ldots\]
\[\mid \Gamma \ x_1 \ \ldots \ x_n \Rightarrow e \]
\[\ldots\]
\[\text{end}\]

Typing conditions:

\[\because \quad \vdash t : I q a\]

\[\because \quad a : A[q/p], \ h : I q a \vdash P : s'\]

\[\because \quad x_1 : C_1[q/p], \ldots, x_n : C_n[q/p] \vdash e : P(u[q/p], \Gamma q x_1\ldots x_n)\]

Then the match has type \(P(a,t) \)
Tactics for case analysis

- \texttt{case t} is the most primitive. It:
 - generates a (proof) term of the form \texttt{match t with ...;}
 - guesses the return type from the goal (under the line);
 - does not introduce/name the arguments of the constructor by default, but there is a syntax for choosing names.

- The \texttt{case_eq} variant modifies the guessing of the return type so that equalities are generated.

- The \texttt{destruct} variant modifies the guessing of the return type so that it generalizes the hypotheses depending on \(t \).
The fixpoint operator (reduction)

Fixpoint expression with dependent result

\[(\text{fix } f (x : A) : B(x) := t(f, x))\]

- Typing

\[
\frac{f : (\forall (x : A), B(x)), x : A \vdash t : B(x)}{\vdash (\text{fix } f (x : A) : B(x) := t(f, x)) : \forall (x : A), B(x)}
\]
Fixpoint operator : well-foundness

Requirement of the Calculus of Inductive Constructions :

- the argument of the fixpoint has type an inductive definition
- recursive calls are on arguments which are \textit{structurally} smaller

Example of recursor on natural numbers

\[
\begin{align*}
\lambda P & : \text{nat} \rightarrow s, \\
\lambda H_O & : P(O), \\
\lambda H_S & : \forall m : \text{nat}, P(m) \rightarrow P(S \, m), \\
\text{fix } f (n : \text{nat}) : & \ P(n) := \\
& \text{match } n \text{ as } y \ 	ext{return } P(y) \ 	ext{with} \\
& \quad O \Rightarrow H_O \ | \ S \, m \Rightarrow H_S \ m \ (f \ m) \\
& \text{end}
\end{align*}
\]

is correct with respect to CCI : recursive call on \(m \) which is structurally smaller than \(n \) in the inductive \text{nat}.
Fixpoint operator : typing rules

\[\Gamma \vdash l : s \quad \Gamma, x : A \vdash C : s' \quad \Gamma, x : l, f : (\forall x : l, C) \vdash t : C \quad t|_f^0 <_l x \]

\[\Gamma \vdash (\text{fix } f (x : l) : C := t) : \forall x : l, C \]

the main definition of \(t|_f^\rho <_l x \) are:

\[z \in \rho \cup \{ x \} \quad (u_i|_f^\rho <_l x)_{i=1\ldots n} \quad A|_f^\rho <_l x \quad (t_i|_f^\rho \{ x \in \bar{x}_i | x : \forall y : U. \bar{u} \} <_l x)_i \]

match \(z u_1 \ldots u_n \) return \(A \) with \(\ldots c_i \bar{x}_i \Rightarrow t_i \ldots \) end \(|_f^\rho <_l x \)

\[t \neq (z \bar{u}) \text{ for } z \in \rho \cup \{ x \} \quad t|_f^\rho <_l x \quad A|_f^\rho <_l x \quad \ldots t_i|_f^\rho <_l x \quad \ldots \]

match \(t \) return \(A \) with \(\ldots c_i \bar{x}_i \Rightarrow t_i \ldots \) end \(|_f^\rho <_l x \)

\[y \in \rho \quad f \not\in t \]

\[f y|_f^\rho <_l x \quad t|_f^\rho <_l x \]

+ contextual rules . . .
Remarks on the criteria

- It covers simply the schema of primitive recursive definitions and proofs by induction which have recursive calls on all immediate subterms.

\[
\lambda P : \text{list } A \rightarrow s, \\
\lambda f_1 : P \text{ nil,} \\
\lambda f_2 : \forall (a : A)(l : \text{list } A), P l \rightarrow P (\text{cons } a l), \\
\text{fix } \text{Rec } (x : \text{list } A) : P x := \\
\quad \text{match } x \text{ return } P x \text{ with} \\
\quad \text{nil } \Rightarrow f_1 | (\text{cons } a l) \Rightarrow f_2 a l (\text{Rec } l) \\
\text{end}
\]

- has type

\[
\forall P : \text{list } A \rightarrow s, \\
P \text{ nil,} \rightarrow \\
(\forall (a : A)(l : \text{list } A), P l \rightarrow P (\text{cons } a l)) \rightarrow \\
\forall (x : \text{list } A), P x
\]
Remarks on the criteria

Possibility of recursive call on deep subterms

```
Fixpoint mod2 (n:nat) : nat :=
    match n with O => O | S O => S O
    | S (S x) => mod2 x
end
```

Possibility of recursive call on terms build by case analysis if each branch is a strict subterm:

```
Definition pred (n:nat) : n<>0->nat:=
    match n return n<>0->nat with
    S p => (fun (h:S p<>0) => p)
    | O => (fun (h:0<>0) =>
        match h (refl_equal 0) return nat with end
    )
end
Fixpoint F (n:nat) : C :=
    match iszero n with
    (left (H:n=0)) => ...
    | (right (H:n<>0)) => F (pred n H)
end
```
Remarks on the criteria

Note: only the recursive arguments with the *same* type are considered recursive (otherwise paradox related to impredicativity)

\[
\text{Inductive Singl} \ (A:\text{Prop}) : \text{Prop} := c : A \to \text{Singl} \ A.
\]
\[
\text{Definition ID} : \text{Prop} := \forall (A:\text{Prop}), A \to A.
\]
\[
\text{Definition id} : ID := \text{fun} \ A \ x \ => \ x.
\]
\[
\text{Fixpoint} \ f \ (x : \text{Singl ID}) : \text{bool} :=
\]
\[
\text{match} \ x \ \text{with} \ (c \ a) \ => \ f \ (a \ (\text{Singl ID} \ (c \ ID \ id))) \ \text{end}.
\]

\[
f (c \ ID \ id) \rightarrow f (id \ (\text{Singl ID} \ (c \ ID \ id))) \rightarrow f (c \ ID \ id)
\]
Tactics for induction

\texttt{fix \(<n>\), where \(<n>\) is a numeral is the most primitive. It:}

- generates a (proof) term of the form:
 \[
 \text{fun } g1 \ g2 \Rightarrow \text{fix } f \ h1 \ h2 \ t \ h3 \ \{\text{struct } t\} := \ ?F \ h1 \ h2 \ t
 \]

 \text{where:}
 - \(g1, g2\) are the objects in the context (above the line);
 - \(h1, h2, t, h3\) are the objects quantified in the goal (under the line);
 - \(?F\) can call \(f\) (= recursive calls);
 - the termination of \(f\) is should eventually be guaranteed by structural recursion on \(t\);

\texttt{Qed} checks the well-formedness, which was not guaranteed so far: error messages come late and may be difficult to interpret.
Tactics for induction

`elim t` applies an induction scheme, i.e. a lemma of the form:

\[
\forall P : T \to \text{Type}, \ldots \to \forall t' : T, P t'
\]

- It guesses argument \(P \) from the goal (under the line), abstracting all the occurrences of \(t \).
- It guesses the elimination scheme to be used (\(T\text{_ind}, T\text{_rect}, \ldots \)) from the sort of the goal and the type of \(t \).
- The `elim t using S` variant allows to provide a custom elimination scheme (or lemma!) \(S \), with the same unification heuristic.
- The `induction t` tactic guesses argument \(P \) taking into account the possible hypotheses depending on \(t \) present in the context (above the line). Plus it can introduce and name things automatically.

Remark: the `rewrite` tactic does a similar guessing job...
We would expect the usual expansion rule for fixpoints:

$$(\text{fix } f (x : A) : B(x) := t(f, x)) \ e \rightarrow t(\text{fix } f (x : A) : B(x) := t(f, x)), e$$
Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

$$(\text{fix } f \ (x : A) : B(x) \ := \ t(f, x)) \ e \to t(\text{fix } f \ (x : A) : B(x) \ := \ t(f, x)), \ e$$

... but this leads to infinite unfolding (SN broken)
Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

$$(\text{fix } f (x : A) : B(x) := t(f, x)) e \rightarrow t(\text{fix } f (x : A) : B(x) := t(f, x)), e$$

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when e is a constructor