
MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 5, 2017

1 / 25

Recap: Calculus of Constructions (CC)

Features:
I Pure Type Systems with 2 sorts (Prop: Type) or (∗ : �)
I Curry-Howard: propositions as types / proofs as terms
I Dependent types
I Polymorphism (impredicativity of ∗)

Expressivity:
I Propositional and predicate (higher-order) logic (OK)
I Datatypes (limited, see last week’s TP...)

2 / 25

Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:
I Natural numbers (obviously), rational numbers, ...
I Lists
I Finitely branching trees, ...

... in theory, but awkward in practice!

⇒ Calculus of Inductive Constructions:
Calculus of Constructions + (co)Inductive Types (Coquand,
Paulin 1989)

3 / 25

Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:
I Natural numbers (obviously), rational numbers, ...
I Lists
I Finitely branching trees, ...

... in theory, but awkward in practice!

⇒ Calculus of Inductive Constructions:
Calculus of Constructions + (co)Inductive Types (Coquand,
Paulin 1989)

3 / 25

Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:
I Natural numbers (obviously), rational numbers, ...
I Lists
I Finitely branching trees, ...

... in theory, but awkward in practice!

⇒ Calculus of Inductive Constructions:
Calculus of Constructions + (co)Inductive Types (Coquand,
Paulin 1989)

3 / 25

Plan

Inductive sets/types

Simple Inductive Types

Inductive Types with Parameters

4 / 25

Inductive sets

Induction is a very general principle that has many instances in
mathematics.

Examples of inductive sets:
I Natural numbers (⇒ mathematical induction)
I Sets/Subsets defined by inference rules
I Generalization to well-founded trees (structural induction)

5 / 25

Natural numbers in Peano Arithmetic

Peano Arithmetic (PA)
I 0 is a natural number;
I if n is a natural number, then S(n) is a natural number;
I equational theory: add, mult, discrimination, injectivity;
I induction scheme:

P(0) and ∀n.P(n)⇒ P(S(n)) implies ∀n.P(n)

6 / 25

Inference rules in PA

Defines subsets of N:
I even numbers 2N

0 ∈ 2N
n ∈ 2N

S(S(n)) ∈ 2N

Minimality: any set closed by the above rules is larger than 2N:
P(0) and ∀n.P(n)⇒ P(S(S(n))) implies ∀n ∈ 2N.P(n)

7 / 25

Inference rules: beyond mere arithmetic

The previous schemes suffices to modelize inference rules:

I Syntax of (lists of) λ-terms (AST) as a subset of N.
I Typing rules are inference rules that define a subset D of

judgments that are derivable

(Γ,M, τ → τ ′) ∈ D (Γ,N, τ) ∈ D
(Γ, M N, τ ′) ∈ D

8 / 25

Inference rules in set theory
In set theory, inference rules can be used to define collections
⇒ Inductive set

Example: natural numbers

0 ∈ N
n ∈ N

S(n) ∈ N

Collections X with closure condition:

0 ∈ X ∧ ∀n.n ∈ X ⇒ S(n) ∈ X

I Under a monotonicity condition (not detailed here), the
collections with the above closure condition are closed by
arbitrary intersection

I Under further conditions, the intersection of all collections
with the above closure condition is a set that we call N.

9 / 25

Natural numbers as an inductive set

Properties of N:
I N is closed, so it satisfies the expected introduction rules
I The minimality of N is expressed by the schematic rule

∀P.P(0) ∧ (∀n ∈ N.P(n)⇒ P(S(n)))⇒ ∀n ∈ N.P(n)

⇒ N satisfies the Peano axioms.

10 / 25

Inductive sets as fixpoints

Another viewpoint:
I N is the smallest fixpoint of

F (X) = {0} ∪ {S(n) | n ∈ X}

I F (P) ⊆ P is the property of closure by rules
I The minimality property

∀P.F (P) ⊆ P ⇒ N ⊆ P

rephrases the induction schema

11 / 25

Inference rules: beyond arithmetic

Infinitely branching trees cannot be defined in PA

But can be defined as an inductive set:

Leaf ∈ T
x ∈ L f ∈ N→ T

Node(x , f) ∈ T

12 / 25

Inference rules: gone too far...

Consider the rule
x ∈ P(V)

C(x) ∈ V

The rules satisfy the monotonicity condition, there exists a
smallest collection closed by the rule.

But V is not a set: it is the collection of well-founded sets.

13 / 25

Type of Natural Numbers
Martin-Löf scheme (form/intro/elim/comp):
I 1 formation rule:

` N : Type
I 2 introduction rules:

` 0 : N
` n : N
` S(n) : N

I 1 elimination rule (P : N→ Type as a subset of N)

` P : N→ Type ` n : N
` f0 : P(0) ` fS : Πn :N.P(n)→ P(S(n))

` Rec(f0, fS,n) : P(n)

I 2 computation rules

Rec(f0, fS,0) = f0 Rec(f0, fS,S(n)) = fS(n,Rec(f0, fS,n))

14 / 25

Dependent vs non-dependent elimination
The induction scheme:

` P : N→ Type ` n : N
` f0 : P(0) ` fS : Πn :N.P(n)→ P(S(n))

`Rec(f0,fS ,n):P(n)

If we drop the dependent types (P is a constant type):

` P : Type ` n : N
` f0 : P ` fS : N→ P → P

`Rec(f0,fS ,n):P

⇒ This is the recursor of Gödel’s T!

Conclusions:
I Induction scheme and recursor is another instance of the

Curry-Howard isomorphism
I The recursor of Gödel’s T is a non-dependent

specialization of the induction scheme

15 / 25

Inductive types in Coq
Coq provides the user with a general mechanism:
I Inductive type specified by the introduction rules

(called constructors)
I A dependent induction/recursion scheme is derived

systematically
(called eliminator)

I Computation rules derived systematically (ι-reduction)

Comparison with Martin-Löf’s inductive types:
I Coq checks the definition preserves consistency (but not

complete!)
⇒ Strictly positive inductive definitions

I Coq allows impredicative inductive definitions (defined
later...)

I Coq uses style of Pure Type Systems

16 / 25

Natural numbers in Coq

Declaration of the natural numbers:

Inductive nat : Type :=
| O : nat | S : nat -> nat.

which defines

I a type Γ ` nat : Type
I a set of introduction rules for this type : constructors

Γ ` O : nat
Γ ` n : nat

Γ ` S n : nat

17 / 25

Recursive inductive types: Natural numbers example

which defines also

I an elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)

Γ ` t : nat Γ, x :nat ` A(x) : s
Γ ` t1 : A(O) Γ,n :nat ` t2 : A(S n)

Γ `(match t as x return A(x) with O ⇒ t1 | S n⇒ t2 end)
: A(t)

I reduction rules preserve typing (ι-reduction)

(match O as x return A(x) with O ⇒ t1 | S n⇒ t2 end)→ι t1
(match S m as x return A(x) with O ⇒ t1 | S n⇒ t2 end)
→ι t2[m/n]

18 / 25

Recursive inductive types

Example of natural numbers

I We obtain case analysis and construction by cases : the
term

λP : nat→ s.
λHO : P(O).
λHS : ∀m : nat.P(S m).
λn : nat.
match n as y return P(y) with
| O => HO
| S m => HS m
end

I is a proof of

∀P : nat→ s.P(O)→ (∀m : nat.P(S m))→ ∀n : nat.P(n)

How to derive the standard recursion scheme ?

19 / 25

Fixpoint operator : application
From case analysis to recursor on natural numbers

case-analysis

λP : nat→ s,
λHO : P(O),
λHS : ∀m : nat,P(S m),
λn : nat,
match n return P(n) with

O ⇒ HO | S m⇒ HS m
end

has type

∀P : nat→ s,
P(O)→
(∀m : nat,P(S m))→
∀n : nat,P(n)

recursor

λP : nat→ s,
λHO : P(O),
λHS : ∀m : nat,P(m)→ P(S m),
fix f (n : nat) : P(n) :=
match n return P(n) with

O ⇒ HO | S m⇒ HS m (f m)
end

has type

∀P : nat→ s,
P(O)→
(∀m : nat,P(m)→ P(S m))→
∀n : nat,P(n) 20 / 25

Fixpoint operator : well-foundness
Requirement of the Calculus of Inductive Constructions :

I the argument of the fixpoint has type an inductive definition
I recursive calls are on arguments which are structurally

smaller

Example of recursor on natural numbers

λP : nat→ s,
λHO : P(O),
λHS : ∀m : nat,P(m)→ P(S m),
fix f (n : nat) : P(n) :=
match n as y return P(y) with

O ⇒ HO | S m⇒ HS m (f m)
end

is correct with respect to CCI : recursive call on m which is
structurally smaller than n in the inductive nat.

21 / 25

Inductive types with parameters

Example of lists

Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

which defines

I a family of types
Γ ` list : Type→ Type

I a set of introduction rules for the types in this family

Γ ` A : Type
Γ ` nilA : list A

Γ ` A : Type Γ ` a : A Γ ` l : list A
Γ ` consA a l : list A

22 / 25

Inductive types with parameters
Example of lists : elimination

I An elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)

Γ ` l : list A Γ, x : list A ` C(x) : s
Γ ` t1 : C(nil) Γ,a : A, l : list A ` t2 : C(consA a l)

Γ `

 match l as x return C(x) with
nil⇒ t1 | cons a l ⇒ t2

end

 : C(l)

I reduction rules which preserve typing (ι-reduction) match nilA as x return C(x) with
nil⇒ t1 | cons a l ⇒ t2

end

→ι t1 match consA a′ l ′ as x return C(x) with
nil p ⇒ t1 | cons a l ⇒ t2

end


→ι t2[a′, l ′/a, l]

23 / 25

Infinitely branching trees in Coq
Declaration of the infinitely branching trees:

Inductive tree (A:Type) : Type :=
| Leaf : tree A
| Node : A -> (nat -> tree A) -> tree A.
tree is defined
tree_rect is defined
tree_ind is defined
tree_rec is defined

tree_rect =
fun (A : Type) (P : tree A->Type) (f : P (Leaf A))
(f0 : forall (a : A) (t : nat -> tree A),

(forall n:nat, P (t n)) -> P (Node A a t)) =>
fix F (t : tree A) : P t :=
match t as t0 return (P t0) with
| Leaf => f
| Node y t0 => f0 y t0 (fun n : nat => F (t0 n))
end 24 / 25

Logical connectives

Disjunction example

Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.

I General elimination rule

Γ ` t :or A B Γ, x :or A B ` C(x) :Prop
Γ,p : A ` t1 :C (or_introl p) Γ,q : B ` t2 :C (or_intror q))

Γ `

 match t as x return C(x) with
or_introl p ⇒ t1 | or_intror q ⇒ t2

end

 : C(t)

25 / 25

More logical connectives

The other logical connectives:

Inductive and (A:Prop) (B:Prop) : Prop :=
| conj : A -> B -> and A B.
Inductive True : Prop := I.
Inductive False : Prop := .
Inductive ex (A:Type)(P:A->Prop) : Prop :=
| ex_intro : forall (x:A), P x -> ex A P.

Exercise: guess the type of the generated eliminator.

26 / 25

	Inductive sets/types
	Simple Inductive Types
	Inductive Types with Parameters

