MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 5, 2017

/25



Recap: Calculus of Constructions (CC)

Features:

» Pure Type Systems with 2 sorts (Prop: Type) or (x : )
Curry-Howard: propositions as types / proofs as terms
Dependent types
Polymorphism (impredicativity of x)

v

v

v

Expressivity:
» Propositional and predicate (higher-order) logic (OK)
» Datatypes (limited, see last week’s TP...)



Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:
» Natural numbers (obviously), rational numbers, ...
» Lists
» Finitely branching trees, ...

25



Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:
» Natural numbers (obviously), rational numbers, ...
» Lists
» Finitely branching trees, ...

... in theory, but awkward in practice!

25



Datatypes

Most useful datatypes can be encoded in Peano Arithmetic:

» Natural numbers (obviously), rational numbers, ...
» Lists
» Finitely branching trees, ...

... in theory, but awkward in practice!

= Calculus of Inductive Constructions:
Calculus of Constructions + (co)Inductive Types (Coquand,
Paulin 1989)

25



Plan

Inductive sets/types

Simple Inductive Types

Inductive Types with Parameters

4/25



Inductive sets

Induction is a very general principle that has many instances in
mathematics.
Examples of inductive sets:

» Natural numbers (= mathematical induction)

» Sets/Subsets defined by inference rules

» Generalization to well-founded trees (structural induction)



Natural numbers in Peano Arithmetic

Peano Arithmetic (PA)

0 is a natural number;

if nis a natural number, then S(n) is a natural number;
equational theory: add, mult, discrimination, injectivity;

induction scheme:
P(0) and Vn. P(n) = P(S(n)) implies ¥n.P(n)

v

v

v

v



Inference rules in PA

Defines subsets of N:

» even numbers 2N
ne 2N

0 € 2N S(S(n)) € 2N

Minimality: any set closed by the above rules is larger than 2N:
P(0) and Vn. P(n) = P(S(S(n))) implies Vn € 2N.P(n)



Inference rules: beyond mere arithmetic

The previous schemes suffices to modelize inference rules:

» Syntax of (lists of) A\-terms (AST) as a subset of N.
» Typing rules are inference rules that define a subset D of

judgments that are derivable

(M, —7YeD (TN, 7)e D
(f.MN, 7)€ D




Inference rules in set theory

In set theory, inference rules can be used to define collections
= Inductive set

Example: natural numbers

neN
0eN S(n) e N

Collections X with closure condition:

0e XAVn.ne X=S(n)eX

» Under a monotonicity condition (not detailed here), the
collections with the above closure condition are closed by
arbitrary intersection

» Under further conditions, the intersection of all collections
with the above closure condition is a set that we call N.

25



Natural numbers as an inductive set

Properties of N:
» Nis closed, so it satisfies the expected introduction rules
» The minimality of N is expressed by the schematic rule

VP.P(0) A (Vn e N.P(n) = P(S(n))) = Vn e N.P(n)

= N satisfies the Peano axioms.

10/25



Inductive sets as fixpoints

Another viewpoint:
» N is the smallest fixpoint of

F(X)={0}u{S(n) | ne X}

» F(P) C P is the property of closure by rules
» The minimality property

YP.F(P)CP=NCP

rephrases the induction schema

11/25



Inference rules: beyond arithmetic

Infinitely branching trees cannot be defined in PA
But can be defined as an inductive set:

xel feN—>T
Leaf € T Node(x,f) e T

12/25



Inference rules: gone too far...

Consider the rule
xeP(V)

Cx)eV
The rules satisfy the monotonicity condition, there exists a

smallest collection closed by the rule.

But V is not a set: it is the collection of well-founded sets.

13/25



Type of Natural Numbers
Martin-L6f scheme (form/intro/elim/comp):

» 1 formation rule:
FN: Type
» 2 introduction rules:

Fn:N
FO:N FS(n):N

» 1 elimination rule (P : N — Type as a subset of N)

FP:N—Type Fn:N
Ff: P(0) Ffs:Mn:N.P(n)— P(S(n))

+ Rec(fy, fs, n) : P(n)

» 2 computation rules

ReC(fo, f57 O) = fO ReC(fo, f87 S(n)) = fS(”a ReC(fo, f87 n))

14/25



Dependent vs non-dependent elimination
The induction scheme:

FP:N—Type +n:N
- fy: P(O) F fs:Mn:N.P(n) — P(S(n))
FRec(fy,fs,n):P(n)

If we drop the dependent types (P is a constant type):

FP:Type +Fn:N
|—f0:P Ffs:N—)P—)P
FRec(fy,fs,n):P

= This is the recursor of Godel’s T!

Conclusions:
» Induction scheme and recursor is another instance of the
Curry-Howard isomorphism
» The recursor of Gédel's T is a non-dependent

specialization of the induction scheme
15/25



Inductive types in Coq

Coq provides the user with a general mechanism:

» Inductive type specified by the introduction rules
(called constructors)

» A dependent induction/recursion scheme is derived
systematically
(called eliminator)

» Computation rules derived systematically (:-reduction)

Comparison with Martin-L6f’s inductive types:

» Coq checks the definition preserves consistency (but not
complete!)
= Strictly positive inductive definitions

» Coq allows impredicative inductive definitions (defined
later...)

» Coq uses style of Pure Type Systems

16/25



Natural numbers in Coq

Declaration of the natural numbers:

Inductive nat : Type :=
| O : nat | S : nat -> nat.

which defines
» atypel F nat : Type
» a set of introduction rules for this type : constructors

Fn:nat

M- O: -
O nat =S n:nat

17/25



Recursive inductive types: Natural numbers example

which defines also

» an elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)

NFt:nat M x:nat - A(x):s
M=t :AO) I,n:nat -t : A(Sn)

lH(match tas X return A(X) with O=t | Sn= b end)
CA(1)
» reduction rules preserve typing (:-reduction)

(match O as x return A(X) withO=t |Sn= kbend) —, 4
(match Smas X return A(x) with O =t | Sn= 1t end)
" t2[m/n]

18/25



Recursive inductive types

Example of natural numbers

» We obtain case analysis and construction by cases : the

term
AP :nat — s.

AHop : P(O).

AHg : Ym: nat. P(S m).

AN :nat.

match nas y return P(y) with
| O => Ho
|Sm => Hsm

end

» is a proof of
VP :nat — 5. P(O) — (Vm: nat. P(Sm)) — Vn: nat. P(n)

How to derive the standard recursion scheme ?

19/25



Fixpoint operator : application
From case analysis to recursor on natural numbers

case-analysis

AP :nat — s,

AHo : P(O),

AHs :Vm : nat, P(S m),

AN : nat,

match nreturn P(n) with
O=Ho|Sm= Hsm

end

has type

VP :nat — s,

P(O) —

(Ym: nat, P(S m)) —
Vn:nat,P(n)

recursor

AP :nat — s,
AHo : P(O),
AHg : ¥Ym: nat, P(m) — P(S m),
fix f(n:nat) : P(n) :=
match nreturn P(n) with
O= Ho|Sm= Hsm(fm)
end

has type

VP :nat — s,
P(O) —

(Vm: nat, P(m) — P(S m)) —
Vn:nat,P(n)

20/25



Fixpoint operator : well-foundness
Requirement of the Calculus of Inductive Constructions :

» the argument of the fixpoint has type an inductive definition

» recursive calls are on arguments which are structurally
smaller

Example of recursor on natural numbers

AP :nat — s,
)\Ho : :D(O)7
AHs :¥Ym : nat, P(m) — P(S m),
fix f(n:nat) : P(n) :=
match nas y return P(y) with
O= Ho|Sm= Hsm(fm)
end

is correct with respect to CClI : recursive call on m which is
structurally smaller than nin the inductive nat.

21/25



Inductive types with parameters

Example of lists
Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

which defines

» a family of types

I+ list : Type — Type
» a set of introduction rules for the types in this family

M= A:Type FFA:Type F'~a:ATHI:listA
M-nilg:listA '+ conspal:listA

22/25



Inductive types with parameters
Example of lists : elimination

» An elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)
Fe=l:listA T,x:listA-C(x):s
NEt:C(nil) Ta:Al:listAkt: C(consgal)
match /as X return C(x) with
M- nil=t|consal=1b : C(I)

end

» reduction rules which preserve typing (.-reduction)

matchnilp as X return C(x) with
nil=1H|consal=1b —, 1
end
match conspg & ' as X return C(x) with
( nilp=ti|consal=1=0b )
end
—, bld,l'/a,l]

23/25



Infinitely branching trees in Coq
Declaration of the infinitely branching trees:

Inductive tree (A:Type) : Type :=

| Leaf : tree A

| Node : A —-> (nat —> tree A) —-> tree A.
tree is defined

tree _rect is defined

tree_ind is defined

tree_rec 1s defined

tree_rect =
fun (A : Type) (P : tree A->Type) (f : P (Leaf A))
(f0 : forall (a : A) (t : nat —-> tree A),

(forall n:nat, P (t n)) —> P (Node A a t)) =>
fix F (t : tree A) : P t :=
match t as t0 return (P t0) with
| Leaf => £

| Node y t0 => f0 y t0 (fun n : nat => F (t0 n))
end 24/25



Logical connectives

Disjunction example

Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.

» General elimination rule

F-t:orAB T,x:orABF C(x):Prop
p:AEt:C(or_introlp) T,q:BF to:C(or_introrQq))

match t as X return C(x) with
M+ or_introl p =t | or_intror q =t | : C(t)

end

25/25



More logical connectives

The other logical connectives:

Inductive and (A:Prop) (B:Prop) : Prop :=
| conj : A -=> B -> and A B.

Inductive True : Prop := I.
Inductive False : Prop :=

Inductive ex (A:Type) (P:A->Prop) : Prop :=
| ex_intro : forall (x:A), P x —> ex A P.

Exercise: guess the type of the generated eliminator.

26/25



	Inductive sets/types
	Simple Inductive Types
	Inductive Types with Parameters

