MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Dec 15, 2016

/28

Last week recap...

v

Use of typed A-calculus as a logical formalism:
Curry-Howard isomorphism

» Propositions as types
» Proofs as inhabitants
» Deduction rules as typing rules

Simple types correspond to propositional logic

Predicate logic requires dependent products and pairs (I
and X types).

Terms and types share the same syntax.

Types are terms whose type is one of the special constants
called sorts.

/28

Plan

Martin-L6f’s Type Theory

System F, Polymorphism

Calculus of Constructions

Pure Type Systems

Metatheory: consistency, strong normalization, canonicity

3/28

Martin-L6f’'s Type Theory

Judgments:

>

>

>

>

I Atype (types have a specific judgment)
r-M:A

= A=B (equality only on well-typed terms)
r’FkM=N:A

Organized as:

>

v

v

v

formation rules (rule for M)
introduction rules (rule for \)
elimination rules (rule for application)
computation rules (5-reduction)

MLTT: History

Versions:
» 1971: Type:Type (inconsistent impredicativity)
» 1973: Intensional Type Theory (predicative)

» 1979: Extensional Type Theory
» Types are sets with a specific equality (setoids)

» Reflection rule: conversion and propositional equality are
identified
Features:
» Logical connectives
Universes
Equality
Inductive definitions (or W-types)

v

v

v

System F
System F (J.-Y. Girard (72), Reynolds (74)) extends the simply
typed A-calculus with a new type former (polymorphism):

Vo.r

Inhabitants of this type are terms that have type for all
possible substitution of a type for a.

Ex: (Ax.x) :Va.a — «

Fr'-M:7 anotfreeinl r'=M:Va.7
r=M:Va.r M=M:r[r'/a]

Explicit version (needed when X carries the domain type):

FrN-M:7 anotfreeinl Mr=M:Vva.r
M= AaM:Va.r Fr=M7':r[r'/a]

System F and arithmetic

System F can encode datatypes and a wide range of functions
over them, by functional encodings.

Ex: arithmetic

N=Va.a = (0 = a) > «
[N]= A A7 x (0 = Ax.Afx, 2= MxAf.f(fX))

Encodes all functions of second order arithmetic (quantifiers
can range over predicates a.k.a. sets of natural numbers)

Limitations as a logical formalism:

» Cannot encode equality via the Curry-Howard
isomorphism

System F: an impredicative theory

Polymorphism allows to define a type by quantification over all
types, including itself.
Allows for self-application!

> id= \x.x :Va.a — «

» id id is well-typed (« instantited with Va.ao — «)

“System F is not set-theoretical” (Reynolds)

Calculus of Constructions: History

Coquand and Huet (85)
Merges ideas from:
» System F (polymorphism)
» Automath (related to Martin L6f’s Type Theory)

/28

Calculus of Constructions (CC)

2 sorts: Prop and Type (literature: Type/Kind or /)

r-T:s 't (x:T)erl M+
[JF Lx:Tk Mex: T I - Prop : Type
N-A:sy Inx:AEB:s, THIMx:AB:s I x:A-EM:B
MN-Mnx:AB: s rM-Xx:T.M : MNx:A.B
r’-=M:Nx:AB TEN:A TEM:T T=3T T+-T:s
rEMN : B[N/x] r=m: T

Conversion rule (=g includes S-reduction/expansion +
congruence rules): 2 convertible types have the same
inhabitants/proofs. Necessary for good metatheoretical
properties.

10/28

CC extends System F

Prop (a.k.a. x) is a sort of types that includes the types of
System F:

> (x,%,%) governs arrow types
N:*+ —= N—-N:x%

» (0O, %, *) governs polymorphism
e.g. Va1 = lla: *.7
Explicit polymorphism
» Generalization rule : Aa.t = Ao : .t
» Instantiationrule: t 7 — tr

11/28

CC: a powerful system

CC extends System F (and Fw):
» Functions of higher-order arithmetic
» Propositional connectives (A, V,...)

CC extends Al:
» Predicate calculus: existential quantifier, equality

CC is a higher-order logic:

» In MLTT, predicative rule (O, %, [0) prevents quantifications
to always be a proposition
No type of all propositions

» In CC, x is the type of all propositions of higher-order logic

12/28

Calculus of Constructions with Universes (CC,)

A hierarchy of predicative universes is added (Coquand, 1986).

Prop : Type: : Type, : Types. ..

Logical strength:

» CC with 2 universes can model Zermelo set theory
(Miquel)
(Uses predicative polymorphic encodings)

» CC,, can be proved consistent in ZF (Luo).

13/28

Limitations of polymorphics encodings

» Case of impredicative encoding

» 0 # 1 is not provable (by erasability of dependencies)
» induction is not “directly” provable (only the recursor is
available)

» Case of predicative encoding in the calculus with universes

» OK for expressivity (we have 0 # 1 and an “indirect”
induction)

» Butno predecessor in 1 step

» not “natural”, introduces universe issues

» difficult to write automated tools that can distinguish
between inductive types constructors and arbitrary terms

» Primitive inductive types “a la Martin-L6f” have been
added.

14/28

Pure Type Systems

Pure Type Systems (PTS) are a way to factorize the syntax of
many formalisms of type theory. Many metatheoretical results
can be established for large classes of PTS.

15/28

Definition of Pure Type Systems (PTS)

» Sorts (types of types), organised in axioms A and rules for
product R.

Rules

' (s1,82)eA THA:s T+ (x,A)el
MN-51:% Mx:Ar lN-x:A

rFA:s;y Ix:AFB:s, (51,8,83)€R
MN-MNx:AB:s;3

Nx:AFt:B THNx:AB:s FrM-t:Nx:AB TrHu:A
Fr=Ax:At:Nx:AB =tu: Blx < u]

r-t:A I'=B:s A=3B
r-t:B
(Predicativity: when s3 is not lower than s; or s,)

AX T Attu =g t[x < U]

16/28

PTS instances: Barendregt’s cube

S ={x,0}, A= (x,0) Rules:

> (x, x,*) simple types
» (*,0,0) dependent types (A)
0, %, %) polymorphism (system F)

> (
» (O, 0,0) higher-order (system Fw)

17/28

Metatheory

For a logical formalism, the main metatheoretical property is
consistency (the existence of a non-provable proposition).
But other properties are of interest:

» Strong normalization (SN)

» Canonicity / Constructivity
Actually, SN is the strongest property, the others can be seen
as corollaries (within arithmetic).

Establishing SN requires preliminary results:
» confluence of —4
» substitution lemma
» subject-reduction (soundness of typing)

18/28

Strong Normalization as the strongest property

Strong Normalization property (SN):

FrEM: T = =3(M)jen.M = My —p My —p -

Gddel’s 2nd incompleteness theorem: a formal system as
strong as arithmetic cannot prove its own consistency, unless it
is inconsistent.

= Consistency and SN cannot be proved in arithmetic. Need a
stronger formalism, e.g. set theory.

19/28

Strong Normalization proofs

Milestone: Girard’s reducibility candidates (CR)

CR are sets of SN \-terms with well-chosen closure properties.
X—=Y={t|Vue XtueY}

models arrow types and intersection of a family of CR is a CR,
so Girard could show SN for System F:

Fr=M:7 = Vo e[l.Mlo] € [7]

Proof simplified by Mitchell and Tait.

Adapts to theories with dependent types (Altenkirch’s A-sets),
but may require a model.

20/28

Metatheory: conversion

Conversion:
» Confluence:

A—-5BNA—5C = 3D.B—=;DNC—5D
» Corollary: inversion of products

Nx:AB=3MNx:AB = A=3 A A B=4 B

21/28

Metatheory: typing

Typing:
» Substitution lemma:
Fx:AAFM:T TEN:A
I A[N/X] = M[N/x] - TIN/X]

» Inversion lemmas (one for each term constructor):
M- Mx:AM: C
= dBs.C=3Mx:AB ANT;x:AFM:B ANTFNx:AB : s

» Subject Reduction:
TEM:TAM—=gM =T-M:T

Note: if N =5 N',refl N: N=Nbutrefl N : N=N
requires the conversion rule

22/28

Canonicity

Characterization of inhabitants (in normal form) of type
constructors

Using inversion lemmas, if M in normal form (atomic terms:
Xt--- tn)i
» =M :Tx: A.Bimplies M is either a A or an atomic term.
» [+ M: simplies M is either a sort, a Il or an atomic term.
Note: when I = [], the atomic case does not apply

If the formalism encodes arithmetic, we expect:

» ' M : Nimplies M is either 0 or a successor, or an
atomic term.

23/28

Canonicty + SN: Constructivity

Using SN:
» = M:TNx:ABthen Mreducestoa \.
» = M : sthen M reduces to a sort ora Il.
» = M : Nthen M reduces to a numeral.

24/28

Constructivity and Consistency

Constructivitiy: canonicity applied to connectives (cut
elimination)

» =M : Av Bimplies M reduces to an introduction rule, thus
we get either a proof of A or a proof of B.

» - M:3x: A.Bimplies M reduces to a pair (a, b) where ais
a witness.

» = M : L is impossible: consistency.

Note: non-normalization of a type theory often (not always!)
lead to inconsistency.

25/28

Towards the formalism of Coq

Recap on CC:
» Encodes correctly higher-order logic.
» Encodes (using polymorphism) datatypes and functions on
them.
» Does not encode correctly the equational theory of those
datatypes

Calculus of Inductive Constructions (CIC)

» Extends CC with universes and primitive (co-)inductive
types (a la Martin-L6f, but impredicativity allowed)

» Enjoys the expected canonicity results
Coquand, Paulin-Mohring (90).

26/28

CIC: sort setup
Universes:
» An impredicative sort Prop:
» A hierarchy of predicative sorts Type;

Prop : Type; : Type> : Types. ..

Prop c Type; C Type, C Types. ..

Proof-irrelevance (VP : Prop.Vpg : P.p = q):
» Admissible.
» Not provable: axioms discriminating proofs are consistent
(but the interpretation of functions have to be restricted to
computable ones)

Classical logic

» Prop can be interpreted as a boolean type (implies
proof-irrelevance)

27/28

Exercises

TP 2 on my webpage
http://www.lix.polytechnique.fr/~barras/mpri/

Orhttp://www.lix.polytechnique.fr/~barras/
mpri/2016/tp2.pdf

28/28

http://www.lix.polytechnique.fr/~barras/mpri/
http://www.lix.polytechnique.fr/~barras/mpri/2016/tp2.pdf
http://www.lix.polytechnique.fr/~barras/mpri/2016/tp2.pdf

	Martin-Löf's Type Theory
	System F, Polymorphism
	Calculus of Constructions
	Pure Type Systems
	Metatheory: consistency, strong normalization, canonicity

