
MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Dec 15, 2016

1 / 28

Last week recap...

I Use of typed λ-calculus as a logical formalism:
Curry-Howard isomorphism

I Propositions as types
I Proofs as inhabitants
I Deduction rules as typing rules

I Simple types correspond to propositional logic
I Predicate logic requires dependent products and pairs (Π

and Σ types).
I Terms and types share the same syntax.
I Types are terms whose type is one of the special constants

called sorts.

2 / 28

Plan

Martin-Löf’s Type Theory

System F, Polymorphism

Calculus of Constructions

Pure Type Systems

Metatheory: consistency, strong normalization, canonicity

3 / 28

Martin-Löf’s Type Theory

Judgments:
I Γ ` A type (types have a specific judgment)
I Γ ` M : A
I Γ ` A = B (equality only on well-typed terms)
I Γ ` M = N : A

Organized as:
I formation rules (rule for Π)
I introduction rules (rule for λ)
I elimination rules (rule for application)
I computation rules (β-reduction)

4 / 28

MLTT: History

Versions:
I 1971: Type:Type (inconsistent impredicativity)
I 1973: Intensional Type Theory (predicative)
I 1979: Extensional Type Theory

I Types are sets with a specific equality (setoids)
I Reflection rule: conversion and propositional equality are

identified

Features:
I Logical connectives
I Universes
I Equality
I Inductive definitions (or W-types)

5 / 28

System F
System F (J.-Y. Girard (72), Reynolds (74)) extends the simply
typed λ-calculus with a new type former (polymorphism):

∀α.τ

Inhabitants of this type are terms that have type τ for all
possible substitution of a type for α.

Ex: (λx . x) : ∀α. α→ α

Γ ` M : τ α not free in Γ

Γ ` M : ∀α. τ
Γ ` M : ∀α. τ

Γ ` M : τ [τ ′/α]

Explicit version (needed when λ carries the domain type):

Γ ` M : τ α not free in Γ

Γ ` Λα.M : ∀α. τ
Γ ` M : ∀α. τ

Γ ` M τ ′ : τ [τ ′/α]

6 / 28

System F and arithmetic

System F can encode datatypes and a wide range of functions
over them, by functional encodings.

Ex: arithmetic

N= ∀α.α→ (α→ α)→ α
[n]= λx .λf . f n x (0 = λx .λf .x , 2 = λx .λf .f (f x))

Encodes all functions of second order arithmetic (quantifiers
can range over predicates a.k.a. sets of natural numbers)

Limitations as a logical formalism:
I Cannot encode equality via the Curry-Howard

isomorphism

7 / 28

System F: an impredicative theory

Polymorphism allows to define a type by quantification over all
types, including itself.

Allows for self-application!
I id= λx .x : ∀α.α→ α

I id id is well-typed (α instantited with ∀α.α→ α)
“System F is not set-theoretical” (Reynolds)

8 / 28

Calculus of Constructions: History

Coquand and Huet (85)

Merges ideas from:
I System F (polymorphism)
I Automath (related to Martin Löf’s Type Theory)

9 / 28

Calculus of Constructions (CC)

2 sorts: Prop and Type (literature: Type/Kind or ∗/�)

[] `
Γ ` T : s
Γ; x :T `

Γ ` (x : T) ∈ Γ

Γ ` x : T
Γ `

Γ ` Prop : Type

Γ ` A : s1 Γ; x :A ` B : s2

Γ ` Πx :A.B : s2

Γ ` Πx :A.B : s Γ; x :A ` M : B
Γ ` λx :T .M : Πx :A.B

Γ ` M : Πx :A.B Γ ` N : A
Γ ` M N : B[N/x]

Γ ` M : T T =β T ′ Γ ` T ′ : s
Γ ` M : T ′

Conversion rule (=β includes β-reduction/expansion +
congruence rules): 2 convertible types have the same
inhabitants/proofs. Necessary for good metatheoretical
properties.

10 / 28

CC extends System F

Prop (a.k.a. ∗) is a sort of types that includes the types of
System F:
I (∗, ∗, ∗) governs arrow types

N : ∗ =⇒ N→ N : ∗
I (�, ∗, ∗) governs polymorphism

e.g. ∀α.τ =⇒ Πα : ∗.τ

Explicit polymorphism
I Generalization rule : Λα.t =⇒ λα : ∗.t
I Instantiation rule : t τ =⇒ t τ

11 / 28

CC: a powerful system

CC extends System F (and Fω):
I Functions of higher-order arithmetic
I Propositional connectives (∧, ∨,...)

CC extends λΠ:
I Predicate calculus: existential quantifier, equality

CC is a higher-order logic:
I In MLTT, predicative rule (�, ∗,�) prevents quantifications

to always be a proposition
No type of all propositions

I In CC, ∗ is the type of all propositions of higher-order logic

12 / 28

Calculus of Constructions with Universes (CCω)

A hierarchy of predicative universes is added (Coquand, 1986).

Prop : Type1 : Type2 : Type3 . . .

Logical strength:
I CC with 2 universes can model Zermelo set theory

(Miquel)
(Uses predicative polymorphic encodings)

I CCω can be proved consistent in ZF (Luo).

13 / 28

Limitations of polymorphics encodings

I Case of impredicative encoding

I 0 6= 1 is not provable (by erasability of dependencies)
I induction is not “directly” provable (only the recursor is

available)
I Case of predicative encoding in the calculus with universes

I OK for expressivity (we have 0 6= 1 and an “indirect”
induction)

I But no predecessor in 1 step
I not “natural”, introduces universe issues
I difficult to write automated tools that can distinguish

between inductive types constructors and arbitrary terms
I Primitive inductive types “a la Martin-Löf” have been

added.

14 / 28

Pure Type Systems

Pure Type Systems (PTS) are a way to factorize the syntax of
many formalisms of type theory. Many metatheoretical results
can be established for large classes of PTS.

15 / 28

Definition of Pure Type Systems (PTS)

I Sorts (types of types), organised in axioms A and rules for
product R.

Rules

Γ ` (s1, s2) ∈ A
Γ ` s1 : s2

Γ ` A : s
Γ, x : A `

Γ ` (x ,A) ∈ Γ

Γ ` x : A

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A.B : s3

Γ, x : A ` t : B Γ ` Πx : A.B : s
Γ ` λx : A.t : Πx : A.B

Γ ` t : Πx : A.B Γ ` u : A
Γ ` t u : B[x ← u]

Γ ` t : A Γ ` B : s A =β B
Γ ` t : B

λx : A.t u =β t [x ← u]

(Predicativity: when s3 is not lower than s1 or s2)

16 / 28

PTS instances: Barendregt’s cube

S = {∗,�}, A = (∗,�) Rules:

I (∗, ∗, ∗) simple types
I (∗,�,�) dependent types (λΠ)
I (�, ∗, ∗) polymorphism (system F)
I (�,�,�) higher-order (system Fω)

17 / 28

Metatheory

For a logical formalism, the main metatheoretical property is
consistency (the existence of a non-provable proposition).

But other properties are of interest:
I Strong normalization (SN)
I Canonicity / Constructivity

Actually, SN is the strongest property, the others can be seen
as corollaries (within arithmetic).

Establishing SN requires preliminary results:
I confluence of→β

I substitution lemma
I subject-reduction (soundness of typing)

18 / 28

Strong Normalization as the strongest property

Strong Normalization property (SN):

Γ ` M : T ⇒ ¬∃(Mi)i∈N.M = M0 →β M1 →β · · ·

Gödel’s 2nd incompleteness theorem: a formal system as
strong as arithmetic cannot prove its own consistency, unless it
is inconsistent.

⇒ Consistency and SN cannot be proved in arithmetic. Need a
stronger formalism, e.g. set theory.

19 / 28

Strong Normalization proofs

Milestone: Girard’s reducibility candidates (CR)

CR are sets of SN λ-terms with well-chosen closure properties.

X → Y = {t | ∀u ∈ X .t u ∈ Y}

models arrow types and intersection of a family of CR is a CR,
so Girard could show SN for System F:

Γ ` M : τ ⇒ ∀σ ∈ [[Γ]].M[σ] ∈ [[τ]]

Proof simplified by Mitchell and Tait.

Adapts to theories with dependent types (Altenkirch’s Λ-sets),
but may require a model.

20 / 28

Metatheory: conversion

Conversion:
I Confluence:

A→∗β B ∧ A→∗β C ⇒ ∃D.B →∗β D ∧ C →∗β D

I Corollary: inversion of products

Πx :A.B =β Πx :A′.B′ ⇒ A =β A′ ∧ B =β B′

21 / 28

Metatheory: typing

Typing:
I Substitution lemma:

Γ; x :A; ∆ ` M : T Γ ` N : A
Γ; ∆[N/x] ` M[N/x] : T [N/x]

I Inversion lemmas (one for each term constructor):
Γ ` λx :A.M : C
⇒ ∃B s. C =β Πx :A.B ∧ Γ; x :A ` M : B ∧ Γ ` Πx :A.B : s

I Subject Reduction:

Γ ` M : T ∧ M →β M ′ ⇒ Γ ` M ′ : T

Note: if N →β N ′, refl N : N = N but refl N ′ : N = N
requires the conversion rule

22 / 28

Canonicity

Characterization of inhabitants (in normal form) of type
constructors

Using inversion lemmas, if M in normal form (atomic terms:
x t1 · · · tn):
I Γ ` M : Πx : A.B implies M is either a λ or an atomic term.
I Γ ` M : s implies M is either a sort, a Π or an atomic term.

Note: when Γ = [], the atomic case does not apply

If the formalism encodes arithmetic, we expect:
I Γ ` M : N implies M is either 0 or a successor, or an

atomic term.

23 / 28

Canonicty + SN: Constructivity

Using SN:
I ` M : Πx : A.B then M reduces to a λ.
I ` M : s then M reduces to a sort or a Π.
I ` M : N then M reduces to a numeral.

24 / 28

Constructivity and Consistency

Constructivitiy: canonicity applied to connectives (cut
elimination)
I ` M : A ∨ B implies M reduces to an introduction rule, thus

we get either a proof of A or a proof of B.
I ` M : ∃x : A.B implies M reduces to a pair (a,b) where a is

a witness.
I ` M : ⊥ is impossible: consistency.

Note: non-normalization of a type theory often (not always!)
lead to inconsistency.

25 / 28

Towards the formalism of Coq

Recap on CC:
I Encodes correctly higher-order logic.
I Encodes (using polymorphism) datatypes and functions on

them.
I Does not encode correctly the equational theory of those

datatypes

Calculus of Inductive Constructions (CIC)
I Extends CC with universes and primitive (co-)inductive

types (a la Martin-Löf, but impredicativity allowed)
I Enjoys the expected canonicity results

Coquand, Paulin-Mohring (90).

26 / 28

CIC: sort setup
Universes:
I An impredicative sort Prop:
I A hierarchy of predicative sorts Typei

Prop : Type1 : Type2 : Type3 . . .

Prop ⊂ Type1 ⊂ Type2 ⊂ Type3 . . .

Proof-irrelevance (∀P : Prop.∀pq : P.p = q):
I Admissible.
I Not provable: axioms discriminating proofs are consistent

(but the interpretation of functions have to be restricted to
computable ones)

Classical logic
I Prop can be interpreted as a boolean type (implies

proof-irrelevance)
27 / 28

Exercises

TP 2 on my webpage
http://www.lix.polytechnique.fr/~barras/mpri/

Or http://www.lix.polytechnique.fr/~barras/
mpri/2016/tp2.pdf

28 / 28

http://www.lix.polytechnique.fr/~barras/mpri/
http://www.lix.polytechnique.fr/~barras/mpri/2016/tp2.pdf
http://www.lix.polytechnique.fr/~barras/mpri/2016/tp2.pdf

	Martin-Löf's Type Theory
	System F, Polymorphism
	Calculus of Constructions
	Pure Type Systems
	Metatheory: consistency, strong normalization, canonicity

