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Abstract

We study the problem of computing a preemptive schedule of equal-length jobs with given
release times and deadlines. Each job is assigned a weight, and our goal is to maximize the
weighted throughput, which is the total weight of completed jobs. In Graham’s notation this
problem is described as (1|rj ; pj=p; pmtn|

∑

wjUj). We provide an O(n4)-time algorithm for
this problem, improving the previous bound of O(n10) by Baptiste [Bap99b].

1 Introduction

We study the following scheduling problem. We are given a set of n jobs of the same integer
length p ≥ 1. For each job j we are also given three integer values: its release time rj , deadline
dj and weight wj ≥ 0. Our goal is to compute a preemptive schedule that maximizes the weighted

throughput, which is the total weight of completed jobs. Alternatively, this is sometimes formulated
as minimizing the weighted number of late jobs. In Graham’s notation, this scheduling problem is
described as (1|rj ; pj=p; pmtn|

∑

wjUj), where Uj is a 0-1 variable indicating whether j is completed
or not in the schedule.

Most of the literature on job scheduling focuses on minimizing makespan, lateness, tardiness, or
other objective functions that depend on the completion time of all jobs. Our work is motivated by
applications in real-time overloaded systems, where the total workload often exceeds the capacity
of the processor, and where the job deadlines are critical, in the sense that the jobs that are
not completed by the deadline bring no benefit and may as well be removed from the schedule
altogether. In such systems, a reasonable goal is to maximize the throughput, that is, the number
of executed tasks. In more general situations, some jobs may be more important than other. This
can be modeled by assigning weights to the jobs and maximizing the weighted throughput.
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The above problem (1|rj ; pj=p; pmtn|
∑

wjUj) was studied by Baptiste [Bap99b], who showed
that it can be solved in polynomial time. His algorithm runs in time O(n10). In this paper we
improve his result by providing an O(n4)-time algorithm for this problem
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Figure 1: Complexity of some related throughput maximization problems.

Figure 1 shows some complexity results for related scheduling problems where the objective
function is to maximize throughput. A more extensive overview can be found at Brucker and
Knust’s website [BK]. (That website, however, only categorizes problems as NP-complete, polyno-
mial, pseudo-polynomial or open, without describing their exact time complexity.)

2 Preliminaries

Terminology and notation. We assume that the jobs on input are numbered 1, 2, . . . , n. All
jobs have the same integer length p ≥ 1. Each job j is specified by a triple (rj , dj , wj) of integers,
where rj is the release time, dj is the deadline, and wj ≥ 0 is the weight of j. Without loss of
generality, we assume that dj ≥ rj + p for all j and that minj rj = 0.

Throughout the paper, by a time unit t we mean a time interval [t, t + 1), where t is an integer.
A preemptive schedule (or, simply, a schedule) S is a function that assigns to each job j a set S(j)
of time units when j is executed. Here, the term “preemption” refers to the fact that the time
units in S may not be consecutive. We require that S satisfies the following two conditions:

(sch1) S(j) ⊆ [rj, dj) for each j (jobs are executed between their release times and deadlines.)

(sch2) S(i) ∩ S(j) = ∅ for i 6= j (at most one job is executed at a time.)

If t ∈ S(j) then we say that (a unit of) j is scheduled or executed at time unit t. If |S(j)∩ [rj , dj)| =
p, then we say that S completes j. The completion time of j is Cj = 1 + max S(j). Without loss
of generality, we will be assuming that each job j is either completed (|S(j)| = p) or not executed
at all (S(j) = ∅).

The throughput of S is the total weight of jobs that are completed in S, that is w(S) =
∑

|S(j)|=p wj. Our goal is to find a schedule of all jobs with maximum throughput.
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For a set of jobs J , by w(J ) =
∑

j∈J wj we denote the total weight of J . Given a set of jobs J ,
if there is a schedule S that completes all jobs in J , then we say that J is feasible. The restriction
of S to J is called a full schedule of J .

Earliest-deadline schedules. For two jobs j, k, we say that j is more urgent than k if dj < dk.
It is well-known that if J is feasible, then J can be fully scheduled using the following earliest-

deadline rule: at every time step t, execute the most urgent job among the jobs that have been
released by time t but not yet completed. Ties can can be broken arbitrarily, but consistently, for
example, always in favor of lower numbered jobs. If S is any schedule (of all jobs), then we say
that S is earliest-deadline if its restriction to the set of executed jobs is earliest-deadline.

Since any feasible set of jobs J can be fully scheduled in time O(n log n) using the earliest-
deadline rule, the problem of computing a schedule of maximum throughput is essentially equivalent
to computing a maximum-weight feasible set.
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Figure 2: Examples of earliest-deadline schedules with p = 3. The rectangles represent intervals
[rj , dj), and the shaded areas show time units where jobs are executed. The first schedule consists
of two distinct blocks. After removing the least urgent job 5, the second block splits into several
smaller blocks.

Each earliest-deadline schedule S has the following structure. The time axis is divided into busy
intervals (when jobs are being executed) called blocks and idle intervals called gaps. Each block is
an interval [ri, Cj) between a release time ri and a completion time Cj, and it satisfies the following
two properties: (b1) all jobs executed in this block are not released before ri, and (b2) Cj is the
first completion time after ri such that all jobs in S released before Cj are completed at or before
Cj. Note that Cj − ri = ap, for a equal to the number of jobs executed in this block. Figure 2
shows two examples of earliest-deadline schedules.

In some degenerate situations, where the differences between release times are multiples of p, a
gap can be empty, and the end Cj of one block then equals the beginning rm of the next block.

The above structure is recursive, in the following sense. Let k be the least urgent job (breaking
ties arbitrarily) scheduled in a given block [ri, Cj). Then the last completed job is k. Also, when
we remove job k from the schedule, without any further modifications, we obtain again an earliest-
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deadline-schedule for the set of remaining jobs (See Figure 2). The interval [ri, Cj) may now contain
several blocks of this new schedule.

2.1 An O(n4)-Time Algorithm

We assume that the jobs are ordered 1, 2, . . . , n according to non-decreasing deadlines, that is
d1 ≤ d2 ≤ . . . ≤ dn. Without loss of generality we may assume that job n is a “dummy” job
with wn = 0 and and rn = dn−1 (otherwise, we can add one such additional job). We use indices
i, j, k, l ∈ [1, n] for job identifiers, and a, b ∈ [0, n] for numbers of jobs.

Given an interval [x, y), define a set J of jobs to be (k, x, y)-feasible if

(f1) J ⊆ {1, 2, . . . , k},

(f2) rj ∈ [x, y) for all j ∈ J , and

(f3) J has a full schedule in [x, y) (that is, all jobs are completed by time y.)

An earliest-deadline schedule of a (k, x, y)-feasible set of jobs will be called a (k, x, y)-schedule. If
ties are broken consistently, then there is a 1-1 correspondence between feasible sets of jobs and
their earliest-deadline schedules. Thus, for the sake of simplicity, we will use the same notation J
for a feasible set of jobs and for its earliest-deadline schedule.

Note that if e is the job with the earliest release time, then an optimal (n, re, rn)-schedule is
also an optimal schedule to the whole instance. The idea of the algorithm is to compute optimal
(k, ri, rj)-schedules Fk

i,j in bottom-up order, using dynamic programming. As there does not seem

to be an efficient way to express Fk
i,j in terms of such sets for smaller instances, we use two auxiliary

optimal schedules denoted Gk
i,a and Hk

i,j on which we impose some additional restrictions.

We first define the values F k
i,j , Gk

i,j , and Hk
i,a that are meant to represent the weights of the

corresponding schedules mentioned above. The interpretation of these values is as follows:

F k
i,j = the optimal weight of a (k, ri, rj)-schedule.

Gk
i,a = the optimal weight of a (k, ri, ri +ap)-schedule that consists of a single block

starting at time ri and ending at ri + ap.
Hk

i,j = the optimal weight of a (k, ri, rj)-schedule that has no gap between ri and
rk+1. (These values are defined only when ri ≤ rk+1 ≤ rj and k < n.)

We now give recursive definition of these values. In the definition we use the following auxiliary
functions:

∆(x, y) = min{n,

⌊

y − x

p

⌋

}

η(x) = argmini{ri : ri > x}

λ(x) = argmini{ri : ri ≥ x}

Thus ∆(x, y) is the maximum number of jobs (but not more than n) that can be executed between
x and y (without taking release times and deadlines into account). For a job i 6= n, η(ri) is the
first job released strictly after x, breaking ties arbitrarily. Similarly, for x ≤ rn, λ(x) denotes the
first job released at or after x.
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Values F k
i,j. If rj ≤ ri then F k

i,j = 0. Otherwise, F k
i,j is defined inductively as follows:

F k
i,j = max



















F k
η(ri),j

(F1)

max
1≤a≤n

ri+ap≤rj

{

Gk
i,a + F k

λ(ri+ap),j

}

(F2)

Note that in (F1) η(ri) is well defined since ri < rj and in (F2) λ(ri + ap) is well defined since
ri + ap ≤ rj .

Values Gk
i,a. If k = 0 or a = 0, then Gk

i,a = 0. If rk 6∈ [ri, ri + (a − 1)p] or dk < ri + ap then

Gk
i,a = Gk−1

i,a . Otherwise, Gk
i,a is defined as follows:

Gk
i,a = max



































Gk−1
i,a (G1)

Gk−1
i,a−1 + wk (G2)

max
max{rk ,ri}<rl<ri+ap

rl−ri 6∈pN

{

Hk−1
i,l + Gk−1

l,∆(rl,ri+ap) + wk

}

(G3)

Values Hk
i,j. If k = 0 or rj ≤ ri then Hk

i,j = 0. If k = n or rk+1 6∈ [ri, rj ] then Hk
i,j is undefined.

For all other values Hk
i,j is defined inductively as follows:

Hk
i,j =

max
0≤a<n

rk+1≤ri+ap≤rj

{

Gk
i,a + F k

λ(ri+ap),j

}
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Figure 3: Graphical explanation of the recursive formulas for F k
i,j, Gk

i,a and Hk
i,j. Shaded regions

show blocks. In (G2), the whole schedule is one block, and darker shade shows where k is executed.
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Algorithm DP. The algorithm first computes the values F k
i,j, G

k
i,a,H

k
i,j bottom-up. The general

structure of this first stage is as follows:

for k← 0 to n do

for i←n downto 1 do

for a← 0 to n do

compute Gk
i,a

for j← 1 to n do

compute F k
i,j and Hk

i,j

The values F k
i,j, Gk

i,a, and Hk
i,j are computed according to their recursive definitions, as given

earlier. At each step, we record which value realized the maximum.
In the second stage, we reconstruct optimal schedules Fk

i,j,G
k
i,a and Hk

i,j that realize weights

F k
i,j , G

k
i,a, and Hk

i,j, respectively.
Let e be the job with earliest deadline. We construct an optimal schedule Fn

e,n according to the
following recursive procedure.

Computing Fk
i,j . If F k

i,j = 0, return Fk
i,j = ∅. If F k

i,j was maximized by choice (F1), let Fk
i,j = Fk−1

η(ri),j
.

If F k
i,j was maximized by choice (F2), let Fk

i,j = Gk
i,a ∪F

k
λ(ri+a),j , where a is the integer that realizes

the maximum.

Computing Gk
i,a. If Gk

i,a = 0, return Gk
i,a = ∅. If Gk

i,a is realized by choice (G1), let Gk
i,a = Gk−1

i,a . If

Gk
i,a is realized by choice (G2), let Gk

i,a = Hk−1
i,l ∪G

k−1
l,∆(rl,ri+ap) ∪ {k}, where l is the job that realizes

the maximum in (G2).

Computing Hk
i,j. If Hk

i,j = 0, return Hk
i,j = ∅. Otherwise, Hk

i,j = Gk
i,a ∪ F

k
λ(ri+a),j , where a is the

integer that realizes the maximum.

Theorem 2.1 Algorithm DP correctly computes a maximum-weight feasible set of jobs and it runs

in time O(n4).

Proof: The time complexity is quite obvious: We have O(n3) values F k
i,j, Gk

i,a , Hk
i,j, and they

can be stored in 3-dimensional tables. The functions ∆(·, ·), η(·), and λ(·) can be precomputed.
Then each entry in these tables can be computed in time O(n). The reconstruction of the schedules
in the second part takes only time O(n).

To show correctness, we need to prove two claims:

Claim 1:

(1f) w(Fk
i,j) = F k

i,j and Fk
i,j is (k, ri, rj)-feasible.

(1g) w(Gk
i,a) = Gk

i,a and Gk
i,a is (k, ri, ri + ap)-feasible.

(1h) w(Hk
i,j) = Hk

i,j and Hk
i,j is (k, ri, rj)-feasible.

Claim 2:

(2f) If J is a (k, ri, rj)-schedule then w(J ) ≤ F k
i,j .
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(2g) If J is a (k, ri, ri + ap)-schedule that is a single block of a jobs then w(J ) ≤ Gk
i,a.

(2h) If J is a (k, ri, rj)-schedule that has no gap before rk+1 then w(J ) ≤ Hk
i,j.

We prove Claim 1 first, by induction. The base cases hold trivially. Now we examine the
inductive cases.

To prove (1f), if Fk
i,j was constructed from case (F1), the claim holds by induction. If Fk

i,j was
constructed from case (F2), let a be the integer that realizes the maximum and l = λ(ri+ap). Since
ri + ap ≤ rl, sets Gk

i,a and Fk
l,j are disjoint, and so are the intervals [ri, ri + ap), [rl, rj). Thus both

Gk
i,a and Fk

l,j can be fully scheduled in [ri, rj) and w(Fk
i,j) = w(Gk

i,a) + w(Fk
l,j) = Gk

i,a + F k
l,j = F k

i,j ,
by induction.

To prove (1g), if Gk
i,a is realized by case (G1), the claim is obvious. In case (G2), let l be the job

that realizes the maximum and b = ∆(rl, ri + ap). The sets Hk−1
i,l and Gk−1

l,b are disjoint and so are

the intervals [ri, rl), [rl, bp). There is a non-zero idle time in Hk−1
i,l ∪G

k−1
l,b between rl +bp and ri+ap

because ri+ap−rl is not a multiple of p. Since the total interval is ap, but any total execution time
is a multiple of p, we have at least p total idle time. Moreover all idle periods start after rk, therefore
job k can be included. Also note that w(Gk

i,a) = w(Hk−1
i,l )+w(Gk−1

l,b )+wk = Hk−1
i,l +Gk−1

l,b +wk = Gk
i,a,

so the claim holds.
To prove (1h), let a be the integer that realizes the maximum and l = λ(ri+ap). As before since

ri + ap ≤ rl, sets Gk
i,a and Fk

l,j are disjoint, and so are the intervals [ri, ri + ap), [rl, rj). Thus both

Gk
i,a and Fk

l,j can be fully scheduled in [ri, rj) and w(Hk
i,j) = w(Gk

i,a) + w(Fk
l,j) = Gk

i,a + F k
l,j = Hk

i,j,
by induction.

We now show Claim 2. Again, we proceed by induction. In the base case, when k = 0 we have
J = ∅, so Claim 2 holds. In the inductive case, consider some combination of k, i, j, a and assume
that Claim 2 holds for all choices of k′, i′, j′, a′ where either k′ < k or k′ = k and rj′ − ri′ < rj − ri

and a′ < a.
To prove (2f), we have two cases. If J does not start at ri, then it cannot start earlier than

at rl, for l = η(i), so the claim follows by induction. If J starts at ri, let a be the length of its
first block. Note that there might be no gap between the blocks. The second block (if any) cannot
start earlier than at λ(ri + ap). We partition J into two sets J1 containing the jobs scheduled
in [ri, ri + ap) as a single block and J2 containing the jobs scheduled in [rl, rj). By induction,
w(J ) = w(J1) + w(J2) ≤ Gk

i,a + F k
l,j ≤ F k

i,j .

We now prove (2g). If k /∈ J then J is a (k − 1, ri, ri + ap)-schedule, so w(J ) ≤ Gk−1
i,a ≤ Gk

i,a,
by induction and by case (G1). Now assume that k ∈ J . If job k has not been interrupted, then
J \{k} is a (k − 1, ri, ri + (a− 1)p)-schedule. Thus by case (G2) w(J ) ≤ Hk−1

i,a−1 + wk ≤ Gk
i,j .

Otherwise let l be the last job that interrupted k. Starting at rl, J executes b = ∆(rl, ri + ap)
jobs with deadlines smaller than dk, after which it executes a portion ri + ap− rl− bp > 0 of job k.
We partition J −{k} into two sets: J1 containing the jobs scheduled before rl and J2 containing the
jobs scheduled after rl. Note that J1∪J2 = J −{k}, since the jobs scheduled before rl must also be
completed before rl and the other jobs cannot be released yet. By induction sets J1 is a (k−1, ri, rl)
schedule in which the first block starts at ri and ends after rk, and J2 is a single block starting at rl

and ending at rl +bp. Thus by case (G3), w(J ) = w(J1)+w(J2)+wk ≤ Hk−1
i,l +Gk−1

l,b +wk ≤ Gk
i,a.

The proof of (2h) is similar. J starts at ri, let a be the length of its first block. The second
block (if any) cannot start earlier than at λ(ri + ap). We partition into two sets J1 containing the
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jobs scheduled in [ri, ri + ap) as a single block and J2 containing the jobs scheduled in [rl, rj). By
induction, w(J ) = w(J1) + w(J2) ≤ Gk

i,a + F k
l,j ≤ Hk

i,j. 2

3 Final Remarks

Several open problems remain. Although our running time O(n4) for the scheduling problem
(1|rj ; pj=p; pmtn|

∑

wjUj) is substantially better than the previous bound of O(n10), it would be
interesting to see whether it can be improved further. Similarly, it would be interesting to improve
the running time for the non-preemptive version of this problem, (1|rj ; pj=p|

∑

wjUj), which is
currently O(n7) [Bap99a].

In the multi-processor case, the weighted version is known to be NP-complete [BK99], but
the non-weighted version remains open. More specifically, it is not known whether the problem
(P |rj ; pj=p; pmtn|

∑

Uj) can be solved in polynomial time. (One difficulty that arises even for
2 processors, is that we cannot restrict ourselves to earliest-deadline schedules. For example, an
instance consisting of three jobs with feasible intervals (0, 3), (0, 4), and (0, 5) and processing time
p = 3 is feasible, but the earliest-deadline schedule will complete only jobs 1 and 2.) For the multi-
processor case, one can also consider a preemptive version where jobs are not allowed to migrate
between processors.
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