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Abstract We study the problems of scheduling jobs, with different release
dates and equal processing times, on two types of batching machines. All
jobs of the same batch start and are completed simultaneously. On a serial
batching machine, the length of a batch equals the sum of the processing
times of its jobs and, when a new batch starts, a constant setup time s
occurs. On a parallel batching machine, there are at most b jobs per batch
and the length of a batch is the largest processing time of its jobs. We show
that in both environments, for a large class of so called “ordered” objective
functions, the problems are polynomially solvable by dynamic programming.
This allows us to derive that the problems where the objective is to min-
imize the weighted number of late jobs, or the weighted flow time, or the
total tardiness, or the maximal tardiness are polynomial. In other words,
we show that 1|p-batch, b < n, ri, pi = p|F and 1|s-batch, ri, pi = p|F , are
polynomial for F ∈ {

∑

wiUi,
∑

wiCi,
∑

Ti, Tmax}. The complexity status
of these problems was unknown before.
Keywords: Scheduling Theory, Complexity, Dynamic Programming

1 Introduction

In this paper, we study the situation where n jobs {J1, . . . , Jn} have to be
scheduled on a batching machine. Each job Ji is described by a processing
time pi, a release date ri, and eventually by a due date di and a weight wi (all
numerical values used in this paper being integer). Jobs cannot start before
their release dates and all jobs of the same batch start and are completed
simultaneously, i.e., at the starting time (respectively at the completion
time) of the batch. Two types of batching machines are studied.
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– On a serial batching machine, the length of a batch equals the sum of
the processing times of its jobs. When a new batch starts, a constant
setup time s occurs.

– On a parallel batching machine, there are at most b jobs per batch and
the length of a batch is the largest processing time of its jobs. Two
situations are often distinguished. The bounded case with b < n and the
unbounded case with b = n. In this environment, no setup is assumed.
However, a constant setup time s could be easily taken into account by
increasing of s the processing time of each job.

Following the notation of [7], these problems are denoted respectively
by 1|s-batch, ri|F , 1|p-batch, b < n, ri|F (bounded case) and 1|p-batch, ri|F
(unbounded case). We refer to [1], [6], [7], [14], [16], [17], [19] for extended
reviews on pure batch scheduling problems and on extensions (e.g. schedul-
ing group of jobs with group-dependent setup times, jobs requiring several
machines throughout their execution, etc.). Complexity results for prob-
lems with identical release dates are summarized in Table 1. The problems
1|ri|F are NP-Hard for Lmax,

∑

Ci,
∑

Ti, hence the corresponding batching
problems 1|s-batch, ri|F and 1|p-batch, ri|F are also NP-Hard.

Problem Complexity References

1|p-batch, b < n|Cmax O(n log n) [6]

1|s-batch|Lmax O(n2) [19]
1|p-batch|Lmax O(n2) [6]

1|p-batch, b < n|Lmax Unary NP-Hard [6]

1|s-batch|
P

Ui O(n3) [8]
1|s-batch|

P

wiUi binary NP-Hard [8]
1|s-batch, pi = p|

P

wiUi O(n4) [15]
1|p-batch|

P

Ui O(n3) [6]
1|p-batch|

P

wiUi binary NP-Hard [6]
1|p-batch, b < n|

P

Ui Unary NP-Hard [6]

1|s-batch|
P

Ci O(n log n) [11]
1|s-batch, pi = p|

P

Ci polynomial in log p, log s, log n [18]
1|s-batch|

P

wiCi unary NP-Hard [1]
1|s-batch, pi = p|

P

wiCi O(n log n) [1]
1|p-batch|

P

wiCi O(n log n) [6]

1|p-batch, b < n|
P

Ci O(nb(b−1)) [6]

1|s-batch|
P

Ti binary NP-Hard [13]
1|p-batch|

P

wiTi binary NP-Hard [6]
1|p-batch, b < n|

P

Ti unary NP-Hard [6]

Table 1 Overview of the complexity results

These results leave open the status of most of the problems with arbitrary
release dates and equal processing times. In this paper, we show that serial
and parallel batching problems can be solved polynomially for a large class
of so called ordered objective functions.
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A strict subclass of ordered objective functions has been studied in [4],
where it has been shown that scheduling identical jobs on a fixed number
of identical machines can be done in polynomial time for

∑

wiCi and
∑

Ti.
The class of ordered objective functions provides a unified framework to
study a larger variety of functions.

Definition 1 F is an ordered objective function if and only if :

1. F is a sum function, i.e., F =
∑

fi(Ci),
2. F is regular, i.e., ∀i, fi is non-decreasing,

3. fi is constant after a time point δi, i.e., ∀t ≥ δi, fi(t) = fi(δi),
4. ∀i < j, δi ≤ δj and t 7→ (fi − fj)(t) is non-decreasing over [0, δi].

The last condition of the definition ensures that the function has a
“Monge”-like property. For such functions, it is known (e.g. [5]) that many
unit execution time scheduling problems are polynomially solvable.

It is easy to verify that the weighted number of late jobs,
∑

wiUi, is
an ordered objective function. On the contrary,

∑

wiCi and
∑

Ti are not
ordered objective functions. However, conditions 1 and 2 of Definition 1
hold for these functions and jobs can be renumbered to meet condition 4.

We show how a function like
∑

wiCi or
∑

Ti can be modified, with-
out changing the optimum value, to become an ordered objective function:
Consider a large time point T and alter the functions fi after T so that
∀t ≥ T, fi(t) = M , where M is another large value. If T and M are large
enough, the optimum of the modified problem is also the optimum of the
original one. Moreover, the modified functions are ordered objective func-
tions.

¿From now on, we restrict our study to ordered objective functions. Jobs
can be renumbered so that δ1 ≤ · · · ≤ δn and ∀i ≤ j, t 7→ (fi − fj)(t)
is non-decreasing over [0, δi]. By analogy with due date scheduling, we
say that a job is late when it is completed after δi and that it is on-time
otherwise. Notice that a late job can be scheduled arbitrary late.

The paper is organized as follows. Several dominance properties are
stated in §2. The dynamic programming algorithms for serial and paral-
lel problems are described in §3 and §4. Finally in §5 we show that our
approach can be extended to handle Tmax and we draw some conclusions.

2 Dominance Properties

We first define two sets of time points at which batches start on active
schedules. We then study a dominance related to ordered objective functions
and finally we show that both dominances can be combined.

2.1 Starting Times

As shown in [3], [4], [9], [10], [12], one of the reasons why it is easy to schedule
equal length jobs is that there are few possible starting times. Indeed, active
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schedules are dominant and thus starting times are equal to a release date
modulo p. This idea can be extended to batching problems.

Serial Batching Ordered objective functions are regular, hence active sched-
ules are dominant. Consequently, each batch starts either at the release date
of one of its jobs or immediately after the completion time of another batch
plus the setup time s. Hence we can assume that batches start and end in
S, where

S = {rλ + µp + νs, λ ∈ {1, · · · , n}, µ ∈ {0, · · · , n}, ν ∈ {0, · · · , n}} (1)

Parallel Batching Because jobs have the same processing time p we can
assume that the length of a batch is p. On top of that, active schedules are
dominant so, we can also assume that batches start and end in P, where

P = {rλ + µp, λ ∈ {1, · · · , n}, µ ∈ {0, · · · , n}} (2)

Notice that |S| = O(n3) and |P| = O(n2).

2.2 Ordered Objective Functions

The following proposition holds both for serial and parallel problems.

Proposition 1 Any feasible schedule can be transformed in a “better” one

where for any pair of on-time jobs Ju, Jv(u < v), being executed in batches

starting respectively at tu and tv, either tu ≤ tv or tv < ru.

Proof Sketch. Let (u, v) be the smallest vector, according to the lexico-
graphical order, such that tu > tv and tv ≥ ru. The jobs Ju and Jv may be
exchanged and the value of the objective function is not increased since it is
an ordered objective function. Moreover, it is easy to see that the smallest
vector (u′, v′) that does not satisfy the condition on the new schedule is
such that (u′, v′) > (u, v). Repeated exchanges can be used to replace any
schedule by a schedule which satisfies the condition for all u, v (the vector
(u, v) increases at each step, hence the number of exchanges is finite).

2.3 Combining All Dominance Properties

Now consider an optimal and active schedule and apply the exchanges of
Proposition 1. The resulting schedule is still optimal and the set of starting
times is kept the same. Hence we can combine both dominance criteria, i.e.,
schedules such that

– batches start and are completed either in S for serial problems, or in P

for parallel problems
– and such that for any pair of jobs Ju, Jv(u < v), being executed in

batches starting respectively at tu and tv, either tu ≤ tv or tv < ru,

are dominant. In the following such schedules will be referred to as Serial-
Dominant or Parallel-Dominant schedules.
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3 Dynamic Programming for the Serial Problem

The dynamic program relies on the notion of partial batch. Usually, once
the starting time t and the completion time t + pν of a batch is known, it
is easy to compute that (t + pν − t)/p = ν jobs are in the batch (because
the batch is full). In a partial batch, there may be some hole and we only
know that at most (t + pν − t)/p jobs are in the batch. The batch is
therefore “partial” since some additional jobs could be a priori added. In
the following, the maximal number of jobs in a partial batch is denoted by
the symbol ν, while µ denotes the number of jobs actually scheduled.

Before defining the variables of the Dynamic Program, let us introduce
the set of jobs Uk(tl, tr). For any integer k ≤ n and for any time points
tl ≤ tr, Uk(tl, tr) is the set of jobs whose index is lower than or equal to k
and whose release date is in the interval (tl, tr].

Uk(tl, tr) = {Ji|i ≤ k, ri ∈ (tl, tr]} (3)

3.1 Variables of the Dynamic Program

The dynamic search is controlled by 5 parameters k, tl, tr, νl, νr and µr.
Each combination of these parameters defines a sub-problem involving the
jobs in Uk(tl, tr). As explained below, the objective of the sub-problem is
to minimize

∑

Ji∈Uk(tl,tr) fi(Ci) under some constraints.

Definition 2 A schedule K is Serial-Dominant for (k, tl, tr, νl, νr, µr) iff

– K is Serial-Dominant,

– jobs in Uk(tl, tr) are either late or are completed before or at tr + pνr,

– a partial batch, containing 0 job of Uk(tl, tr), starts at tl and is completed

at tl + pνl,

– a partial batch, containing µr jobs of Uk(tl, tr), starts at tr and is com-

pleted at tr + pνr.

Now we can define the variables of the dynamic program.

Definition 3 Sk(tl, tr, νl, νr, µr) is the minimal value taken by the function

∑

Ji∈Uk(tl,tr)

fi(Ci) (4)

over the Serial-Dominant schedules for (tl, tr, νl, νr, µr). If there is no such

schedule, Sk(tl, tr, νl, νr, µr) = +∞.

Given this definition S0(tl, tr, νl, νr, µr) equals 0 if tl +pνl + s ≤ tr and +∞
otherwise.

To get an intuitive picture of the decomposition scheme, assume that
Jk ∈ Uk(tl, tr) is on-time (if it is not, take into account the “late” cost
fk(δk) and set k to k− 1) and consider the time point t at which the batch
containing Jk starts on K (cf. Figure 1).
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– If t = tr, i.e., if Jk is put in the right partial batch, then we take into
account the cost fk(tr + pνr) associated to Jk and we solve the sub-
problem defined by (k − 1, tl, tr, νl, νr, µr − 1).

– If t < tr, then Jk is scheduled in an in-between batch starting at t and
containing ν jobs. Thanks to Proposition 1, on-time jobs of Uk−1(tl, t)
are all completed before or at the completion time of this batch. On-time
jobs of Uk−1(t, tr) are completed after this batch. Hence, we have a left
sub-problem defined by (k − 1, tl, t, νl, ν, ν − 1) and a right one defined
by (k − 1, t, tr, ν, νr, µr)

-��QQ��QQ��QQ

Left batch
z }| {

tl tl + pνl

Jk ��QQ��QQ��QQ

Right batch
z }| {

tr tr + pµr tr + pνr

-��QQ��QQ��QQ

Left batch
z }| {

tl tl + pνl

Jk

In-between batch
z }| {

t t + pν
��QQ��QQ��QQ

Right batch
z }| {

tr tr + pµr tr + pνr

Fig. 1 Two ways to schedule Jk: Either in the right partial batch or in an in-
between batch (Jk can also be late). Ticked boxes in a batch indicate that it is
only partially available for the jobs of Uk(tl, tr).

3.2 Fundamental Recursion Formula

We define three values L, R, I. We will see that they are the costs of optimal
schedules where Jk is in the Left, in the Right or in the In-between batch.

Definition 4 L equals Sk−1(tl, tr, νl, νr, µr) + fk(δk)

Definition 5 R equals fk(tr +pνr)+Sk−1(tl, tr, νl, νr, µr−1) if µr > 0 and

+∞ otherwise.

Definition 6 I is the minimum of

Sk−1(tl, t, νl, ν, ν − 1) + fk(t + pν) + Sk−1(t, tr, ν, νr, µr) (5)

under the constraints














ν ∈ {1, · · · , n}
t ∈ S

rk ≤ t ≤ δk − pν
tl + pνl + s ≤ t ≤ tr − pν − s

(6)

If there are no such t and ν, I = +∞.
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The following propositions lead to Theorem 1 that provides the funda-
mental recursion formula of the dynamic program.

Proposition 2 If Jk ∈ Uk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ L.

Proof Assume that L takes a finite value and let R be the schedule that
realizes it. R is Serial-Dominant for (k − 1, tl, tr, νl, νr, µr) and also for
(k, tl, tr, νl, νr, µr) (Jk is late). The additional cost is exactly fk(δk).

Proposition 3 If Jk ∈ Uk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ R.

Proof Assume that R takes a finite value and let Q be the schedule that re-
alizes Sk−1(tl, tr, νl, νr, µr − 1). Let Q′ be the schedule obtained by adding
the job Jk in the right batch (it can be added because it is released be-
fore the starting time of the batch since Jk ∈ Uk(tl, tr) ⇒ rk ≤ tr). On
the new schedule, at most µr − 1 + 1 = µr jobs of Uk(tl, tr) are sched-
uled in the right batch. It is easy to verify that Q′ is a Serial-Dominant
schedule for (k, tl, tr, νl, νr, µr). The additional cost is fk(tr + pνr). Hence
Sk(tl, tr, νl, νr, µr) ≤ R

Proposition 4 If Jk ∈ Uk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ I.

Proof Assume that I takes a finite value and let t and ν be the values that
realize 5 and meet the constraints 6. Let Kl and Kr be the schedules that
realize respectively Sk−1(tl, t, νl, ν, ν− 1) and Sk−1(t, tr, ν, νr, µr). We build
a schedule K′ by adding the schedules Kl and Kr and by adding Jk in the
right batch of Kl. Since the set Jk(tr, tl) is the direct sum of Jk−1(tr, t) plus
Jk−1(t, tl) plus {Jk}, all jobs of Jk(tr, tl) are scheduled exactly once on K′.
Jk can be added to the right batch because no more than ν − 1 jobs are
scheduled in this batch on Kl. At least s time units elapse between batches
(because tl + pνl + s ≤ t ≤ tr − pν − s) and it is easy to verify that the
in-between batch starts after the release dates of its jobs and before their
due dates. We have proven that K′ is feasible.
We claim that K′ is a Serial-Dominant schedule for (k, tl, tr, νl, νr, µr). We
only prove that “for any pair of jobs Ju, Jv(u < v), being executed in batches
starting respectively at tu and tv, either tu ≤ tv or tv < ru”. The verification
of all other conditions is easy and is left to the reader. If v = k and if tv < tu
then Ju belongs to the sub-schedule Kr and thus, Ju ∈ Uk−1(t, tr), which
leads to t = tv < ru and the condition holds. Now assume that v < k. If
both jobs belong to the same sub-schedule either Kr or Kl, the condition
holds because they are Serial-Dominant. Now assume that it is not the case
and that tv < tu. We know that t ∈ [tv, tu) and since Ju ∈ Uk−1(t, tr),
tv ≤ t < ru.
On K′, the batch of Jk is completed at t + pν, hence the total cost of
K′ is Sk−1(tl, t, νl, ν, ν − 1) + fk(t + pν) + Sk−1(t, tr, ν, νr, µr) = I. As a
consequence, Sk(tl, tr, νl, νr, µr) ≤ I.
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Proposition 5 If Jk ∈ Uk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≥ min(I, R, L).

Proof We can assume that Sk(tl, tr, νl, νr, µr) takes a finite value other-
wise the proposition obviously holds. Let W be the schedule that realizes
Sk(tl, tr, νl, νr, µr). If Jk is not scheduled onW , i.e., it is late, thenW is also
Serial-Dominant for (k−1, tl, tr, νl, νr, µr) and the cost is decreased of fk(δk)
(because Jk is not taken into account). Hence, Sk(tl, tr, νl, νr, µr) ≥ L. Now
assume that Jk is scheduled on-time on W and let t be the time point at
which the batch containing Jk starts and let ν be the size of this batch.

– If Jk is scheduled in the last batch, i.e., if t = tl, then remove it. It is
easy to verify that the resulting schedule is Serial-Dominant for (k −
1, tl, tr, νl, νr, µr − 1) and its cost is Sk(tl, tr, νl, νr, µr) − fk(tr + pνr).
Hence, Sk−1(tl, tr, νl, νr, µr − 1) ≤ Sk(tl, tr, νl, νr, µr) − fk(tr + pνr).
Consequently, Sk(tl, tr, νl, νr, µr) ≥ R.

– If Jk is not scheduled in the last batch then, because of the setup time
constraint, it must start after or at tl +pνl +s and it must be completed
before or at tr − s. Hence, t ∈ [tl + pνl + s, tr − pν − s]. Moreover, the
batch starts before the release date of Jk and is completed before its
due date. Finally, the batch starts at a time point of S because W is
Serial-Dominant. Hence, constraints 6 are met. Let now Wl be the sub-
schedule obtained from W by removing the jobs that are scheduled in
batches starting strictly after t and by removing Jk. This sub-schedule
is Serial-Dominant for (k−1, tl, t, νl, ν, ν−1) and thus its cost is greater
than or equal to Sk−1(tl, t, νl, ν, 1). Similarly, letWr be the sub-schedule
obtained from W by removing the jobs that are scheduled in a batch
starting before or at t. Wr is Serial-Dominant for (k − 1, t, tr, ν, νr, µr)
and its cost is greater than or equal to Sk−1(t, tr, ν, νr, µr). Finally, notice
that the cost of W , Sk(tl, tr, νl, νr, µr), is the sum of the costs of Wl

and Wr plus the cost of scheduling Jk in the batch starting at t, i.e.,
fk(t + pν). Altogether, this leads to Sk(tl, tr, νl, νr, µr) ≥ I.

Hence, Sk(tl, tr, νl, νr, µr) is greater than or equal to either I, R or L.

Theorem 1 If Jk ∈ Uk(tl, tr) then Sk(tl, tr, νl, νr, µr) = min(I, R, L). Oth-

erwise, Sk(tl, tr, νl, νr, µr) = Sk−1(tl, tr, νl, νr, µr).

Proof If Jk /∈ Uk(tl, tr) then Uk(tl, tr) = Uk−1(tl, tr) and thus the theorem
obviously holds. If Jk ∈ Uk(tl, tr) then the result comes immediately from
Propositions 3, 4, 2 and 5.
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3.3 An O(n14) Algorithm

There is an optimal schedule that is serial-dominant and it comes directly
from the definition of Sk(tl, tr, νl, νr, µr) that the optimum is met for































k ← n
tl ← min(S)− s− 1
νl ← 0
tr ← max(S) + s
νr ← 0
µr ← 0

(7)

Notice that if s > 0 then tl can be set to min(S)−s instead of min(S)−s−1
because Un(min(S) − s, max(S) + s) = {J1, · · · , Jn}; which is not the case
when s = 0.

Algorithm 1 Computation of the values Sk(tl, tr, νl, νr, µr)

1: for k← 1 to n do

2: for νr ← 0 to n do

3: for νl ← 0 to n do

4: for µr ← 0 to νr do

5: for tr ∈ S taken in increasing order do

6: for tl ∈ S (tl ≤ tr) taken in increasing order do

7: R← +∞, I ← +∞, L← +∞
8: if µr > 0 then

9: R← fk(tr + pνr) + Sk−1(tl, tr, νl, νr, µr − 1)
10: end if

11: for ν ← 1 to n do

12: for t ∈ S ∩ [tl + pνl + s, tr − pν − s] ∩ [rk, δk − pν] do

13: I ← min(I, Sk−1(tl, t, νl, ν, ν − 1) + fk(t + pν) +
Sk−1(t, tr, ν, νr, µr))

14: end for

15: end for

16: L← Sk−1(tl, tr, νl, νr, µr) + fk(δk)
17: Sk(tl, tr, νl, νr, µr)← min(I, R,L)
18: end for

19: end for

20: end for

21: end for

22: end for

23: end for

Thanks to Theorem 1, we have a straight dynamic programming algo-
rithm to reach the optimum. The relevant values for tl and tr are those in S

plus the special values min(S)−s−1 and max(S)+s that are useful to start
the dynamic search (to simplify the pseudo-code, these special values have
been omitted in Algorithm 1). The relevant values for k, νl, νr and µr are



10 Philippe Baptiste

{0, · · · , n}. Finally, the values of Sk(tl, tr, νl, νr, µr) are stored in a multi-
dimensional array of size O(n10) (n possible values for k, νl, νr, µr, and n3

possible values both for tl and tr).
In the initialization phase, S0(tl, tr, νl, νr, µr) is set to 0 if tl+pνl+s ≤ tr

and to a very large value otherwise. The initialization phase runs in O(n9)
(n possible values for νl, νr, µr, n3 possible values both for tl and tr).

We then iterate on all possible values of the parameters to reach the
optimum (cf. Algorithm 1). Each time, a minimum over O(n4) terms (O(n3)
for t and O(n) for ν) is computed. This leads to an overall time complexity
of O(n14). A rough analysis of the space complexity leads to an O(n10)
bound but since, at each step of the outer loop on k, one only needs the
values of S computed at the previous step (k − 1), the algorithm can be
implemented with 2 arrays of O(n9) size: one for the current values of S
and one for the previous values of S. (To build the optimal schedule, all
values of S have to be kept; hence the initial O(n10) bound applies.)

4 Dynamic Programming for Parallel Batching

4.1 Variables of the Dynamic Program

The dynamic search is controlled by 4 parameters k, tl, tr and µr. Each
combination of these parameters defines a sub-problem involving the jobs
in Uk(tl, tr). The objective is to minimize

∑

Ji∈Uk(tl,tr) fi(Ci) under some
constraints.

Definition 7 A schedule K is Parallel-Dominant for (k, tl, tr, µr) iff

– K is Parallel-Dominant,

– jobs in Uk(tl, tr) do not start before tl + p,
– jobs in Uk(tl, tr) are either late or are completed before or at tr + p,
– a partial batch, containing µr jobs of Uk(tl, tr), starts at tr.

Now we can define the variables of the dynamic program.

Definition 8 Pk(tl, tr, µr) is the minimal value taken by the function

∑

Ji∈Uk(tl,tr)

fi(Ci) (8)

over the Parallel-Dominant schedules of Uk(tl, tr). e s, one
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– If t = tr, i.e., if Jk is put in the right batch, we have to solve the same
problem with k ← k − 1, tl ← tl, tr ← tr and µr ← µr − 1.

– If t < tr, then an in-between batch is created. Thanks to Proposition 1
jobs of Uk−1(tl, t) are either late or are completed before or at the com-
pletion time of this batch. Jobs in Uk−1(t, tr) are completed after this
batch. Hence, we have two sub-problems. A left one with (k−1, tl, t, b−1)
and a right one with (k − 1, t, tr, µr).

-1 !!!
aaa

2 !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

b !!!
aaa

Left Batch
z }| {

tl tl + p
!!!

aaa 1
!!!

aaa · · ·
!!!

aaa b− µr

Jk b− µr + 1
· · ·
b

Right batch
z }| {

tr tr + p

-1 !!!
aaa

2 !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

b !!!
aaa

Left Batch
z }| {

tl tl + p

Jk

In-between batch
z }| {

t t + p
!!!

aaa 1
!!!

aaa · · ·
!!!

aaa b− µr

b− µr + 1
· · ·
b

Right batch
z }| {

tr tr + p

Fig. 2 Two ways to schedule Jk: Either in the right batch or in an in-between
batch (Jk can also be late). Ticked boxes in a batch indicate that it is only partially
available for the jobs of Uk(tl, tr).

4.2 Fundamental Recursion Formula

Let us redefine the values of R, I, L.

Definition 9 L equals Pk−1(tl, tr, µr) + fk(δk)

Definition 10 R equals fk(tr + p) + Pk−1(tl, tr, µr − 1) if µr > 0 and +∞
otherwise.

Definition 11 I is the minimum of

Pk−1(tl, t, b− 1) + fk(t + p) + Pk−1(t, tr, µr) (9)
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under the constraints






t ∈ P

rk ≤ t ≤ δk − p
tl + p ≤ t ≤ tr − p

(10)

If there is no such t, I = +∞.

We are ready to formulate the fundamental theorem.

Theorem 2 If Jk ∈ Uk(tl, tr) then Pk(tl, tr, µr) = min(I, R, L). Otherwise,

Pk(tl, tr, µr) = Pk−1(tl, tr, µr).

Proof See proof of Theorem 1.

Algorithm 2 Computation of the values Pk(tl, tr, µr)

1: for k← 1 to n do

2: for µr ← 0 to b do

3: for tr ∈ P taken in increasing order do

4: for tl ∈ P (tl ≤ tr) taken in increasing order do

5: R← +∞, I ← +∞, L← +∞
6: if µr > 0 then

7: R← fk(tr + p) + Pk−1(tl, tr, µr − 1)
8: end if

9: for t ∈ P ∩ [tl + p, tr − p] ∩ [rk, δk − p] do

10: I ← min(I, Pk−1(tl, t, b− 1) + fk(t + p) + Pk−1(t, tr, µr))
11: end for

12: L← Pk−1(tl, tr, µr) + fk(δk)
13: Pk(tl, tr, µr)← min(I, R, L)
14: end for

15: end for

16: end for

17: end for

4.3 An O(n8) Algorithm

There is an optimal Parallel-Dominant schedule and it comes directly from
the definition of Pk(tl, tr, µr) that the optimum is met for















k ← n
tl ← min(P)− p
tr ← max(P) + p
µr ← 0

(11)

Thanks to Theorem 2, we have a straight dynamic programming algorithm
to reach the optimum. The relevant values for tl and tr are those in P plus
the special values min(P) − p and max(P) + p. The relevant values for k



Batching Identical Jobs 13

and µr are in {0, · · · , n}. The values of Pk(tl, tr, µr) are stored in a multi-
dimensional array of size O(n6).

In the initialization phase, P0(tl, tr, µr) is set to 0 if tl + p ≤ tr and to a
very large value otherwise. It runs in O(n5). We then iterate on all possible
values of the parameters to reach the optimum (cf. Algorithm 2). For each
value of the parameters, a minimum over t (O(n2) terms) is computed. This
leads to an overall time complexity of O(n8). A rough analysis of the space
complexity leads to an O(n6) bound but, as for the serial problem, the
algorithm can be implemented with 2 arrays of O(n5) size.

5 Conclusion

We have introduced the class of ordered objective function, a class of func-
tions for which batching identical jobs is easy.

∑

wiUi,
∑

wiCi or
∑

Ti are
ordered objective functions or can be transformed into ordered objective
functions. Hence, we have shown that the problems

– 1|s-batch, ri, pi = p|
∑

wiUi,
– 1|s-batch, ri, pi = p|

∑

wiCi,
– 1|s-batch, ri, pi = p|

∑

Ti,
– 1|p-batch, b < n, ri, pi = p|

∑

wiUi,
– 1|p-batch, b < n, ri, pi = p|

∑

wiCi,
– 1|p-batch, b < n, ri, pi = p|

∑

Ti,

are solvable in polynomial time by dynamic programming. These problems
were open. Of course, unbounded parallel batching problems are also solv-
able by the same dynamic programming scheme.

It is also interesting to notice that both problems remain solvable for
Cmax, Lmax and Tmax. We give the underlying idea for Tmax only: Left-
shifted schedules are dominant for this regular criteria. Thus the set of
possible completion times is bounded. Since the optimum T ∗ equals either
0 or a value in the set of possible completion time minus a due date, the
number of possible values for T ∗ is |S| ∗n = O(n4) for the serial problem or
|P| ∗n = O(n3) for the parallel problem. We try for each possible value T of
T ∗ to solve a derived problem where the due date of Ji is set to di + T and
where the objective is to minimize the number of late jobs. If the optimum
is greater than 0 then T < T ∗ otherwise T ≥ T ∗. A dichotomic search
on the set of possible values for T ∗ is performed . This leads to an overall
time complexity of O(n14 log n4) = O(n14 log n) for 1|s-batch, ri, pi = p|Tmax

and of O(n8 log n) for 1|p-batch, b < n, ri, pi = p|Tmax. A slightly better
time complexity could be reached by some specific dynamic programming
algorithm, this is however out of the scope of the paper.

To conclude we would like to point out that, for the criteria
∑

wiTi,
batching identical jobs is still an open problem. The fact that even the
simple single machine problem 1|ri, pi = p|

∑

wiTi is open, while all other
ones are closed, makes us think that this batching problem is at the very
close border line of NP-hardness.
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