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ABSTRACT
Saraswat’s concurrent constraint programming (ccp) is a mature
formalism for modeling processes (or programs) that interact by
telling and asking constraints in a global medium, called the store.
Bisimilarity is a standard behavioural equivalence in concurrency
theory, but a well-behaved notion of bisimilarity for ccp has been
proposed only recently. When the state space of a system is fi-
nite, the ordinary notion of bisimilarity can be computed via the
well-known partition refinement algorithm, but unfortunately, this
algorithm does not work for ccp bisimilarity.

In this paper, we propose a variation of the partition refinement
algorithm for verifying ccp bisimilarity. To the best of our knowl-
edge this is the first work providing for the automatic verification
of program equivalence for ccp.

Keywords
Concurrent Constraint Programming, Bisimilarity, Partition Refine-
ment.

1. INTRODUCTION
Concurrency concerns with systems of multiple computing agents,

usually called processes, interacting with each other. Process cal-
culi provide languages in which processes are represented by terms,
and computational steps are represented as transitions between them.
Bisimilarity is the main representative of the so called behavioural
equivalences, i.e., equivalence relations that determine when two
processes (e.g., the specification and the implementation) behave in
the same way. Many efficient algorithms and tools for bisimilarity
checking have been developed [19, 7, 8]. Among these, the par-
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tition refinement algorithm [9] is the best known: first it generates
the state space of a labeled transition system (LTS), i.e., the set of
states reachable through the transitions; then, it creates a partition
equating all states and afterwards, iteratively, refines these parti-
tions by splitting non equivalent states. At the end, the resulting
partition equates all and only bisimilar states.

Concurrent Constraint Programming (ccp) [16] is a formalism
that combines the traditional algebraic and operational view of pro-
cess calculi with a declarative one based upon first-order logic. In
ccp, processes (agents or programs) interact by adding (or telling)
and asking information (namely, constraints) in a medium (the store).

Problem. The ccp formalism has been widely investigated and
tested in terms of theoretical studies and the implementation of
several ccp programming languages. From the applied comput-
ing point of view, however, ccp lacks algorithms and tools to auto-
matically verify program equivalence. In this paper, we will give
the first step towards automatic verification of ccp program equiv-
alences by providing an algorithm to automatically verify a ccp
process (or program) equivalence from the literature. Namely, sat-
urated barbed bisimilarity.

Saturated barbed bisimilarity (∼̇sb) for ccp was introduced in [1].
Two configurations are equivalent according to ∼̇sb if (i) they have
the same store, (ii) their transitions go into equivalent states and
(iii) they are still equivalent when adding an arbitrary constraint to
the store. In [1], a weak variant of ∼̇sb is shown to be fully abstract
w.r.t. the standard observational equivalence of [17].

Unfortunately, the standard partition refinement algorithm does
not work for ∼̇sb because condition (iii) requires to check all pos-
sible constraints that might be added to the store. In this paper we
introduce a modified partition refinement algorithm for ∼̇sb.

We closely follow the approach in [4] that studies the notion of
saturated bisimilarity from a more general perspective and proposes
an abstract checking procedure.

We first define a derivation relation `D amongst the transitions
of ccp processes: γ

α1−→ γ1 `D γ
α2−→ γ2 which intuitively means

that the latter transition is a logical consequence of the former.
Then we introduce the notion of redundant transition. Intu-

itively, a transition γ
α2−→ γ2 is redundant if there exists another

transition γ
α1−→ γ1 that logically implies it, that is γ

α1−→ γ1 `D
γ

α2−→ γ′2 and γ2 ∼̇sb γ′2. Now, if we consider the LTS having
only non-redundant transitions, the ordinary notion of bisimilarity
coincides with ∼̇sb. Thus, in principle, we could remove all the
redundant transitions and then check bisimilarity with the standard
partition refinement algorithm. But how can we decide which tran-



sitions are redundant, if redundancy itself depends on ∼̇sb ?
Our solution consists in computing ∼̇sb and redundancy at the

same time. In the first step, the algorithm considers all the states as
equivalent and all the transitions (potentially redundant) as redun-
dant. At any iteration, states are discerned according to (the current
estimation of) non-redundant transitions and then non-redundant
transitions are updated according to the new computed partition.

A distinctive aspect of our algorithm is that in the initial partition,
we insert not only the reachable states, but also extra ones which
are needed to check for redundancy. We prove that these additional
states are finitely many and thus the termination of the algorithm
is guaranteed whenever the original LTS is finite (as it is the case
of the standard partition refinement). Unfortunately, the number of
these states might be exponential wrt the size of the original LTS,
consequently the worst-case running time is exponential.

Contributions. We provide an algorithm that allows us to verify
saturated barbed bisimilarity for ccp. To the best of our knowledge,
this is the first algorithm for the automatic verification of a ccp pro-
gram equivalence. This is done in Sections 3 and 4 by building
upon the results of [4]. In Section 4.1 and 4.2, we also show the
termination and the complexity of the algorithm. We have imple-
mented the algorithm in c++ and the code is available at http://
www.lix.polytechnique.fr/~andresaristi/strong/.

2. BACKGROUND
We now introduce the original standard partition refinement [9]

and concurrent constraint programming (ccp).

Partition Refinement
In this section we recall the partition refinement algorithm intro-
duced in [9] for checking bisimilarity over the states of a labeled
transition system (LTS). Recall that an LTS can be intuitively seen
as a graph where nodes represent states (of computation) and arcs
represent transitions between states. A transition P a−→ Q be-
tween P and Q labelled with a can be typically thought of as an
evolution from P to Q provided that a condition a is met. Transi-
tion systems can be used to represent the evolution of processes in
calculi such as CCS and the π-calculus [10, 11]. In this case states
correspond to processes and transitions are given by the operational
semantics of the respective calculus.

Let us now introduce some notation. Given a set S, a partition of
S is a set of blocks, i.e., subsets of S, that are all disjoint and whose
union is S. We write {B1} . . . {Bn} to denote a partition consist-
ing of blocks B1, . . . , Bn. A partition represents an equivalence
relation where equivalent elements belong to the same block. We
write PPQ to mean that P andQ are equivalent in the partition P.

The partition refinement algorithm (see Alg. 1) checks the bisim-
ilarity of a set of initial states IS as follows. First, it computes IS?,
that is the set of all states that are reachable from IS. Then it cre-
ates the partition P0 where all the elements of IS? belong to the
same block (i.e., they are all equivalent). After the initialization, it
iteratively refines the partitions by employing the function F, de-
fined as follows: for all partitions P , P F(P)Q iff

• if P a−→ P ′ then exists Q′ s.t. Q a−→ Q′ and P ′ PQ′.

The algorithm terminates whenever two consecutive partitions are
equivalent. In such partition two states belong to the same block iff
they are bisimilar.

Note that any iteration splits blocks and never fuses them. For
this reason if IS? is finite, the algorithm terminates in at most |IS?|
iterations.

Proposition 1. If IS? is finite, then the algorithm terminates and
the resulting partition equates all and only the bisimilar states.

Algorithm 1 Partition-Refinement(IS)
Initialization

1. IS? is the set of all processes reachable from IS,

2. P0 := {IS?},

Iteration Pn+1 := F(Pn),
Termination If Pn = Pn+1 then return Pn.

CCP
We now recall the concurrent constraint programming process cal-
culus (ccp) [18, 16, 17]. In particular its notion of barbed saturated
bisimilarity (∼̇sb) [1].

Constraint Systems. The ccp model is parametric in a constraint
system specifying the structure and interdependencies of the infor-
mation that processes can ask and tell.

Following [17, 6], we regard a constraint system as a complete
algebraic lattice structure in which the ordering v is the reverse of
an entailment relation (c v dmeans that d contains “more informa-
tion” than c, hence c can be derived from d). The top element false
of the lattice represents inconsistency, the bottom element true is
the empty constraint, and the least upper bound (lub) t represents
the join of information.

Definition 1. A constraint system C is a complete algebraic lat-
tice (Con,Con0,v,t, true, false) where Con (the set of con-
straints) is a partially ordered set w.r.t. v, Con0 is the subset of
finite elements of Con , t is the lub operation, and true , false are
the least and greatest elements of Con , respectively.

To capture local variables [17] introduces cylindric constraint
systems. A cylindric constraint system over an infinite set of vari-
ables V is a constraint system equipped with an operation ∃x for
each x ∈ V . Broadly speaking ∃x has the properties of the ex-
istential quantification of x–e.g., ∃xc v c,∃x∃yc = ∃y∃xc and
∃x(c t ∃xd) = ∃xc t ∃xd. For the sake of space, we do not for-
mally introduce this notion as it is not crucial to our work–see [17].

Given a partial order (C,v), we say that c is strictly smaller than
d (c < d) if c v d and c 6= d. We say that (C,v) is well-founded if
there exists no infinite descending chains · · · < cn < · · · < c1 <

c0. For a set A ⊆ C, we say that an element m ∈ A is minimal
in A if for all a ∈ A, a 6< m. We shall use min(A) to denote the
set of all minimal elements of A. Well-founded order and minimal
elements are related by the following result.

Lemma 1. Let (C,v) be a well-founded order and A ⊆ C. If
a ∈ A, then ∃m ∈ min(A) s.t., m v a.

Remark 1. We shall assume that the constraint system is well-
founded and, for practical reasons, that its v is decidable.

We now define the constraint system we use in our examples.

Example 1. Let Var be a set of variables and ω be the set of
natural numbers. A variable assignment is a function µ : Var −→
ω. We use A to denote the set of all assignments, P(A) to denote
the powerset of A, ∅ the empty set and ∩ the intersection of sets.
Let us define the following constraint system: The set of constraints
isP(A). We define c v d iff c ⊇ d. The constraint false is ∅, while
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true is A. Given two constraints c and d, c t d is the intersection
c ∩ d. By abusing the notation, we will often use a formula like
x < n to denote the corresponding constraint, i.e., the set of all
assignments that map x in a number smaller than n.

Syntax. Let us presuppose a cylindric constraint system C =
(Con,Con0,v,t, true, false) over a set of variables Var . The
ccp processes are given by the following syntax,

P,Q ::= 0 | tell(c) | ask(c)→ P | P ‖ Q | P+Q | ∃cxP | p(~z)

where c ∈ Con0, x ∈ Var , ~z ∈ Var∗.
Intuitively, 0 represents termination, tell(c) adds the constraint

(or partial information) c to the store. The addition is performed
regardless the generation of inconsistent information. The process
ask(c) → P may execute P if c is entailed from the information
in the store. The processes P ‖ Q and P + Q stand, respectively,
for the parallel execution and non-deterministic choice of P and
Q; ∃cx is a hiding operator, namely it indicates that in ∃cxP the
variable x is local to P and c is some local information (local store)
possibly containing x. A process p(~z) is said to be a procedure call
with identifier p and actual parameters ~z. We presuppose that for
each procedure call p(z1 . . . zm) there exists a unique procedure
definition possibly recursive, of the form p(x1 . . . xm)

def
= P where

fv(P ) ⊆ {x1, . . . , xm}.
Reduction Semantics. The operational semantics is given by

transitions between configurations. A configuration is a pair 〈P,
d〉 representing a state of a system; d is a constraint representing
the global store, and P is a process, i.e., a term of the syntax. We
use Conf with typical elements γ, γ′, . . . to denote the set of con-
figurations. The operational model of ccp is given by the transition
relation −→ ⊆ Conf × Conf defined in Tab. 1. Except for R5,
these standard rules are self-explanatory. We include R5 for com-
pleteness of the presentation but it is not necessary to understand
our work in the next section. For the sake of space we refer the
interested reader to [1] for a detailed explanation of the rules.

Barbed Semantics. The authors in [1] introduced a barbed se-
mantics for ccp. Barbed equivalences have been introduced in [12]
for CCS, and become the standard behavioural equivalences for for-
malisms equipped with unlabeled reduction semantics. Intuitively,
barbs are basic observations (predicates) on the states of a system.

In the case of ccp, barbs are taken from the underlying set Con0

of the constraint system. A configuration γ = 〈P, d〉 is said to
satisfy the barb c (γ ↓c) iff c v d.

Definition 2. A barbed bisimulation is a symmetric relation R
on configurations s.t. whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1,
γ′2) ∈ R.

γ1 and γ2 are barbed bisimilar (γ1 ∼̇b γ2), if there exists a barbed
bisimulationR s.t. (γ1, γ2) ∈ R.

One can verify that ∼̇b is an equivalence. However, it is not a
congruence; i.e., it is not preserved under arbitrary contexts (the
interested reader can check Ex. 7 in [1]). An elegant solution
to modify bisimilarity for obtaining a congruence consists in sat-
urated bisimilarity [3, 2] (pioneered by [14]). The basic idea is
simple: saturated bisimulations are closed w.r.t. all the possible
contexts of the language. In the case of ccp, it is enough to require
that bisimulations are upward closed as in condition (iii) below.

Definition 3. A saturated barbed bisimulation is a symmetric
relation R on configurations s.t. whenever (γ1, γ2) ∈ R with
γ1 = 〈P, d〉 and γ2 = 〈Q, e〉:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1,
γ′2) ∈ R,

(iii) for every a ∈ Con0, (〈P, d t a〉, 〈Q, e t a〉) ∈ R.

γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2) if there exists
a saturated barbed bisimulationR s.t. (γ1, γ2) ∈ R.

Example 2. Take T = tell(true), P = ask (x < 7) → T
and Q = ask (x < 5) → T . You can see that 〈P, true〉 6∼̇sb〈Q,
true〉, since 〈P, x < 7〉 −→, while 〈Q, x < 7〉 6−→. Consider
now the configuration 〈P + Q, true〉 and observe that 〈P + Q,
true〉∼̇sb〈P, true〉. Indeed, for all constraints e, s.t. x < 7 v e,
both the configurations evolve into 〈T, e〉, while for all e s.t. x <
7 6v e, both configurations cannot proceed. Since x < 7 v x < 5,
the behaviour of Q is somehow absorbed by the behaviour of P .

Example 3. Since ∼̇sb is upward closed, 〈P+Q, z < 5〉∼̇sb〈P,
z < 5〉 follows immediately by the previous example. Now take
R = ask (z < 5) → (P +Q) and S = ask (z < 7) → P . By
analogous arguments of the previous example, one can show that
〈R+ S, true〉∼̇sb〈S, true〉.

Example 4. Take T ′ = tell(y = 1),Q′ = ask (x < 5) → T ′

and R′ = ask (z < 5) → P + Q′. Observe that 〈P + Q′,
z < 5〉 6∼̇sb〈P, z < 5〉 and that 〈R′+S, true〉 6∼̇sb〈S, true〉, since
〈P +Q′, x < 5〉 and 〈R′ + S, true〉 can reach a store containing
the constraint y = 1.

In [1], a weak variant of ∼̇sb is introduced and it is shown that it is
fully abstract w.r.t. the standard observational equivalence of [17].
In this paper, we will show an algorithm for checking ∼̇sb and we
leave, as future work, to extend it for the weak semantics.

Nevertheless, the equivalence ∼̇sb would seem hard to (automat-
ically) check because of the upward-closure (namely, the quantifi-
cation over all possible a ∈ Con0 in condition (iii)) of Def. 3. The
work in [1] deals with this issue by refining the notion of transition
by adding to it a label that carries additional information about the
constraints that cause the reduction.

Labeled Semantics. As explained in [1], in a transition of the
form 〈P, d〉 α−→ 〈P ′, d′〉 the label α represents a minimal infor-
mation (from the environment) that needs to be added to the store
d to evolve from 〈P, d〉 into 〈P ′, d′〉, i.e., 〈P, d t α〉 −→ 〈P ′, d′〉.
The labeled transition relation −→ ⊆ Conf × Con0 × Conf is
defined by the rules in Tab. 2. The rule LR2, for example, says that
〈ask (c) → P, d〉 can evolve to 〈P, d t α〉 if the environment
provides a minimal constraint α that added to the store d entails c,
i.e., α ∈ min{a ∈ Con0 | c v d t a}. Note that assuming that
(Con,v) is well-founded (Sec. 2) is necessary to guarantee that α
exists whenever {a ∈ Con0 | c v d t a } is not empty. The other
rules, except LR4, are easily seen to realize the above intuition. An
explanation of LR5 is not needed to understand the present work.
For the sake of space, we refer the reader to [1] for a more detailed
explanation of these labeled rules. Fig. 1 illustrates the LTSs of our
running example.

Syntactic Bisimilarity. When defining bisimilarity over a LTS,
barbs are not usually needed because they can be somehow inferred
from the labels of the transitions. For instance, in CCS, P ↓a iff
P

a−→. However this is not the case of ccp: barbs cannot be re-
moved from the definition of bisimilarity because they cannot be
inferred from the transitions.

Taking into account the barbs, the obvious adaptation of labeled
bisimilarity for ccp is the following:



R1 〈tell(c), d〉 −→ 〈0, d t c〉 R2
c v d

〈ask (c) → P, d〉 −→ 〈P, d〉
R5

〈P, e t ∃xd〉 −→ 〈P ′, e′ t ∃xd〉

〈∃exP, d〉 −→ 〈∃
e′
x P

′, d t ∃xe′〉

R3
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉
R4

〈P, d〉 −→ 〈P ′, d′〉

〈P + Q, d〉 −→ 〈P ′, d′〉
R6

〈P [~z/~x], d〉 −→ γ′

〈p(~z), d〉 −→ γ′
for p(~x) def

= P

Table 1: Reduction semantics for ccp (the symmetric rules for R3 and R4 are omitted)

LR1〈tell(c), d〉 true−→ 〈0, d t c〉 LR2
α ∈ min{a ∈ Con0 | c v d t a }

〈ask (c) → P, d〉 α−→ 〈P, d t α〉
LR3

〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉
LR4

〈P, d〉 α−→ 〈P ′, d′〉

〈P +Q, d〉 α−→ 〈P ′, d′〉

LR5
〈P [z/x], e[z/x] t d〉 α−→ 〈P ′, e′ t d t α〉

〈∃exP, d〉
α−→ 〈∃e

′[x/z]
x P ′[x/z], ∃x(e′[x/z]) t d t α〉

x 6∈ fv(e′), z 6∈ fv(P )

∪fv(e t d t α)
LR6

〈P [~z/~x], d〉 α−→ γ′

〈p(~z), d〉 α−→ γ′
for p(~x) def

= P

Table 2: Labeled semantics for ccp. (the symmetric rules for LR3 and LR4 are omitted)

Definition 4. [1] A syntactic bisimulation is a symmetric rela-
tionR on configurations s.t. whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1
α−→ γ′1 then ∃γ′2 s.t. γ2

α−→ γ′2 and (γ′1, γ
′
2) ∈ R.

γ1 and γ2 are syntactically bisimilar, (γ1 ∼S γ2) if there exists a
syntactic bisimulationR s.t. (γ1, γ2) ∈ R.

Unfortunately as shown in [1] ∼S is over-discriminating. As
an example, consider the configurations 〈P + Q, z < 5〉 and 〈P,
z < 5〉, whose LTS is shown in Fig. 1. They are not equivalent
according to ∼S . Indeed 〈P + Q, z < 5〉 x<5−→, while 〈P, z <

5〉 6x<5−→. However they are equivalent according to ∼̇sb (Ex. 3).

3. IRREDUNDANT BISIMILARITY
Syntactic bisimilarity is over-discriminating because of some re-

dundant transitions. For instance, consider the transitions:
(a) 〈P +Q, z < 5〉 x<7−→ 〈T, z < 5 t x < 7〉;
(b) 〈P +Q, z < 5〉 x<5−→ 〈T, z < 5 t x < 5〉.
Transition (a) means that for all constraints e s.t. x < 7 v e,
(c)〈P + Q, z < 5 t e〉 −→ 〈T, z < 5 t e〉, while transition (b)
means that the reduction (c) is possible for all e s.t. x < 5 v e.
Since x < 7 v x < 5, transition (b) is “redundant”, in the sense
that its meaning is “logically derived” by transition (a).

The following notion captures the above intuition:

Definition 5. We say that 〈P, c〉 α−→ 〈P1, c
′〉 derives 〈P, c〉 β−→

〈P1, c
′′〉, written 〈P, c〉 α−→ 〈P1, c

′〉 `D 〈P, c〉
β−→ 〈P1, c

′′〉, iff
there exists e s.t. the following conditions hold:

(i) β = α t e (ii) c′′ = c′ t e (iii) α 6= β

One can verify in the above example that (a) `D (b). Notice that
in order to check if 〈P + Q, z < 5〉∼̇sb〈P, z < 5〉, we could first
remove the redundant transition (b) and then check ∼S .

More generally, a naive approach to compute ∼̇sb would be to
first remove all those transitions that can be derived by others, and
then apply the partition refinement algorithm. However, this ap-
proach would fail since it would distinguish 〈R + S, true〉 and

〈S, true〉 that, instead, are in ∼̇sb (Ex. 3). Indeed, 〈R + S, true〉
can perform:
(e) 〈R+ S, true〉 z<7−→ 〈P, z < 7〉,
(f) 〈R+ S, true〉 z<5−→ 〈P +Q, z < 5〉,
while 〈S, true〉 6z<5−→. Note that transition (f) cannot be derived by
other transitions, since (e) 6`D (f). Indeed, P is syntactically dif-
ferent from P + Q, even if they have the same behaviour when
inserted in the store z < 5, i.e., 〈P, z < 5〉∼̇sb〈P + Q, z < 5〉
(Ex. 3). The transition (f) is also “redundant”, since its behaviour
“does not add anything” to the behaviour of (e).

Definition 6. Let R be a relation and γ α→ γ1 and γ
β→ γ2 be

two transitions. We say that the former dominates the latter one in

R (written γ α→ γ1 �R γ
β→ γ2) iff

(i) γ α→ γ1 `D γ
β→ γ′2 (ii) (γ′2, γ2) ∈ R

A transition is redundant w.r.t. R if it is dominated inR by another
transition. Otherwise, it is irredundant.

Note that the transition γ
β→ γ′2 might not be generated by the

rules in Tab. 2, but simply derived by γ α→ γ1 through `D . For
instance, transition (e) dominates (f) in ∼̇sb, because (e) `D 〈R +

S, true〉 z<5−→ 〈P, z < 5〉 and 〈P, z < 5〉∼̇sb〈P +Q, z < 5〉.
Therefore, we could compute ∼̇sb, by removing all those transi-

tions that are redundant w.r.t. ∼̇sb. This, however, would lead us to
a circular situation: How to decide which transitions are redundant
when redundancy itself depends on ∼̇sb.

Our solution relies on the following definition that allows to
compute bisimilarity and redundancy at the same time.

Definition 7. An irredundant bisimulation is a symmetric rela-
tionR on configurations s.t. whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1
α−→ γ′1 is irredundant inR then ∃γ′2 s.t. γ2

α−→ γ′2 and
(γ′1, γ

′
2) ∈ R.

γ1 and γ2 are irredundant bisimilar (γ1 ∼I γ2), if there exists an
irredundant bisimulationR s.t. (γ1, γ2) ∈ R.

Theorem 1. ∼I= ∼̇sb



T = tell(true)
T ′ = tell(y = 1)

P = ask (x < 7) → T

S = ask (z < 7) → P

Q = ask (x < 5) → T

Q′ = ask (x < 5) → T ′
R = ask (z < 5) → (P +Q)

R′ = ask (z < 5) → (P +Q′)

〈R+ S, true〉

〈S, true〉

〈R′ + S, true〉 〈P +Q′, z < 5〉

〈P, z < 7〉

〈P +Q, z < 5〉

〈P, z < 5〉

〈T ′, z < 5 t x < 5〉

〈T, z < 7 t x < 7〉

〈T, z < 5 t x < 5〉

〈T, z < 5 t x < 7〉

〈0, z < 5 t x < 5 t y = 1〉

〈0, z < 7 t x < 7〉

〈0, z < 5 t x < 5〉

〈0, z < 5 t x < 7〉
x < 7

z < 5

z < 7

z < 7

z < 5

z < 7

x < 5

x < 7

x < 5

x < 7

x < 7

true

true

true

true

Figure 1: The labeled transition systems of the running example (IS = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉}).

P0 = {〈R′ + S, true〉, 〈S, true〉, 〈R + S, true〉}, {〈P + Q′, z < 5〉, 〈P + Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 t x < 5〉, 〈T, z < 5 t x < 5〉,

〈0, z < 5 t x < 5〉}, {〈T, z < 7 t x < 7〉, 〈0, z < 7 t x < 7〉}, {〈T, z < 5 t x < 7〉, 〈0, z < 5 t x < 7〉}, {〈0, z < 5 t x < 5 t y = 1〉}

P1 = {〈R′ + S, true〉, 〈S, true〉, 〈R + S, true〉}, {〈P + Q′, z < 5〉, 〈P + Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 t x < 5〉}, {〈T, z < 5 t x < 5〉},

{〈0, z < 5 t x < 5〉}, {〈T, z < 7 t x < 7〉}, {〈0, z < 7 t x < 7〉}, {〈T, z < 5 t x < 7〉}, {〈0, z < 5 t x < 7〉}, {〈0, z < 5 t x < 5 t y = 1〉}

P2 = {〈R′ + S, true〉, 〈S, true〉, 〈R + S, true〉}, {〈P + Q′, z < 5〉}, {〈P + Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 t x < 5〉}, {〈T, z < 5 t x < 5〉},

{〈0, z < 5 t x < 5〉}, {〈T, z < 7 t x < 7〉}, {〈0, z < 7 t x < 7〉}, {〈T, z < 5 t x < 7〉}, {〈0, z < 5 t x < 7〉}, {〈0, z < 5 t x < 5 t y = 1〉}

P3 = {〈R′ + S, true〉}, {〈S, true〉, 〈R + S, true〉}, {〈P + Q′, z < 5〉}, {〈P + Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 t x < 5〉}, {〈T, z < 5 t x < 5〉},

{〈0, z < 5 t x < 5〉}, {〈T, z < 7 t x < 7〉}, {〈0, z < 7 t x < 7〉}, {〈T, z < 5 t x < 7〉}, {〈0, z < 5 t x < 7〉}, {〈0, z < 5 t x < 5 t y = 1〉}

P4 = P3

Figure 2: The partitions computed by CCP-Partition-Refinement({〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉}).

PROOF. Follows from Theo. 2 in [4]. The conditions of sound-
ness and completeness of the LTS have been already proved in [1].
The well-foundedness of `D comes from the fact that v is well-
founded.

4. PARTITION REFINEMENT FOR CCP
Recall that we mentioned in Sec. 2 that checking ∼̇sb seems hard

because of the quantification over all possible constraints. How-
ever, by using Theo. 1 we shall introduce an algorithm for checking
∼̇sb by employing the notion of irredundant bisimulation.

The first novelty w.r.t. the standard partition refinement (Alg. 1)
consists in using barbs. Since configurations satisfying different
barbs are surely different, we can safely start with a partition that
equates all and only those states satisfying the same barbs. Note
that two configurations satisfy the same barbs iff they have the same
store. Thus, we take as initial partition P0 = {IS?d1} . . . {IS

?
dn},

where IS?di is the subset of the configurations of IS? with store di.
Another difference is that instead of using the function F of Alg.

1, we refine the partitions by employing the function IR defined as
follows: for all partitions P , γ1 IR(P) γ2 iff

• if γ1
α−→ γ′1 is irredundant in P , then there exists γ′2 s.t.

γ2
α−→ γ′2 and γ′1 Pγ′2.

It is now important to observe that in the computation of IR(Pn),
there might be involved also states that are not reachable from the
initial states IS. For instance, consider the LTSs of 〈S, true〉 and
〈R+S, true〉 in Fig. 1. The state 〈P, z < 5〉 is not reachable but is
needed to check if 〈R+S, true〉 z<5−→ 〈P +Q, z < 5〉 is redundant
(look at the example after Def. 6).

For this reason, we have also to change the initialization step of
our algorithm, by including in the set IS? all the states that are
needed to check redundancy. This is done, by using the following

closure rules.

(IS)
γ ∈ IS

γ ∈ IS?
(RS)

γ1 ∈ IS? γ1
α−→ γ2

γ2 ∈ IS?

(RD)
γ ∈ IS? γ

α1−→ γ1 γ
α2−→ γ2 γ

α1−→ γ1 `D γ
α2−→ γ3

γ3 ∈ IS?

The rule (RD) adds all the states that are needed to check redun-
dancy. Indeed, if γ can perform both

α1−→ γ1 and
α2−→ γ2 s.t.

γ
α1−→ γ1 `D γ

α2−→ γ3, then γ
α2−→ γ2 would be redundant

whenever γ2 ∼̇sb γ3.

Algorithm 2 CCP-Partition-Refinement(IS)
Initialization

1. Compute IS? with the rules (IS), (RS) and (RD),

2. P0 := {IS?d1} . . . {IS
?
dn},

Iteration Pn+1 := IR(Pn)
Termination If Pn = Pn+1 then return Pn.

Fig. 2 shows the partitions computed by the algorithm with ini-
tial states 〈R′ + S, true〉, 〈S, true〉 and 〈R+ S, true〉. Note that,
as expected, in the final partition 〈R + S, true〉 and 〈S, true〉 be-
long to the same block, while 〈R′ + S, true〉 belong to a differ-
ent one (meaning that the former two are saturated bisimilar, while
〈R′+S, true〉 is different). In the initial partition all states with the
same store are equated. In P1, the blocks are split by considering
the outgoing transitions: all the final states are distinguished (since
they cannot perform any transitions) and 〈T ′, z < 5 t x < 5〉 is
distinguished from 〈T, z < 5 t x < 5〉. All the other blocks are
not divided, since all the transitions with label x < 5 are redundant



in P0 (since 〈P, z < 5〉P0〈P +Q′, z < 5〉, 〈P, z < 5〉P0〈P +Q,
z < 5〉 and 〈T ′, z < 5 t x < 5〉P0〈T, z < 5 t x < 5〉). Then,
in P2, 〈P + Q′, z < 5〉 is distinguished from 〈P, z < 5〉 since
the transition 〈P + Q′, z < 5〉 x<5−→ is not redundant anymore in
P1 (since 〈T ′, z < 5 t x < 5〉 and 〈T, z < 5 t x < 5〉 belong
to different blocks in P1). Then in P3, 〈R′ + S, true〉 is distin-
guished from 〈S, true〉 since the transition 〈R′ + S, true〉 x<5−→ is
not redundant in P2 (since 〈P + Q′, z < 5〉 6P2〈P, z < 5〉). Fi-
nally, the algorithm computes P4 that is equal to P3 and return it.
It is interesting to observe that the transition 〈R + S, true〉 x<5−→
is redundant in all the partitions computed by the algorithm (and
thus in ∼̇sb), while the transition 〈R′+S, true〉 x<5−→ is considered
redundant in P0 and P1 and not redundant in P2 and P3.

4.1 Termination
Note that any iteration splits blocks and never fuse them. For this

reason if IS? is finite, the algorithm terminates in at most |IS?|
iterations. The proof of the next proposition assumes that `D is de-
cidable. However, as we shall prove in the next section, the decid-
ability of `D follows from our assumption about the decidability
of the ordering relation v of the underlying constraint system and
Theo. 3 in the next section.

Proposition 2. If IS? is finite, then the algorithm terminates and
the resulting partition coincides with ∼̇sb.

PROOF. Using Corollary 1 of [4] and the decidability of `D .

We now prove that if the set Config(IS) of all configurations
reachable from IS (through the LTS generated by the rules in Tab.
2) is finite, then IS? is finite. This necessary and sufficient condi-
tion is standard in all the partition refinement approaches, like e.g.
those in [9, 15, 13] for CCS and π-calculus.

This condition can be easily guaranteed by imposing some syn-
tactic restrictions on ccp terms, like for instance, by excluding ei-
ther the procedure call or the hiding operator.

Theorem 2. If Config(IS) is finite, then IS? is finite.

PROOF. As a first step, we observe that a configuration γ ∈ IS?
only if γ = 〈P, d t e〉 and 〈P, d〉 ∈ Config(IS). Then we prove
that there are only finitely many such constraints e.

Let Label(IS) be the set of all labels in the LTS of IS gen-
erated by rules in Tab. 2. This set is finite (since Config(IS)
is finite), and its downward closure ↓ Label(IS) = {a | ∃b ∈
Label(IS) with a v b} is also finite (since v is well-founded).
The set of all e s.t. 〈P, d t e〉 ∈ IS∗ (with 〈P, d〉 ∈ Config(IS))
is a subset of ↓Label(IS) and thus it is finite.

Indeed, observe that if 〈P, d t e〉 c1−→, then 〈P, d〉 c2−→ with
c1 v c2. Therefore Label(IS?) ⊆ ↓Label(IS). Moreover, if
〈P, d t e〉 is added to IS? by the rule (RD) then, by definition of
`D (Def. 5), e v β for β being a label in Label(IS?) (i.e., in
↓Label(IS)).

4.2 Complexity of the Implementation
Here we give asymptotic bounds for the execution time of Alg.

2. We assume that the reader is familiar with the O(.) notation for
asymptotic upper bounds in analysis of algorithms–see [5].

Our implementation of Alg. 2 is a variant of the original par-
tition refinement algorithm in [9] with two main differences: The
computation of IS? according to rules (IS), (RS) and (RD) (line 2,
Alg. 2) and the decision procedure for `D (Def. 5) needed in the
redundancy checks.

Recall that we assume v to be decidable. Notice that require-
ment of having some e that satisfies both conditions (i) and (ii) in
Def. 5 suggests that deciding whether two given transitions belong
to `D may be costly. The following theorem, however, provides a
simpler characterization of `D allowing us to reduce the decision
problem of `D to that of v.

Theorem 3. 〈P, c〉 α−→ 〈P1, c
′〉 `D 〈P, c〉

β−→ 〈P1, c
′′〉 iff the

following conditions hold: (a) α < β (b) c′′ = c′ t β

PROOF. (⇒) We assume 〈P, c〉 α−→ 〈P1, c
′〉 `D 〈P, c〉

β−→
〈P1, c

′′〉 namely (i), (ii) and (iii) in Def. 5 hold. Take e2 = e t α
therefore we have α t e2 = α t e t α = α t e that, by cond. (ii)
is equal to β. Since α 6= β (iii), then α < β, i.e., cond. (a) holds.

Notice that α v c′ since labels are added to the stores when
performing transitions. By cond. (ii), we have that c′′ = c′ t e =
c′ t α t e that, by cond. (i), is equal to c′ t β. Thus, (b) holds.

(⇐) Conversely, assume that (a) and (b) hold. Since α < β,
there exists an e2 s.t. β = α t e2 and α 6= β (the latter is cond.
(iii) in Def. 5). Now to prove (i), (ii) we take e = e2 t α. Since
β = αt e2, then β = αt e2 = αt e2 tα = αt e, i.e., (i) holds.
By (b), c′′ = c′tβ = c′tαt e2 = c′t e, i.e., (ii) also holds.

Henceforth we shall assume that given a constraint system C, the
function fC represents the time complexity of deciding (whether
two given constraints are in)v. The following is a useful corollary
of the above theorem.

Corollary 1. Given two transitions t and t′, deciding whether
t `D t′ takes O(fC) time.

Remark 2. We introduced `D as in Def. 5 as natural adaptation
of the corresponding notion in [4]. The simpler characterization
given by the above theorem is due to particular properties of ccp
transitions, in particular monotonicity of the store, and hence it may
not hold in a more general scenario.

Complexity. The size of the set IS∗ is central to the complexity
of Alg. 2 and depends on topology of the underlying transition
graph. For tree-like topologies, a typical representation of many
transition graphs, one can show by using a simple combinatorial
argument that the size of IS∗ is quadratic w.r.t. the size of the set of
reachable configurations from IS, i.e., Config(IS). For arbitrary
graphs, however, the size of IS∗ may be exponential in the number
of transitions between the states of Config(IS) as shown by the
following construction.

Definition 8. Let P 0 = 0 and P 1 = P. Given an even number
n, define sn(n, 0) = 0, sn(n, 1) = ask (true) → sn(n, 0) and
for each 0 ≤ i < n ∧ 0 ≤ j ≤ 1 let sn(i, j) = (ask (true) →
sn(i, j ⊕ 1)j⊕1 + (ask (bi,j) → 0) + (ask (ai) → sn(i+1,
j)) where⊕means addition modulo 2. We also assume that (1) for
each i, j : ai < bi,j and (2) for each two different i and i′ : ai 6v
ai′ , and (3) for each two different (i, j) and (i′, j′): bi,j 6v bi′,j′ .

Let IS = {sn(0, 0)}. Figure 3 shows the transitions for the states
in Config(IS). One can verify that the size of IS∗ is indeed expo-
nential in the number of transitions between the states of Config(IS).

Since Alg. 2 computes IS∗ the above construction shows that
on some inputs Alg. 2 take at least exponential time. We conclude
by stating an upper-bound on the execution time of Alg. 2.

Theorem 4. Let n be the size of the set of states Config(IS)
and let m be the number of transitions between those states. Then
n× 2O(m) × fC is an upper bound for the running time of Alg. 2.



PROOF. Let N be the size of the set of states IS∗ and let M
be the number of transitions between those states. One can verify
that each state s in IS∗ corresponds to a state of s′ in Config(IS)
so that s and s′ have the same process and the store of s results
from some least upper bound of the stores in the transitions between
the states of Config(IS). Hence, N is bounded by O(n × 2m).
Similarly, we can conclude that M is bounded by O(m × 2m).
Notice that we need to check for `D in each transition (between
the states) in IS∗. With the help of Corollary 1 we conclude that
constructing IS∗ takes O(fC ×m× 2m) time.

Let N be the size of the set of states IS∗ and let M be the num-
ber of transitions between those states. Following the implementa-
tion of [9] and taking into account the checks for irredundacy we
can obtain aO(NM3) time bound for the overall executions of the
iterations of Alg. 2. From the above upper-bounds for N and M it
follows that n× 2O(m)× fC is indeed an upper bound for the time
execution of Alg. 2.

true

a0

a1

an-1

b0,0

a0

a1

an-1

b0,1

b0,1 b1,1

true

true

true

bn-1,0 bn-1,0

sn(0,0)

sn(1,0) sn(1,1)

sn(0,1)

sn(n-1,0) sn(n-1,1)

sn(n,0) sn(n,1)

Figure 3: Transitions for sn(0, 0) as in Def. 8.
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