Bisimulation Techniques and Algorithms for Concurrent Constraint Programming

Présentée et soutenue publiquement par

Andrés Alberto Aristizábal Pinzón

17 octobre 2012

devant le jury composé de

Rapporteurs: Marфа ALPUENTE
 Fabio GADDUCCI

Directeurs de thèse: Catuscia PALAMIDESSI
 Frank D. VALENCIA

Examinateurs: Filippo BONCHI
 Carlos AGÓN
 François FAGES
 Eva CRÜCK
To God and my beloved and supportive parents, Hersilia and Alvaro
Abstract

Concurrent constraint programming (ccp) is a well-established model for concurrency that builds upon operational and algebraic notions from process calculi and first-order logic. It singles out the fundamental aspects of asynchronous systems whose agents (or processes) evolve by posting and querying (partial) information in a global medium. Bisimilarity is one of the central reasoning techniques in concurrency. It is the main representative of the so called behavioral equivalences, i.e., equivalence relations that determine when two processes (e.g., the specification and the implementation) behave in the same way. The standard definition of bisimilarity, however, is not completely satisfactory for ccp since it yields an equivalence that is too fine grained.

By building upon recent foundational investigations, in this dissertation we introduce a labeled transition semantics and a novel notion of bisimilarity that is fully abstract wrt the typical observational equivalence in ccp. This way we provide ccp with a new proof technique coherent with existing ones. Remarkably, our co-inductive characterization of observation equivalence for ccp in terms of bisimilarity avoids complicated concepts used in previous work such as fairness and infinite computations.

When the state space of a system is finite, the ordinary notion of bisimilarity can be computed via the well-known partition refinement algorithm, unfortunately, this algorithm does not work for ccp bisimilarity. In this dissertation we propose a variation of the standard partition refinement algorithm for verifying ccp strong bisimilarity. To the best of our knowledge this is the first work providing for the automatic verification of concurrent constraint programme.

Weak bisimilarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are
observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this dissertation we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm that we introduced for deciding this equivalence.
Acknowledgments

First of all I want to express my deepest gratitude to my supervisors Frank D. Valencia and Catuscia Palamidessi for their guidance, encouragement, dedication and faith in my work. I am really indebted with them for inspiring me and for enlightening my professional path through their hard work, dedication and enthusiasm for Computer Science. Right now, I can truly say that I have become a better researcher and most relevantly, a better person. Certainly, I have nourished myself from my two supervisors whom have always cared for me in any aspect of my life, always guiding me into the right direction and giving me one of the best environments any student could ever desire. I hope, one day, I can be just like them, professionally and personally.

Special thanks to Camilo Rueda, the person that lighted in me the torch of research in theoretical computer science. The first one that believed in my abilities, giving me the opportunity to make my first steps in research, in our group, AVISPA. Also my thanks to the members of this group and specially to Carlos Olarte, for all the invaluable help he gave me during my studies.

I also owe a lot to my mentor and friend Filippo Bonchi who believed in me more than myself, who placed me on the right track regarding my research work with his brilliant ideas, his excellent advices and his motivation. Although he only stayed for 6 months at LIX, he still worked with me during the remaining 2 years and a half of my PhD studies, teaching me a great variety of things and as I have already stated, providing me with the basics and guidances for this dissertation to be successfully concluded.

My gratitude also goes to Luis Pino a colleague and great friend at LIX who worked side by side with me during most of my studies.

Thanks to the DGA and the CNRS for funding my doctoral studies and to
INRIA and the Laboratoire d’Informatique de l’École Polytechnique for allowing me to develop my PhD thesis there.

Many thanks to Alejandro Arbeláez, Filippo Bonchi, Sophia Knight, Jorge A. Pérez and Luis Pino to proofread some of the chapters of this dissertation. I am also grateful to María Alpuente, Fabio Gadducci, François Fages, Filippo Bonchi, Carlos Agón and Eva Crück to be part of my jury.

I also want to thank my colleagues and friends at LIX, Miguel, Nico, Kostas, Ehab, Sophia, Matteo, Luis, Hamadou, Marco and Lili. My gratitude also goes to Marie-Jeanne Gaffard (thanks indeed for all your help, understanding and advices), Christelle Lievin, Valérie Lecompte, Valérie Berthou, Audrey Lemarechal, Christine Ferret, Lydie Fontaine, Docteur Martine Bettane-Caperan, Anne De-laigle and Alexandra Bélus.

I want express my affection to my friends around the world: María del Mar Caldas, Gloria Correa, Alejandro Arbeláez, Vero Giraldo, Conie Medina, Lina Palacio, Jorge A. Pérez, Fernando Matiz, Anita Serrano, Ferenc Figueroa, Paola Bianchi, Federico Rocha, Dasha Kovaleva, Magda Olesińska, Alexandra Silva, Viktoria Nasyrova, Kat, Lara, Luis Alfredo Céspedes, Jérémy Dubreil, Andrea Mairone, Justin Dean, Lorena Montes and many others.

I am grateful to the group of ex-magistrates and all my relatives for giving me their support and love in one way or the other. Elenita and Beatriz Elena, you mean a lot to me, I am lucky to have you as my aunt and cousin. Alejandro Almario, you were a second father to me, your memory will not vanish from my heart.

I will never forget those families that took me as one of them. Thanks a lot to Sara, Felipe and Frank, and Madame Passani and her friends.

I am deeply indebted with people such as Blanca Estelia, Jaime, my dad’s nurses and therapists, etc.

Comète team, what can I say?, I will remember all the parties, games, meetings, chats, trips, even the sleepless nights working. Those memories will never be erased, this group will be forever in my heart.

I have no words to describe the last months of my PhD, I have been through really tough but enriching times. I have grown as a person. I have found my true friends. But mainly I thank God for finding my girlfriend Krystyna Węgrzyniak,
she has supported and helped me during the most difficult times. Thanks for loving and pampering me during my personal problems and the last and most stressful phase of my studies.

Last but not least, I thank God, my mother and father from the bottom of my heart. Without them my goals would have never been fulfilled. My appropriate gratitude to my father, Alvaro Aristizábal, a real fighter of life, who taught me how to behave myself and gave me his constant support. To my mother, Hersilia Pinzón, my deepest appreciation for her love, help, understanding, tenderness, for her advices and obviously for her hard work carrying me through almost all life. All in all, my parents deserve this PhD title as much or even more than I do.

Andrés A. Aristizábal P.

September the 23rd, 2012
Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Bisimilarity for CCP 2
1.2 Labeled Semantics 3
1.3 Algorithms 4
1.4 From Weak to Strong Bisimilarity 6
1.5 Summary of Contributions and Organization 7
1.6 Publications from this Dissertation 9

2 Deriving Labels and Bisimilarity for CCP 11
2.1 Background 12
2.1.1 Constraint Systems 12
2.1.2 Syntax 17
2.1.3 Reduction Semantics 18
2.1.4 Observational Equivalence 21
2.2 Saturated Bisimilarity for CCP 22
2.2.1 Saturated Barbed Bisimilarity 22
2.2.2 Correspondence with Observational Equivalence 25
2.3 Labeled Semantics 27
2.4 Strong and Weak Bisimilarity 34
2.5 Summary of Contributions and Related Work 42
CONTENTS

3 Partition Refinement for Bisimilarity in CCP

3.1 Background .. 44
3.1.1 Partition Refinement 44
3.2 Irredundant Bisimilarity 46
3.2.1 Reduction Semantics for Non-deterministic CCP 46
3.2.2 Labeled Semantics for Non-deterministic CCP 46
3.2.3 Saturated Bisimilarity in a Non-deterministic CCP Fragment 47
3.2.4 Soundness and Completeness 48
3.2.5 Syntactic Bisimilarity and Redundancy 49
3.2.6 Symbolic and Irredundant Bisimilarity 56
3.3 Partition Refinement for CCP 64
3.3.1 Termination ... 67
3.3.2 Complexity of the Algorithm 68
3.4 Summary of Contributions and Related Work 71

4 Reducing Weak to Strong Bisimilarity in CCP

4.1 Background .. 74
4.1.1 Reducing Weak to Strong Bisimilarity 74
4.2 Defining a New Saturation Method for CCP 81
4.2.1 A New Saturation Method 81
4.2.2 A Remark about our Saturation in CCS 84
4.2.3 Soundness and Completeness 86
4.3 Correspondence between \approx_{sb}, \sim_{sym}, \sim_{f} 88
4.4 Algorithm for the Weak Notion of the CCP Partition Refinement 90
4.5 Summary of Contributions and Related Work 92

5 Conclusions

A Implementation and Experiments for the CCP Partition Refinement

A.1 Programming Language 97
A.2 Abstract Data Types 97
A.2.1 Implementation Layout 98
A.2.2 Layout of the Automaton 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.3 Layout of the Redundant Class</td>
<td>98</td>
</tr>
<tr>
<td>A.2.4 Layout of a Tool to Verify Bisimilarity in CCP</td>
<td>99</td>
</tr>
<tr>
<td>A.3 Procedures and Functions</td>
<td>101</td>
</tr>
<tr>
<td>A.3.1 Calculating Irredundancy</td>
<td>101</td>
</tr>
<tr>
<td>A.3.2 Strong Prerefinement</td>
<td>102</td>
</tr>
<tr>
<td>A.3.3 Weak Prerefinement</td>
<td>104</td>
</tr>
<tr>
<td>A.3.4 Final Algorithm</td>
<td>105</td>
</tr>
<tr>
<td>A.3.5 Final Strong Algorithm</td>
<td>108</td>
</tr>
<tr>
<td>A.3.6 Saturation</td>
<td>108</td>
</tr>
<tr>
<td>A.3.7 Final Weak Algorithm</td>
<td>110</td>
</tr>
<tr>
<td>A.4 Results and Examples</td>
<td>110</td>
</tr>
<tr>
<td>A.4.1 Transitions/Nodes</td>
<td>111</td>
</tr>
<tr>
<td>A.4.2 Percentage of Same Labels</td>
<td>115</td>
</tr>
<tr>
<td>A.4.3 Percentage of Configurations Satisfying the Same Barb</td>
<td>119</td>
</tr>
<tr>
<td>A.4.4 Percentage of Dominated Transitions</td>
<td>123</td>
</tr>
<tr>
<td>A.4.5 Time vs Branches</td>
<td>127</td>
</tr>
<tr>
<td>A.5 Summary of Contributions and Related Work</td>
<td>130</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Reduction Semantics for CCP 20
2.2 Labeled Transitions 29
4.1 Milner’s Saturation Method 76
4.2 New Labeled Transition System 81
4.3 New Labeled Transition System for CCS 85
A.1 Time vs. Transitions/Nodes 113
A.2 Time vs % of Same Labels 118
A.3 Time vs % of Configurations Satisfying the Same Barb 122
A.4 Time vs % of Dominated Transitions 126
A.5 Time vs Branches 129
List of Figures

2.1 The Herbrand Constraint Lattice for x, y, a, b 13
2.2 The Cylindric Herbrand Constraint System for x, a and f 15
2.3 Strong Bisimulation for Example 2.4.1 36
2.4 Weak Bisimulation for Example 2.4.2 37
3.1 The Labeled Transition System of a Running Example 51
3.2 Partitions Computed by the CCP-Partition-Refinement Algorithm . . . 52
3.3 Symbolic Bisimulation for Example 3.2.4 57
3.4 CCP Partition Refinement . 65
3.5 Transitions for $s_n(0,0)$ as in Definition 3.3.2 71
4.1 Counterexample for Completeness using Milner’s Sat. Method . . . 78
4.2 Transitions from $\langle P, true \rangle$ and $\langle Q, true \rangle$ 80
4.3 Saturated Transitions from $\langle P, true \rangle$ and $\langle Q, true \rangle$. . . 80
4.4 CCS Process $P = a.P$ (finitely branching) 86
4.5 Saturated CCS Process $P = a.P$ (infinitely branching) 86
4.6 CCP-Weak Partition Refinement 91
A.1 A Design of an Automaton Class . 98
A.2 A Design of a Redundant Class . 99
A.3 Layout of a Tool to Verify Strong Bisimilarity in CCP 100
A.4 Layout of a Tool to Verify Weak Bisimilarity in CCP 101
A.5 Example 1 Transitions/Nodes . 111
A.6 Example 2 Transitions/Nodes . 112
A.7 Time vs. Transitions . 114
LIST OF FIGURES

A.8 Time vs. Nodes .. 115
A.9 Example 1 % of Same Labels 116
A.10 Example 2 % of Same Labels 117
A.11 Time vs Percentage of Same Labels 119
A.12 Example 1 % of Configurations Satisfying the Same Barb .. 120
A.13 Example 2 % of Configurations Satisfying the Same Barb .. 121
A.14 Time vs Percentage of Configs. Sat. Same Barbs 123
A.15 Example 1 % of Dominated Transitions 124
A.16 Example 2 % of Dominated Transitions 125
A.17 Time vs Percentage Dominated Transitions 127
A.18 Saturated Example 1 Branches 128
A.19 Saturated Example 2 Branches 128
A.20 Time vs Branches .. 129
Chapter 1

Introduction

An ounce of practice is worth more than tons of preaching.
– Mahatma Gandhi.

If I can introduce someone to something new, as is constantly happening to me, then I am elated.
– Trevor Dunn.

Concurrent constraint programming (ccp) [SR90] is a model for concurrency that combines operational and algebraic notions from process calculi and first-order logic. It was designed to give programmers explicit access to the concept of partial information. A distinctive aspect of ccp is that, unlike other process calculi, is not concerned about point-to-point channel communication but rather about systems of agents posting and querying information (traditionally referred to as constraints) in some medium.

This dissertation is devoted to the development of a co-inductive reasoning technique, namely bisimilarity, for ccp. We shall demonstrate that the distinctive nature of ccp makes this development a non-trivial, novel and relevant task for the modelling of concurrent systems. In the following chapters we shall present the foundations of ccp bisimilarity as well as the techniques and algorithms to decide this relation. In what follows we motivate and briefly describe the contributions of this work.
1.1 Bisimilarity for CCP

Concurrency is concerned with the fundamental aspects of systems of multiple computing agents, usually called processes, that interact with each other. Process calculi treat processes much like the λ-calculus treats computable functions. They provide a language in which processes are represented by terms, and computational steps are represented as transitions between them.

Co-induction [JR97, San09, San11] is the most natural and powerful approach to define and reason about infinite or circular structures and computations, bringing in tools and methods that are dual and complementary to those of induction. In particular, coinduction is central in concurrency, where processes are naturally seen as entities that continuously interact with their environment. Co-induction, in the form of bisimulation, is used to define equality between processes, and the coinduction proof method, in the form of the bisimulation proof method, is employed to prove such equalities. The largest bisimulation, bisimilarity [Mil80, Mil99], captures an intuitive notion of process equivalence; two processes are equivalent if they can match each other’s moves.

Concurrent Constraint Programming (ccp) [SR90] is a well-established formalism that combines the traditional algebraic and operational view of process calculi with a declarative one based upon first-order logic. In ccp, processes interact by posting (or telling) and asking information (traditionally referred to as constraints) in a medium (referred to as the store). Ccp is parametric in a constraint system indicating interdependencies (entailment) between constraints and providing for the specification of data types and other rich structures. The above features have recently attracted a renewed attention as witnessed by the works [PSVV06, BM08, BJPV09, BZ10] on calculi exhibiting data-types, logic assertions as well as tell and ask operations.

Surprisingly, the development of co-inductive techniques, in particular, of bisimulation for ccp has been so far too little considered. There have been few attempts to define a notion of bisimilarity for ccp. The ones we are aware of are those in [SR90] and [MPSS95] upon which we build. These equivalences are not completely satisfactory: We shall demonstrate in this thesis that the first one may tell apart processes with identical observable behavior, while the second quantifies
over all possible inputs from the environment, and hence it is not clear whether it can lead to a feasible proof technique.

In this dissertation we shall introduce a notion of bisimilarity for ccp that allows us to benefit of the feasible proof and verification techniques typically associated with bisimilarity. Furthermore, we aim at studying the relationship between this equivalence and other existing semantic notions for ccp. In particular, its elegant denotational characterization based on closure operators \cite{SRP91} and the connection with logic \cite{MPSS95}.

\section{Labeled Semantics}

Bisimilarity relies on labeled transitions: each evolution step of a system is tagged by some information aimed at capturing the possible interactions of a process with the environment. Nowadays process calculi tend to adopt reduction semantics based on unlabeled transitions and barbed congruence \cite{MS92a}. The main drawback of this approach is that to verify barbed congruences it is often necessary to analyze the behavior of processes under every context.

This scenario has motivated a novel stream of research \cite{Sew98,LM00,EK04,SS05,BKM06,RS08,GHL08,BGM09} aimed at defining techniques for “deriving labels and bisimilarity” from unlabeled reduction semantics. The main intuition is that labels should represent the “minimal contexts allowing a process to reduce”. The \textit{theory of reactive systems} by Leifer and Milner \cite{LM00} provides a formal characterization (by means of a categorical construction) of such “minimal contexts” and it focuses on the bisimilarity over transition systems labeled as:

\[
P \xrightarrow{C} P' \text{ iff } C[P] \longrightarrow P'
\]

where C is the minimal context allowing such reduction.

In \cite{BKM06,BGM09}, it is argued that the above bisimilarity is often too fine grained and an alternative, coarser, notion of bisimilarity is provided. Intuitively in the bisimulation game each move (transition) $P \xrightarrow{C} P'$ has to be matched with a move $C[Q] \longrightarrow Q'$, where $C[\cdot]$ is not necessarily the minimal.
1.3. ALGORITHMS

Labeled Semantics for ccp. The operational semantics of ccp is expressed by reductions between configurations of the form

\[\langle P, d \rangle \longrightarrow \langle P', d' \rangle \]

meaning that the process \(P \) with store \(d \) may reduce to \(P' \) with store \(d' \). From this semantics we shall derive a labeled transition system for ccp by exploiting the intuition of \[\text{[Sew98, LM00]} \]. The transition

\[\langle P, d \rangle \xrightarrow{e} \langle P', d' \rangle \]

means that \(e \) is a “minimal constraint” (from the environment) that needs to be added to \(d \) to reduce from \(\langle P, d \rangle \) into \(\langle P', d' \rangle \).

Similar ideas were already proposed in \[\text{[SR90]} \], but the recent developments in \[\text{[BGM09]} \] enlighten the way for obtaining a fully abstract equivalence. Indeed, the standard notion of bisimilarity defined on our labeled semantics can be seen as an instance of the one proposed in \[\text{[LM00]} \]. As for the bisimilarity in \[\text{[SR90]} \], it is too fine grained, i.e., it separates processes which are behaviorally indistinguishable. Instead, the notion of bisimulation from \[\text{[BGM09]} \] (instantiated to the case of ccp) is fully abstract with respect to the standard observational equivalence given in \[\text{[SRP91]} \]. Our work can therefore be also regarded as a compelling application of the theory of reactive systems.

1.3 Algorithms

A fundamental issue in concurrency concerns the analysis techniques. That is, methods and tools to decide equivalence between behaviours, or more generally to prove behavioural properties of a concurrent system. The tractability of a technique is important: we need techniques which make proofs shorter, and reduce the number of cases to be examined when analysing a behaviour. Tools may be derived out of the techniques, to permit automatic or semi-automatic analysis.

Many efficient algorithms and tools for bisimilarity checking have been developed \[\text{[VM94, Fer89, FGM+98]} \]. Among these, the partition refinement algorithm...
is the best known: first it generates the state space of a labeled transition system (LTS), i.e., the set of states reachable through the transitions; then, it creates a partition equating all states and afterwards, iteratively, refines these partitions by splitting non equivalent states. At the end, the resulting partition equates all and only bisimilar states.

The ccp formalism has been widely investigated and tested in terms of theoretical studies and the implementation of several ccp programming languages. From the applied computing point of view, however, ccp lacks algorithms and tools to automatically verify program equivalence. Furthermore, the absence of a well-behaved notion of bisimilarity for ccp made the development of tools for automatic verification in ccp somewhat a pointless effort. Therefore, after introducing a suitable definition of bisimilarity for ccp, we shall give the first step towards automatic verification of ccp program equivalences by presenting an algorithm based on an alternative notion of bisimilarity, namely saturated barbed bisimilarity (\sim_{sb}) for ccp.

Two configurations are equivalent according to \sim_{sb} if (i) they have the same store, (ii) their transitions go into equivalent states and (iii) they are still equivalent when adding an arbitrary constraint to the store. We shall also prove that the weak variant of \sim_{sb} is shown to be fully abstract w.r.t. the standard observational equivalence of [SRP91].

Unfortunately, the standard partition refinement algorithm does not work for \sim_{sb} because condition (iii) requires to check all possible constraints that might be added to the store. In this dissertation we shall introduce a modified partition refinement algorithm for \sim_{sb}.

We closely follow the approach in [BM09] that studies the notion of saturated bisimilarity from a more general perspective and proposes an abstract checking procedure. We first define a derivation relation \vdash_D amongst the transitions of ccp processes: $\gamma \xrightarrow{\alpha_1} \gamma_1 \vdash_D \gamma \xrightarrow{\alpha_2} \gamma_2$ which intuitively means that the latter transition is a logical consequence of the former. Then we introduce the notion of domination (\succ_D), which means that if there exist two transitions $\gamma \xrightarrow{\alpha_1} \gamma_1$ and $\gamma \xrightarrow{\alpha_2} \gamma_2$, $\gamma \xrightarrow{\alpha_1} \gamma_1 \succ_D \gamma \xrightarrow{\alpha_2} \gamma'_2$ if and only if $\gamma \xrightarrow{\alpha_1} \gamma_1 \vdash_D \gamma \xrightarrow{\alpha_2} \gamma'_2$ and $\alpha_1 \neq \alpha_2$. Finally we give the definition of a redundant transition. Intuitively $\gamma \xrightarrow{\alpha_2} \gamma_2$ is redundant if $\gamma \xrightarrow{\alpha_1} \gamma_1$ dominates it, that is $\gamma \xrightarrow{\alpha_1} \gamma_1 \succ_D \gamma \xrightarrow{\alpha_2} \gamma'_2$ and
1.4. FROM WEAK TO STRONG BISIMILARITY

Now, if we consider the LTS having only non-redundant transitions, the ordinary notion of bisimilarity coincides with \(\sim_{sb} \). Thus, in principle, we could remove all the redundant transitions and then check bisimilarity with the standard partition refinement algorithm. But how can we decide which transitions are redundant, if redundancy itself depends on \(\sim_{sb} \)?

Our solution consists in computing \(\sim_{sb} \) and redundancy at the same time. In the first step, the algorithm considers all the states as equivalent and all the transitions (potentially redundant) as redundant. At any iteration, states are discerned according to (the current estimation of) non-redundant transitions and then non-redundant transitions are updated according to the new computed partition.

A distinctive aspect of our algorithm is that in the initial partition we insert not only the reachable states, but also extra ones which are needed to check for redundancy. We prove that these additional states are finitely many and thus the termination of the algorithm is guaranteed whenever the original LTS is finite (as it is the case of the standard partition refinement). Unfortunately, the number of these states might be exponential w.r.t. the size of the original LTS, consequently the worst-case running time is exponential.

1.4 From Weak to Strong Bisimilarity

A major dichotomy among behavioural equivalences concerns strong and weak equivalences. In strong equivalences, all the transitions performed by a system are deemed observable. In weak equivalences, instead, internal transitions (usually denoted by \(\tau \)) are unobservable. On the one hand, weak equivalences are more abstract (and thus closer to the intuitive notion of behaviour); on the other hand, strong equivalences are usually much easier to be checked (for instance, in [1] it is introduced a strong equivalence which is computable for a Turing complete formalism).

In Section 1.3 we develop a partition refinement algorithm to verify strong bisimilarity for ccp.

Weak bisimilarity can be computed by reducing it to strong bisimilarity. Given
1.5. SUMMARY OF CONTRIBUTIONS AND ORGANIZATION

an LTS \xrightarrow{a}, one can build \xRightarrow{a} as follows.

\[
\begin{align*}
P \xrightarrow{a} Q \\
\Rightarrow & P \xrightarrow{\tau} P \\
\Rightarrow & P \xrightarrow{\tau} P \\
\Rightarrow & P \xrightarrow{\tau} P
\end{align*}
\]

Since weak bisimilarity on \xrightarrow{a} coincides with strong bisimilarity on \xRightarrow{a}, then one can check weak bisimilarity with the algorithms for strong bisimilarity on the new LTS \xRightarrow{a}.

Nevertheless, this standard reduction method cannot entirely be regarded as the general solution since it works with labels resembling actions, but not, as in the case of ccp, as constraints.

1.5 Summary of Contributions and Organization

Here we briefly describe the structure of this dissertation and its contributions. Each chapter begins with a brief introduction and relevant background and ends with a summary of its contents and a discussion about its related work. Frequently used notational conventions and terminology are summarized in the Index.

Chapter 2 (Deriving Labels and Bisimilarity for CCP) In this chapter we provide a labeled transition semantics and a novel notion of labeled bisimilarity for ccp by building upon the work in [SR90, BGM09]. We also establish a strong correspondence with existing ccp notions by providing a fully-abstract characterization of a standard observable behavior for infinite ccp processes (the limits of fair, possibly infinite, computations). Remarkably, complex notions such as fairness and infinite computations are avoided in our characterization of the observable behavior via bisimilarity. From [SRP91] this implies a fully-abstract correspondence with the closure operator denotational semantics of ccp. Therefore, this work provides ccp with a new co-inductive proof technique, coherent with the existing ones, for reasoning about process equivalence.
Chapter 3 (Partition Refinement for Bisimilarity in CCP) In this chapter we provide an algorithm that allows us to verify saturated barbed bisimilarity for ccp. To the best of our knowledge, this is the first algorithm for the automatic verification of ccp program equivalence. This is done by building upon the results of [BM09]. We also show the termination and the complexity of the algorithm. We have implemented the algorithm in c++ and the code is available at http://www.lix.polytechnique.fr/~andresaristi/strong/.

Chapter 4 (Reducing Weak to Strong Bisimilarity in CCP) In this chapter we first show that the standard method for reducing weak to strong bisimilarity does not work for ccp and then we provide a way out of the impasse. Our solution can be readily explained by observing that the labels in the LTS of a ccp agent are constraints (actually, they are “the minimal constraints” that the store should satisfy in order to make the agent progress). These constraints form a lattice where the least upper bound (denoted by \sqcup) intuitively corresponds to conjunction and the bottom element is the constraint $true$. (As expected, transitions labeled by $true$ are internal transitions, corresponding to the τ moves in standard process calculi.) Now, rather than closing the transitions just with respect to $true$, we need to close them w.r.t. all the constraints. Formally we build the new LTS with the following rules.

\[
\begin{align*}
P & \xrightarrow{a} Q \\
\quad \Downarrow & \\
\quad & \\
\quad P & \xrightarrow{\text{true}} Q \\
\quad P & \xrightarrow{a, b} Q \\
\quad & \xrightarrow{\text{true}} P \\
\quad & \xrightarrow{\text{true}} R
\end{align*}
\]

Note that, since \sqcup is idempotent, if the original LTS \xrightarrow{a} has finitely many transitions, then also \Downarrow is finite. This allows us to use the algorithm in [ABPV12a] to check weak bisimilarity on (the finite fragment) of concurrent constraint programming. We have implemented this procedure in a tool that is available at http://www.lix.polytechnique.fr/~andresaristi/checkers/ At the best of our knowledge, this is the first tool for checking weak equivalence of ccp programs.
Chapter 5 (Conclusions) This Chapter offers some concluding remarks, discusses related works, and proposes some future work.

Appendix (A Tool for Verifying Bisimilarity in CCP) In the appendix we briefly describe a tool for verifying strong and weak bisimilarity for ccp using as a basis all the theoretical knowledge we gathered. We highlight the importance of the selected programming language, the abstract data types used to represent the components to implement the partition refinement algorithm for ccp, the analysis of the auxiliary functions or procedures, a study of several graphs that can show the relation between the way a ccp process is composed, and how much time it takes for the algorithm to give an answer regarding the strong or the weak bisimilarity.

1.6 Publications from this Dissertation

Most of the material of this dissertation has been previously reported in the following papers.

- Proceedings of conferences.

 The main contributions of this paper are included in Chapter 3 and 4 and Appendix A.

 The main contributions of this paper are included in Chapter 2.
• Proceedings of Workshops.

 The main contributions of this paper are included in Chapter 4 and Appendix A.

• Short Papers.

• Technical Reports.

Chapter 2

Deriving Labels and Bisimilarity for CCP

Labeled semantics does two things: it gives the semantics of the raw processes, the computational steps and it helps you reason about the congruences. Reduction semantics just does the first thing and then you have some horrid rules about congruences and you need some nice tools to reason about this.
– Martin Berger.

In this chapter we introduce a labeled semantics for ccp [SR90] and a well-behaved equivalence for this language, namely, a new coarse grained bisimilarity notion for ccp. We begin by presenting the notion of constraint systems (cs), then we show the basic insights of ccp by recalling its syntax, its operational semantics and its observational equivalence. We show that the only existing notion of standard bisimilarity for ccp, one of the central reasoning techniques in concurrency, is not completely satisfactory for ccp since it yields an equivalence that is too fine grained. Therefore, by building upon recent foundational investigations, we give a labeled transition semantics and a novel notion of bisimilarity that is fully abstract w.r.t. the typical observational equivalence in ccp. This way we are able to provide ccp with a new proof technique coherent with the existing ones.
2.1 Background

2.1.1 Constraint Systems

The ccp model is parametric in a constraint system specifying the structure and interdependencies of the information that processes can ask and tell. We presuppose a basic knowledge of domain theory (see [AJ94]). Following [SRP91, dBPP95], we regard a constraint system as a complete algebraic lattice structure in which the ordering \sqsubseteq is the reverse of an entailment relation ($c \sqsubseteq d$ means that d contains “more information” than c, hence c can be derived from d). The top element $false$ represents inconsistency, the bottom element $true$ is the empty constraint, and the least upper bound (lub) \sqcup represents the join of information.

Definition 2.1.1 A constraint system C is a complete algebraic lattice $(Con, Con_0, \sqsubseteq, \sqcup, true, false)$ where Con (the set of constraints) is a partially ordered set w.r.t. \sqsubseteq. Con_0 is the subset of finite elements of Con, \sqcup is the lub operation, and $true$ and $false$ are the least and greatest elements of Con, respectively.

Recall that C is a complete lattice if every subset of Con has a least upper bound in Con. An element $c \in Con$ is finite if for any directed subset D of Con, $c \sqsubseteq \bigcup D$ implies $c \sqsubseteq d$ for some $d \in D$. C is algebraic if each element $c \in Con$ is the least upper bound of the finite elements below c.

Example 2.1.1 We briefly explain the Herbrand cs from [VA89, SRP91]. This cs captures syntactic equality between terms t, t', \ldots built from a first-order alphabet \mathcal{L} with countably many variables x, y, \ldots, function symbols, and equality $=$. The constraints are sets of equalities over the terms of \mathcal{L} (e.g., $\{x = t, y = t\}$ is a constraint). The relation $c \sqsubseteq d$ holds if the equalities in c follow from those in d (e.g., $\{x = y\} \sqsubseteq \{x = t, y = t\}$). The constraint $false$ is the set of all term equalities in \mathcal{L} and $true$ is (the equivalence class of) the empty set. The finite elements are the (equivalence classes of) finite sets of equalities. The lub is (the equivalence class of) set union. (See [VA89, SRP91] for full details). Figure 2.1 represents this kind of constraint lattice for x, y, a, b. Let us stress that the only symbols of \mathcal{L} are the constants a and b.
Note that the constraints are made out of a variable and a term, therefore $a = b$ cannot be in the lattice.

Figure 2.1: The Herbrand Constraint Lattice for x, y, a, b.

In order to model hiding of local variables and parameter passing, in [SRP91] the notion of constraint system is enriched with cylindrification operators and diagonal elements, concepts borrowed from the theory of cylindric algebras (see [HT71]).

Let us consider a (denumerable) set of variables Var with typical elements x, y, z, \ldots. Define \exists_{Var} as the family of operators $\exists_{\text{Var}} = \{ \exists_x \mid x \in \text{Var} \}$ (cylindric operators) and D_{Var} as the set $D_{\text{Var}} = \{ d_{xy} \mid x, y \in \text{Var} \}$ (diagonal elements).

A cylindric constraint system over a set of variables Var is a constraint system whose underlying support set $\text{Con} \supseteq D_{\text{Var}}$ is closed under the cylindric operators \exists_{Var} and quotiented by Axioms C1 – C4, and whose ordering \sqsubseteq satisfies Axioms
2.1. BACKGROUND

C5 – C7:

C1. $\exists x \exists y c = \exists y \exists x c$

C2. $d_{xx} = true$

C3. if $z \neq x, y$ then $d_{xy} = \exists z (d_{xz} \cup d_{zy})$

C4. $\exists x (c \cup \exists x d) = \exists x c \cup \exists x d$

C5. $\exists x c \subseteq c$

C6. if $c \subseteq d$ then $\exists x c \subseteq \exists x d$

C7. if $x \neq y$ then $c \subseteq d_{xy} \cup \exists x (c \cup d_{xy})$

where c, c_i, d indicate finite constraints, and $\exists x c \cup d$ stands for $(\exists x c) \cup d$. For our purposes, it is enough to think the operator $\exists x$ as existential quantifier and the constraint d_{xy} as the equality $x = y$.

Cylindrification and diagonal elements allow us to model the variable renaming of a formula ϕ; in fact, by the aforementioned axioms, the formula $\exists x (d_{xy} \cup \phi) = true$ can be depicted as the formula $\phi[y/x]$, i.e., the formula obtained from ϕ by replacing all free occurrences of x by y.

We assume notions of free variable and of substitution that satisfy the following conditions, where $c[y/x]$ is the constraint obtained by substituting x by y in c and $fv(c)$ is the set of free variables of c: (1) if $y \notin fv(c)$ then $(c[y/x])[x/y] = c$; (2) $(c \cup d)[y/x] = c[y/x] \cup d[y/x]$; (3) $x \notin fv(c[y/x])$; (4) $fv(c \cup d) = fv(c) \cup fv(d)$.

Example 2.1.2 The Herbrand constraint system in Example 2.1.1 can be extended to be a cylindric constraint system, where $\exists x$ just represents the standard existential quantifier. For instance, consider the alphabet which contains a constant symbol a and a monadic function symbol f. Figure 2.2 represents the part of the cylindric constraint system in which x (and only x) is free. For simplicity we have indicated a set $\{t = u\}$ by $t = u$.
The constraint $x = f^\omega$ stands for the limit of the chain $\{\exists y x = f^i(y)\}_i$.

We now define the cylindric constraint system that will be used in all the examples.

Example 2.1.3 (The S Constraint System) Let $S = (\omega + 1, 0, \infty, =, <, \text{succ})$ be a first-order structure whose domain of interpretation is $\omega + 1 \overset{\text{def}}{=} \omega \cup \{\infty\}$, i.e., the natural numbers extended with a top element ∞. The constant symbols 0 and ∞ are interpreted as zero and infinity, respectively. The symbols $=$, $<$ and succ are all binary predicates on $\omega + 1$. The symbol $=$ is interpreted as the identity relation. The symbol $<$ is interpreted as the set of pairs (n,m) s.t. $n \in \omega$, $m \in \omega + 1$ and n strictly smaller than m. The symbol succ is interpreted as the set of pairs (n,m) s.t. $n, m \in \omega$ and $m = n + 1$.

Let Var be an infinite set of variables. Let \mathcal{L} be the logic whose formulae ϕ are: $\phi ::= t \mid \phi_1 \land \phi_2 \mid \exists x \phi$ and $t ::= e_1 = e_2 \mid e_1 < e_2 \mid \text{succ}(e_1,e_2)$ where e_1 and e_2 are either 0 or ∞ or variables in Var. Note that formulas like $x = n$ or $x < n$ (for $n = 1, 2, \ldots$) do not belong to \mathcal{L}. A useful abbreviation to express them is $\text{succ}^n(x,y) \overset{\text{def}}{=} \exists y_0 \ldots \exists y_n (\wedge_{0 \leq i \leq n} \text{succ}(y_{i-1},y_i) \land x = y_0 \land y = y_n)$. We use $x = n$ as shorthand for $\text{succ}^n(0,x)$ and $x < n$ as shorthand for $\exists y(x < y \land y = n)$.
A variable assignment is a function \(\mu : \text{Var} \rightarrow \omega + 1 \). We use \(A \) to denote the set of all assignments; \(\mathcal{P}(X) \) to denote the powerset of a set \(X \), \(\emptyset \) the empty set and \(\cap \) the intersection of sets. We use \(\mathcal{M}(\phi) \) to denote the set of all assignments that satisfy the formula \(\phi \), where the definition of satisfaction is as expected.

We can now introduce a constraint system as follows: the set of constraints is \(\mathcal{P}(A) \), and define \(c \sqsubseteq d \) iff \(c \supseteq d \). The constraint false is \(\emptyset \), while true is \(A \). Given two constraints \(c \) and \(d \), \(c \sqcup d \) is the intersection \(c \cap d \). By abusing the notation, we will often use a formula \(\phi \) to denote the corresponding constraint, i.e., the set of all assignments satisfying \(\phi \). E.g. we use \(1 < x \sqsubseteq 5 < x \) to mean \(\mathcal{M}(1 < x) \sqsubseteq \mathcal{M}(5 < x) \).

From this structure, let us now define the cylindric constraint system \(\mathcal{S} \) as follows. We say that an assignment \(\mu' \) is an \(x \)-variant of \(\mu \) if \(\forall y \neq x, \mu(y) = \mu'(y) \). Given \(x \in \text{Var} \) and \(c \in \mathcal{P}(A) \), the constraint \(\exists x \, c \) is the set of assignments \(\mu \) such that there exists \(\mu' \in c \) that is an \(x \)-variant of \(\mu \). The diagonal element \(d_{xy} \) is \(x = y \).

We make an assumption that will be pivotal in Section 2.3. Given a partial order \((C, \sqsubseteq) \), we say that \(c \) is strictly smaller than \(d \) (written \(c \sqsubset d \)) if \(c \sqsubseteq d \) and \(c \neq d \). We say that \((C, \sqsubseteq) \) is well-founded if there exists no infinite descending chain \(\cdots \sqsubseteq c_n \sqsubseteq \cdots \sqsubseteq c_1 \sqsubseteq c_0 \). For a set \(A \subseteq C \), we say that an element \(m \in A \) is minimal in \(A \) if for all \(a \in A, a \nsubseteq m \). We shall use \(\text{min}(A) \) to denote the set of all minimal elements of \(A \). Well-founded orders and minimal elements are related by the following result.

Proposition 2.1.1 Let \((C, \sqsubseteq) \) be a well-founded order and \(A \subseteq C \). If \(a \in A \), then \(\exists m \in \text{min}(A) \) s.t. \(m \sqsubseteq a \).

In spite of its being a reasonable assumption, well-foundedness of \((\text{Con}, \sqsubseteq) \) is not usually required in the standard theory of ccp. We require it because the above proposition is fundamental for proving the completeness of labeled semantics (Lemma 2.3.2).
2.1. BACKGROUND

2.1.2 Syntax

Ccp was proposed in [V.A89] and then refined in [SR90, SRP91]. In this chapter we restrict ourselves to the summation-free fragment of this formalism. The distinctive confluent (for more details about confluence in ccp see [FGMP94]) nature of this fragment is necessary for showing that our notion of bisimilarity coincides with the observational equivalence for infinite ccp processes given in [SRP91].

Remark 2.1.1 A ccp summation-free fragment is the one in which the nondeterministic choice is not included in the syntax of the ccp language.

Definition 2.1.2 Assume a cylindric constraint system $C = (\text{Con, Con}_0, \sqsubseteq, \sqcup, \text{true, false})$ over a set of variables Var. The ccp processes are given by the following syntax:

$$P, Q \ldots ::= \text{tell}(c) \mid \text{ask}(c) \rightarrow P \mid P \mid Q \mid \exists x P \mid \text{ask}(c) \rightarrow p(\vec{z})$$

where $c \in \text{Con}_0, x \in \text{Var}, \vec{z} \in \text{Var}^*$. We use Proc to denote the set of all processes.

Remark 2.1.2 The notions and relations in this and the following chapters assume an underlying cylindric constraint system C.

Finite processes. Intuitively, the tell process $\text{tell}(c)$ adds c to the global store. This addition is performed regardless of the generation of inconsistent information. The ask process $\text{ask}(c) \rightarrow P$ may execute P if c is entailed by the information in the store. The process $P \mid Q$ stands for the parallel execution of P and Q; $\exists x$ is a hiding operator, namely it indicates that in $\exists x P$ the variable x is local to P. The occurrences of x in $\exists x P$ are said to be bound. The bound variables of P, $\text{bv}(P)$, are those with a bound occurrence in P, and its free variables, $\text{fv}(P)$, are those with an unbound occurrence.

Infinite processes. To specify infinite behavior, ccp provides parametric process definitions. A process $p(\vec{z})$ is said to be a procedure call with identifier p and
actual parameters \vec{z}. We presuppose that for each procedure call $p(z_1 \ldots z_m)$ there exists a unique (possibly recursive) procedure definition of the form $p(x_1 \ldots x_m) \overset{\text{def}}{=} P$ where $fv(P) \subseteq \{x_1, \ldots, x_m\}$. Furthermore we require recursion to be guarded, i.e., each procedure call within P must occur within an ask process. The behavior of $p(z_1 \ldots z_m)$ is that of $P[z_1 \ldots z_m/x_1 \ldots x_m]$, i.e., P with each x_i replaced with z_i (applying α-conversion to avoid clashes). We shall use D to denote the set of all procedure definitions.

Although we have not yet defined the semantics of processes, we find it instructive to illustrate the above operators with the following example. Recall that we shall use \mathcal{S} in Example 2.1.3 as the underlying constraint system in all examples.

Example 2.1.4 Consider the following (family of) process definitions.

\[
up_n(x) \overset{\text{def}}{=} \exists y (\text{tell}(y = n) \mid \text{ask}(y = n) \to up(x, y))
\]

\[
up(x, y) \overset{\text{def}}{=} \exists y' (\text{tell}(y < x \land \text{succ}^2(y, y')) \mid \text{ask}(y < x \land \text{succ}^2(y, y')) \to up(x, y'))
\]

Intuitively, $up_n(x)$, where n is a natural number, specifies that x should be greater than any natural number (i.e., $x = \infty$ since $x \in \omega + 1$) by telling (adding to the global store) the constraints $y_{i+1} = y_i + 2$ and $y_i < x$ for some y_0, y_1, \ldots with $y_0 = n$. The process $up_0(x) \mid \text{ask}(42 < x) \to \text{tell}(z = 0)$ can set $z = 0$ when it infers from the global store that $42 < x$. (This inference is only possible after the 22nd call to up.) □

2.1.3 Reduction Semantics

To describe the evolution of processes, we extend the syntax by introducing a process stop representing successful termination, and a process $\exists^e x P$ representing the evolution of a process of the form $\exists x P$, where e is the local information (local store) produced during this evolution. The process $\exists x P$ can be seen as a particular case of $\exists^e x P$: it represents the situation in which the local store is empty. Namely, $\exists x P = \exists^\text{true} x P$.
A configuration is a pair \((P, d) \) representing the state of a system; \(d \) is a constraint representing the global store, and \(P \) is a process in the extended syntax. We use \(\text{Conf} \) with typical elements \(\gamma, \gamma', \ldots \) to denote the set of configurations. The operational model of ccp can be described formally in the SOS style by means of the relation between configurations \(\rightarrow \subseteq \text{Conf} \times \text{Conf} \) defined in Table 2.1.

Rules R1-R3 and R5 are easily seen to realize the above process intuitions. Rule R4 is somewhat more involved. Intuitively, \(\exists_x P \) behaves like \(P \), except that the variable \(x \) possibly present in \(P \) must be considered local, and that the information present in \(e \) has to be taken into account. It is convenient to distinguish between the external and the internal points of view. From the internal point of view, the variable \(x \), possibly occurring in the global store \(d \), is hidden.

This corresponds to the usual scoping rules: the \(x \) in \(d \) is \textit{global}, hence “covered” by the local \(x \). Therefore, \(P \) has no access to the information on \(x \) in \(d \), and this is achieved by filtering \(d \) with \(\exists_x \). Furthermore, \(P \) can use the information (which may also concern the local \(x \)) that has been produced locally and accumulated in \(e \). In conclusion, if the visible store at the external level is \(d' \) then the store that is visible internally by \(P \) is \(e \sqcup \exists_x d \). Now, if \(P \) is able to make a step, thus reducing to \(P' \) and transforming the local store into \(e' \), what we see from the external point of view is that the process is transformed into \(\exists_x P' \), and that the information \(\exists_x e \) present in the global store is transformed into \(\exists_x e' \). To show how this works we show an instructive example.

\footnote{Operationally \(\exists_x P \) can only derive from a ccp process of the form \(\exists_x P'' \), which has produced the local information \(e \) while evolving into \(\exists_x P \). This local information is externally seen as \(\exists_x e \), that is, \(\exists_x e \subseteq d \).}
Table 2.1: Reduction Semantics for CCP

Example 2.1.5 We exhibit below the reduction of $P = \exists e (\text{ask} (y > 1) \rightarrow Q)$ where the local store is $e = x < 1$, and the global store $d' = d \sqcup \alpha$ with $d = y > x$, $\alpha = x > 1$.

\[
\begin{align*}
(y > 1) & \subseteq e \sqcup \exists x d' \\
\langle \text{ask} (y > 1) \rightarrow Q, e \sqcup \exists x d' \rangle & \rightarrow \langle Q, e \sqcup \exists x d' \rangle \\
\langle P, d' \rangle & \rightarrow \langle \exists x Q, d' \sqcup \exists x e \rangle
\end{align*}
\]

Note that the x in d' is hidden, by using existential quantification in the reduc-
tion obtained by Rule R2. This expresses that the \(x \) in \(d' \) is different from the one bound by the local process. Otherwise an inconsistency would be generated (i.e., \((e \sqcup d') = false\)). Rule R2 applies since \((y > 1) \subseteq e \sqcup \exists x d'\). Note that the free \(x \) in \(e \sqcup \exists x d' \) is hidden in the global store to indicate that is different from the global \(x \). □

2.1.4 Observational Equivalence

The notion of fairness is central to the definition of observational equivalence for ccp. To define fair computations, we introduce the notions of enabled and active processes, following [FGMP97]. Observe that any transition is generated either by a process \(\text{tell}(c) \) or by a process \(\text{ask}(c) \rightarrow Q \). We say that a process \(P \) is active in a transition \(t = \gamma \rightarrow \gamma' \) if it generates such transition; i.e., if there exists a derivation of \(t \) where R1 or R2 are used to produce a transition of the form \(\langle P, d \rangle \rightarrow \gamma'' \). Moreover, we say that a process \(P \) is enabled in a configuration \(\gamma \) if there exists \(\gamma' \) such that \(P \) is active in \(\gamma \rightarrow \gamma' \).

Definition 2.1.3 A computation \(\gamma_0 \rightarrow \gamma_1 \rightarrow \gamma_2 \rightarrow \ldots \) is said to be fair if for each process enabled in some \(\gamma_i \) there exists \(j \geq i \) such that the process is active in \(\gamma_j \).

Note that a finite fair computation is guaranteed to be maximal, namely no outgoing transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a process for a given initial store. The result of a computation is defined as the least upper bound of all the stores occurring in the computation, which, due to the monotonic properties of ccp, form an increasing chain. More formally,

Definition 2.1.4 Given a finite or infinite computation \(\xi \) of the form \(\langle Q_0, d_0 \rangle \rightarrow \langle Q_1, d_1 \rangle \rightarrow \langle Q_2, d_2 \rangle \rightarrow \ldots \) the result of \(\xi \) is the constraint \(\sqcup_i d_i \) and is denoted as \(\text{Result}(\xi) \).

Note that for a finite computation the result coincides with the store of the last configuration.

The following theorem states that all the fair computations of a configuration have the same result (due to fact that summation-free ccp is confluent).
Theorem 2.1.1 (from [SRP91]) Let γ be a configuration and let ξ_1 and ξ_2 be two computations of γ. If ξ_1 and ξ_2 are fair, then $\text{Result}(\xi_1) = \text{Result}(\xi_2)$.

This allows us to set $\text{Result}(\gamma) \overset{\text{def}}{=} \text{Result}(\xi)$ for any fair computation ξ of γ.

Definition 2.1.5 (Observational equivalence) Let $\mathcal{O} : \text{Proc} \to \text{Con} \to \text{Con}$ be given by $\mathcal{O}(P)(d) = \text{Result}((P, d))$. We say that P and Q are observational equivalent, written $P \sim_o Q$ if $\mathcal{O}(P) = \mathcal{O}(Q)$.

Example 2.1.6 Consider the processes $P = up_0(x) \mid up_1(y)$ and $Q = \exists z(tell(z = 0) \mid ask(z = 0) \rightarrow fairup(x, y, z))$ with up_0 and up_1 as in Example 2.1.4 and $fairup(x, y, z) \overset{\text{def}}{=} \exists z'(tell(z < x \land succ(z, z')) \mid ask((z < x) \land succ(z, z')) \rightarrow fairup(y, x, z'))$.

Let $s(\gamma)$ denote the store in the configuration γ. For every infinite computation $\xi : \langle P, true \rangle = \gamma_0 \rightarrow \gamma_1 \rightarrow \ldots$ with $1 < y \not\subseteq s(\gamma_i)$ for each $i \geq 0$, ξ is not fair and $\text{Result}(\xi) = (x = \infty)$. In contrast, every infinite computation $\xi : \langle Q, true \rangle = \gamma_0 \rightarrow \gamma_1 \rightarrow \ldots$ is fair and $\text{Result}(\xi) = (x = \infty \land y = \infty)$. Nevertheless, under our fair observations, P and Q are indistinguishable (the results of their fair computations are the same), i.e., $\mathcal{O}(P) = \mathcal{O}(Q)$. □

2.2 Saturated Bisimilarity for CCP

We introduce a notion of bisimilarity in terms of reductions and barbs and we prove that this equivalence is fully abstract w.r.t. observational equivalence.

2.2.1 Saturated Barbed Bisimilarity

Barbed equivalences have been introduced in [MS92a] for CCS, and have become the standard behavioural equivalences for formalisms equipped with unlabeled reduction semantics. Intuitively, barbs are basic observations (predicates) on the states of a system.
The choice of the “right” barbs is a crucial step in the barbed approach, and it is usually not a trivial task. For example, in synchronous languages like CCS or π-calculus both the inputs and the outputs are considered as barbs (see e.g. [MS92a, Mil99]), while in the asynchronous variants only the outputs (see e.g. [ACS96]). Even several works (e.g. [RSS07, HY95]) have proposed abstract criteria for defining “good” barbs.

We shall take as barbs all the finite constraints in \(\text{Con}_0 \). This choice allows us to introduce a barbed equivalence (Definition 2.2.3) that coincides with the standard observational equivalence (Definition 2.1.5). It is worth to note that in \(\sim_o \) the observables are all the constraints in \(\text{Con} \) and not just the finite ones.

We say that \(\gamma = (P, d) \) satisfies the barb \(c \), written \(\gamma \downarrow_c \), if \(c \sqsubseteq d \); \(\gamma \) weakly satisfies the barb \(c \), written \(\gamma \downarroww_c \), if \(\gamma \xrightarrow{\ast} \gamma' \) and \(\gamma' \downarrow_c \). As usual, \(\xrightarrow{\ast} \) denotes the reflexive and transitive closure of \(\xrightarrow{\cdot} \).

Definition 2.2.1 (Barbed bisimilarity) A barbed bisimulation is a symmetric relation \(R \) on configurations such that whenever \((\gamma_1, \gamma_2) \in R \):

(i) if \(\gamma_1 \downarrow_c \) then \(\gamma_2 \downarrow_c \),
(ii) if \(\gamma_1 \xrightarrow{\cdot} \gamma'_1 \) then there exists \(\gamma'_2 \) such that \(\gamma_2 \xrightarrow{\cdot} \gamma'_2 \) and \((\gamma'_1, \gamma'_2) \in R \).

We say that \(\gamma_1 \) and \(\gamma_2 \) are barbed bisimilar, written \(\gamma_1 \sim_b \gamma_2 \), if there exists a barbed bisimulation \(R \) s.t. \((\gamma_1, \gamma_2) \in R \). We write \(P \sim_b Q \) if \((P, \text{true}) \sim_b (Q, \text{true}) \).

Congruence characterization. One can verify that \(\sim_b \) is an equivalence. However, it is not a congruence, i.e., it is not preserved under arbitrary contexts. A context \(C \) is a term with a hole \([-]\) s.t. replacing it with a process \(P \) yields a process term \(C[P] \), e.g., \(C = \text{tell}(e) | [-] \) and \(C[\text{tell}(d)] = \text{tell}(e) | \text{tell}(d) \).

Example 2.2.1 Let us consider the context \(C = \text{tell}(a) | [-] \) and the processes \(P = \text{ask} (b) \rightarrow \text{tell}(d) \) and \(Q = \text{ask} (c) \rightarrow \text{tell}(d) \) with \(a, b, c, d \neq \text{true}, b \sqsubseteq a \) and \(c \not\sqsubseteq a \). We have \((P, \text{true}) \sim_b (Q, \text{true}) \) because both configurations cannot move and they only satisfy the barb \(\text{true} \). But \((C[P], \text{true}) \not\sim_b (C[Q], \text{true}) \), because the former can perform three transitions (in sequence), while the latter only one. □
2.2. SATURATED BISIMILARITY FOR CCP

An elegant solution to modify bisimilarity for obtaining a congruence has been introduced in [MS92b] for the case of weak bisimilarity in CCS. This work has inspired the introduction of saturated bisimilarity [BKM06] (and its extension to the barbed approach [BGM09]). The basic idea is simple: saturated bisimulations are closed w.r.t. all the possible contexts of the language. In the case of ccp, it is enough to require that bisimulations are upward closed as in condition (iii) below.

Definition 2.2.2 (Saturated barbed bisimilarity) A saturated barbed bisimulation is a symmetric relation R on configurations such that whenever $(\gamma_1, \gamma_2) \in R$ with $\gamma_1 = \langle P, d \rangle$ and $\gamma_2 = \langle Q, e \rangle$:

(i) if $\gamma_1 \Downarrow_c$ then $\gamma_2 \Downarrow_c$.

(ii) if $\gamma_1 \rightarrow \gamma'_1$ then there exists γ'_2 such that $\gamma_2 \rightarrow \gamma'_2$ and $(\gamma'_1, \gamma'_2) \in R$.

(iii) for every $a \in \text{Con}_0$, $(\langle P, d \sqcup a \rangle, \langle Q, e \sqcup a \rangle) \in R$.

We say that γ_1 and γ_2 are saturated barbed bisimilar, written $\gamma_1 \sim_{sb} \gamma_2$, if there exists a saturated barbed bisimulation R s.t. $(\gamma_1, \gamma_2) \in R$. We write $P \sim_{sb} Q$ if $\langle P, \text{true} \rangle \sim_{sb} \langle Q, \text{true} \rangle$.

The weak notion of the aforementioned definition uses \Downarrow_c and \rightarrow^* instead of \Downarrow_c and \rightarrow respectively.

Definition 2.2.3 (Weak saturated barbed bisimilarity) A weak saturated barbed bisimulation is a symmetric relation R on configurations such that whenever $(\gamma_1, \gamma_2) \in R$ with $\gamma_1 = \langle P, d \rangle$ and $\gamma_2 = \langle Q, e \rangle$:

(i) if $\gamma_1 \Downarrow_c$ then $\gamma_2 \Downarrow_c$.

(ii) if $\gamma_1 \rightarrow^* \gamma'_1$ then there exists γ'_2 such that $\gamma_2 \rightarrow^* \gamma'_2$ and $(\gamma'_1, \gamma'_2) \in R$.

(iii) for every $a \in \text{Con}_0$, $(\langle P, d \sqcup a \rangle, \langle Q, e \sqcup a \rangle) \in R$.

We say that γ_1 and γ_2 are weak saturated barbed bisimilar, written $\gamma_1 \approx_{sb} \gamma_2$, if there exists a weak saturated barbed bisimulation R s.t. $(\gamma_1, \gamma_2) \in R$. We write $P \approx_{sb} Q$ if $\langle P, \text{true} \rangle \approx_{sb} \langle Q, \text{true} \rangle$.

2.2. SATURATED BISIMILARITY FOR CCP

Since \approx_{sb} is itself a saturated barbed bisimulation, it is obvious that it is upward closed. This fact also guarantees that it is a congruence w.r.t. all the contexts of ccp: a context C can modify the behavior of a configuration γ only by adding constraints to its store. The same holds for \approx_{sb} in the summation-free fragment.

2.2.2 Correspondence with Observational Equivalence

We now show that \approx_{sb} coincides with the observational equivalence \sim_o. This is remarkable since \approx_{sb} avoids complex concepts such as fairness and infinite elements used in the definition of \sim_o. Furthermore, from [SRP91] it follows that \approx_{sb} coincides with the standard denotational semantics for ccp.

First, we recall some basic facts from domain theory that are central to our proof. Two (possibly infinite) chains $d_0 \sqsubseteq d_1 \sqsubseteq \cdots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \cdots \sqsubseteq e_n \sqsubseteq \ldots$ are said to be cofinal if for all d_i there exists an e_j such that $d_i \sqsubseteq e_j$ and, vice versa, for all e_i there exists a d_j such that $e_i \sqsubseteq d_j$.

Lemma 2.2.1 Let $D = d_0 \sqsubseteq d_1 \sqsubseteq \cdots \sqsubseteq d_n \sqsubseteq \ldots$ and $E = e_0 \sqsubseteq e_1 \sqsubseteq \cdots \sqsubseteq e_n \sqsubseteq \ldots$ be two chains. (1) If they are cofinal, then they have the same limit, i.e., $\bigsqcup D = \bigsqcup E$. (2) If the elements of the chains are finite and $\bigsqcup D = \bigsqcup E$, then the two chains are cofinal.

Proof Recall that D and E are cofinal if for every d_i there exists e_j such that $d_i \sqsubseteq e_j$ and for every e_i there exists d_j such that $e_i \sqsubseteq d_j$.

1. For each $d_i \in D$, there exists $e_{k_i} \in E$ such that $d_i \sqsubseteq e_{k_i}$. Define $f_l = \bigsqcup_{i=0}^l e_{k_i}$. Then for all l, $d_l \sqsubseteq f_l$ and $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \ldots$. So the chain d_0, d_1, d_2, \ldots is dominated by the chain f_0, f_1, f_2, \ldots and therefore $\bigsqcup D \sqsubseteq \bigsqcup_{i \in \mathbb{N}} f_i$. However $\bigsqcup_{i \in \mathbb{N}} f_i = \bigsqcup_{i \in \mathbb{N}} e_{k_i} = \bigsqcup E$, proving that $\bigsqcup D \sqsubseteq \bigsqcup E$. But we can prove in exactly the same way that $\bigsqcup E \sqsubseteq \bigsqcup D$, so we have that $\bigsqcup D = \bigsqcup E$.

2. If $\bigsqcup D = \bigsqcup E$ then for arbitrary d_i, since $d_i \sqsubseteq \bigsqcup D$, $d_i \sqsubseteq \bigsqcup E$, and since d_i is finite, by definition there must be e_j such that $d_i \sqsubseteq e_j$. The same reasoning can be used to prove that for every e_i, there exists d_j with $e_i \sqsubseteq d_j$. Therefore D and E are cofinal.
Lemma 2.2.2 Let \(\langle P_0, d_0 \rangle \rightarrow \langle P_1, d_1 \rangle \rightarrow \ldots \rightarrow \langle P_n, d_n \rangle \rightarrow \ldots \) be a (possibly infinite) fair computation. If \(\langle P_0, d_0 \rangle \Downarrow_c \) then there exist a store \(d_i \) (in the above computation) such that \(c \sqsubseteq d_i \).

Proof If \(\langle P_0, d_0 \rangle \Downarrow_c \), then \(\langle P_0, d_0 \rangle \rightarrow^* \langle P', d' \rangle \) with \(c \sqsubseteq d' \) (by definition of barb). If \(\langle P', d' \rangle \) belongs to the above computation (i.e., there exists an \(i \) such that \(P_i = P' \) and \(d_i = d' \)) then the result follows immediately. If \(\langle P', d' \rangle \) does not belong to the computation, it holds that there exists \(\langle P_i, d_i \rangle \) (in the computation above) such that \(\langle P', d' \rangle \rightarrow^* \langle P_i, d_i \rangle \), because (summation-free) ccp is confluent and the computation is fair. Since the store is preserved, \(d' \sqsubseteq d_i \) and then \(c \sqsubseteq d_i \).

Theorem 2.2.1 \(P \sim_o Q \) if and only if \(P \approx_{sb} Q \).

Proof The proof proceeds as follows:

- From \(\approx_{sb} \) to \(\sim_o \). Suppose that \(\langle P, true \rangle \approx_{sb} \langle Q, true \rangle \) and take a finite input \(b \in Con_{0} \). Let

 \[
 \begin{align*}
 \langle P, b \rangle & \rightarrow \langle P_0, d_0 \rangle \rightarrow \langle P_1, d_1 \rangle \rightarrow \ldots \rightarrow \langle P_n, d_n \rangle \rightarrow \ldots \\
 \langle Q, b \rangle & \rightarrow \langle Q_0, e_0 \rangle \rightarrow \langle Q_1, e_1 \rangle \rightarrow \ldots \rightarrow \langle Q_n, e_n \rangle \rightarrow \ldots
 \end{align*}
 \]

 be two fair computations. Since \(\approx_{sb} \) is upward closed, \(\langle P, b \rangle \approx_{sb} \langle Q, b \rangle \) and thus, for all \(d_i, \langle Q, b \rangle \Downarrow_{d_i} \). By Lemma 2.2.2, it follows that there exists an \(e_j \) (in the above computation) such that \(d_i \sqsubseteq e_j \). Analogously, for all \(e_i \) there exists a \(d_j \) such that \(e_i \sqsubseteq d_j \). Then the two chains are cofinal and by Lemma 2.2.1, it holds that \(\bigcup d_i = \bigcup e_i \), that means \(O(P)(b) = O(Q)(b) \).

- From \(\sim_o \) to \(\approx_{sb} \). Suppose that \(P \sim_o Q \). We first show that for all \(b \in Con_{0} \), \(\langle P, b \rangle \) and \(\langle Q, b \rangle \) satisfy the same weak barbs. Let

 \[
 \begin{align*}
 \langle P, b \rangle & \rightarrow \langle P_0, d_0 \rangle \rightarrow \langle P_1, d_1 \rangle \rightarrow \ldots \rightarrow \langle P_n, d_n \rangle \rightarrow \ldots \\
 \langle Q, b \rangle & \rightarrow \langle Q_0, e_0 \rangle \rightarrow \langle Q_1, e_1 \rangle \rightarrow \ldots \rightarrow \langle Q_n, e_n \rangle \rightarrow \ldots
 \end{align*}
 \]

 be two (possibly infinite) fair computations. Since \(P \sim_o Q \), then \(\bigcup d_i = \bigcup e_i \). Since all the stores of computations are finite constraints, then by
Lemma 2.2.1, it holds that for all \(d \) there exists an \(e \) such that \(d \sqsubseteq e \).

Now suppose that \(\langle P, b \rangle \Downarrow c \). By Lemma 2.2.2, it holds that there exists a \(d \) (in the above computation) such that \(c \sqsubseteq d \). Thus \(c \sqsubseteq d \sqsubseteq e \) that means \(\langle Q, b \rangle \Downarrow c \).

With this observation it is easy to prove that

\[R = \{ (\gamma_1, \gamma_2) \mid \exists b \text{ s.t. } \langle P, b \rangle \rightarrow^{*} \gamma_1, \langle Q, b \rangle \rightarrow^{*} \gamma_2 \} \]

is a weak saturated barbed bisimulation (Definition 2.2.3). Take \((\gamma_1, \gamma_2) \in R \).

If \(\gamma_1 \Downarrow c \) then \(\langle P, b \rangle \Downarrow c \) and, by the above observation, \(\langle Q, b \rangle \Downarrow c \). Since ccp is confluent, also \(\gamma_2 \Downarrow c \).

The fact that \(R \) is closed under \(\rightarrow^{*} \) is evident from the definition of \(R \). While for proving that \(R \) is upward-closed take \(\gamma_1 = \langle P', d' \rangle \) and \(\gamma_2 = \langle Q', e' \rangle \). It is easy to see that for all \(a \in \text{Con}_0 \), \(\langle P, b \uplus a \rangle \rightarrow^{*} \langle P', d' \uplus a \rangle \) and \(\langle Q, b \uplus a \rangle \rightarrow^{*} \langle Q', e' \uplus a \rangle \). Thus, by definition of \(R \), \((\langle P', d' \uplus a \rangle, \langle Q', e' \uplus a \rangle) \in R \).

2.3 Labeled Semantics

Although \(\approx_{sb} \) is fully abstract, it is at some extent unsatisfactory because of the upward-closure (namely, the quantification over all possible \(a \in \text{Con}_0 \) in condition (iii)) of Definition 2.2.2. We shall deal with this by refining the notion of transition by adding to it a label that carries additional information about the constraints that cause the reduction.

Labeled Transitions. Intuitively, we will use transitions of the form

\[\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle \]

where label \(\alpha \) represents a minimal information (from the environment) that needs to be added to the store \(d \) to evolve from \(\langle P, d \rangle \) into \(\langle P', d' \rangle \), i.e., \(\langle P, d \uplus \alpha \rangle \rightarrow \langle P', d' \rangle \). From a more abstract perspective, our labeled semantic accords with the
proposal of [Sew98, LM00] of looking at “labels as the minimal contexts allowing a reduction”. In our setting we take as contexts only the constraints that can be added to the store.
2.3. LABELED SEMANTICS

The rules. The labeled transition $\xrightarrow{\alpha} \subseteq \text{Conf} \times \text{Con}_0 \times \text{Conf}$ is defined by the rules in Table 2.2. We shall only explain rules LR2 and LR4 as the other rules.

Table 2.2: Labeled Transitions.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR1</td>
<td>$\langle \text{tell}(c), d \rangle \xrightarrow{\text{true}} \langle \text{stop}, d \sqcup c \rangle$</td>
</tr>
<tr>
<td>LR2</td>
<td>$\alpha \in \min{a \in \text{Con}_0 \mid c \sqsubseteq d \sqcup a}$ [\langle \text{ask}(c) \rightarrow P, d \rangle \xrightarrow{\alpha} \langle P, d \sqcup \alpha \rangle]</td>
</tr>
<tr>
<td>LR3 (a)</td>
<td>$\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle$ [\langle P \mid Q, d \rangle \xrightarrow{\alpha} \langle P' \mid Q, d' \rangle]</td>
</tr>
<tr>
<td>LR3 (b)</td>
<td>$\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle$ [\langle Q \mid P, d \rangle \xrightarrow{\alpha} \langle Q \mid P', d' \rangle]</td>
</tr>
<tr>
<td>LR4</td>
<td>$\langle \exists_{z} P, d \rangle \xrightarrow{\alpha} \langle \exists_{x} e'[x/z] P'[x/z], \exists_{x}(e'[x/z]) \sqcup d \sqcup \alpha \rangle$ [\langle P[z/x], e[z/x] \sqcup d \rangle \xrightarrow{\alpha} \langle P', e' \sqcup d \sqcup \alpha \rangle] [x \not\in \text{fv}(e'), z \not\in \text{fv}(P) \cup \text{fv}(e \sqcup d \sqcup \alpha)]</td>
</tr>
<tr>
<td>LR5</td>
<td>$\langle P[\vec{z}/\vec{x}], d \rangle \xrightarrow{\alpha} \gamma' \quad \langle p(\vec{z}), d \rangle \xrightarrow{\alpha} \gamma'$ [\text{where } p(\vec{x}) \overset{\text{def}}{=} P \text{ is a process definition in } D]</td>
</tr>
</tbody>
</table>
are easily seen to realize the above intuition and follow closely the corresponding ones in Table 2.1.

The rule LR2 says that \(\langle \text{ask} (c) \rightarrow P, d \rangle \) can evolve to \(\langle P, d \sqcup \alpha \rangle \) if the environment provides a minimal constraint \(\alpha \) that added to the store \(d \) entails \(c \), i.e., \(\alpha \in \min \{ a \in \text{Con}_0 \mid c \sqsubseteq d \sqcup a \} \). Note that assuming that \((\text{Con}, \sqsubseteq)\) is well-founded (Sec. 2.1.1) is necessary to guarantee that \(\alpha \) exists whenever \(\{ a \in \text{Con}_0 \mid c \sqsubseteq d \sqcup a \} \) is not empty.

To give an intuition about LR4, it may be convenient to first explain why a naive adaptation of the analogous reduction rule R4 in Table 2.1 would not work. One may be tempted to define the rule for the local case, by analogy to the labeled local rules in other process calculi (e.g., the \(\pi \)-calculus) and R4, as follows:

\[
(*) \quad \langle P, e \sqcup \exists_x d \rangle \xrightarrow{\alpha} \langle Q, e' \sqcup \exists_x d \rangle \\
\langle \exists^x P, d \rangle \xrightarrow{\alpha} \langle \exists^x Q, d \sqcup \exists e' \rangle
\]

where \(x \notin \text{fv}(\alpha) \)

This rule however is not “complete” (in the sense of Lemma 2.3.2 below) as it does not derive all the transitions we wish to have.

Example 2.3.1 Let \(P \) as in Example 2.1.5, i.e., \(P = \exists^x (\text{ask} (y > 1) \rightarrow Q) \) and \(d = y > x \). Note that \(\alpha = x > 1 \) is a minimal constraint that added to \(d \) enables a reduction from \(P \). In Example 2.1.5 we obtained the transition: \(\langle P, d \sqcup \alpha \rangle \rightarrow \langle \exists^x < Q, d \sqcup \exists (x < 1) \rangle \) Thus, we would like to have a transition from \(\langle P, d \rangle \) labeled with \(\alpha \). But such a transition cannot be derived with Rule (*) above since \(x \in \text{fv}(\alpha) \).

Now, besides the side condition, another related problem with Rule (*) arises from the existential quantification \(\exists_x d \) in the antecedent transition \(\langle P, e \sqcup \exists_x d \rangle \xrightarrow{\alpha} \langle Q, e' \sqcup \exists_x d \rangle \). This quantification hides the effect of \(d \) on \(x \) and thus is not possible to identify the \(x \) in \(\alpha \) with the \(x \) in \(d \). The information from the environment \(\alpha \) needs to be added to the global store \(d \), hence the occurrences of \(x \) in both \(d \) and \(\alpha \) must be identified. Notice that dropping the existential quantification of \(x \) in \(d \) in the antecedent transition does identify the occurrences of \(x \) in \(d \) with those in \(\alpha \) but also with those in the local store \(e \) thus possibly generating variable clashes.
The rule LR4 in Table 2.2 solves the above-mentioned issues by using in the antecedent derivation a fresh variable \(z \) that acts as a substitute for the free occurrences of \(x \) in \(P \) and its local store \(e \). (Recall that \(T[z/x] \) represents \(T \) with \(x \) replaced with \(z \).) This way we identify with \(z \) the free occurrences of \(x \) in \(P \) and \(e \) and avoid clashes with those in \(\alpha \) and \(d \). E.g., for the process defined in the Example 2.3.1 using LR4 (and LR2) one can derive

\[
\langle \text{ask} (y > 1) \rightarrow Q[z/x], z < 1 \sqcup y > x \rangle \xrightarrow{x>1} \langle Q[z/x], z < 1 \sqcup y > x \sqcup x > 1 \rangle
\]

\[
\langle \exists_x^<_1 (\text{ask} (y > 1) \rightarrow Q), y > x \rangle \xrightarrow{z>1} \langle \exists_x^<_1 Q, \exists_x (x < 1) \sqcup y > x \sqcup x > 1 \rangle
\]

The labeled semantics is sound and complete w.r.t. the unlabeled one. Soundness states that \(\langle P,d \rangle \xrightarrow{\alpha} \langle P',d' \rangle \) corresponds to our intuition that if \(\alpha \) is added to \(d \), \(P \) can reach \(\langle P',d' \rangle \). Completeness states that if we add \(a \) to (the store in) \(\langle P,d \rangle \) and reduce to \(\langle P',d' \rangle \), there exists a minimal information \(\alpha \sqsubseteq a \) such that \(\langle P,d \rangle \xrightarrow{\alpha} \langle P',d'' \rangle \) with \(d'' \sqsubseteq d' \).

For technical reasons we shall use an equivalent formulation of Rule R4. In the new rule (R4'), instead of using existential quantification to hide the global \(x \), we rename it to match the renaming used in its corresponding labeled transition rule (LR4).

\[
\text{R4'} \quad \langle P, e \sqcup d[z/x] \rangle \xrightarrow{\exists_x P, d \sqcup \exists_x e} \langle P', e' \sqcup d[z/x] \rangle \quad \text{with } z \notin \text{fv}(P) \cup \text{fv}(e) \cup \text{fv}(d)
\]

We also use an equivalent formulation of LR4, in which we choose not to rename the local \(x \) (with a fresh name \(z \)). Instead, we rename the global one thus we check when the environment is giving information about \(z \) and rename it (therefore \(\alpha[x/z] \)). Notice that in LR4' we do not use renaming on the process but we must rename on the label.
2.3. LABELED SEMANTICS

Lemma 2.3.1 (Soundness). If \(\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle \) then \(\langle P, d \cup \alpha \rangle \rightarrow \langle P', d' \rangle \).

Proof By induction on (the depth) of the inference of \(\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle \) and a case analysis on the last transition rule used.

- Using LR1 then \(P = \text{tell}(c) \) with \(d' = d \cup c \). Now the transition \(\langle P, d \cup \alpha \rangle \rightarrow \langle P', d \cup \alpha \cup c \rangle = \langle P', d' \rangle \) follows from the fact that \(\alpha = \text{true} \) and by applying Rule R1.

- Using LR2 then \(P = \text{ask}(c) \rightarrow P', \alpha \in \min\{a \mid c \subseteq d \cup a\} \) and \(d' = d \cup \alpha \). Now the transition \(\langle P, d \cup \alpha \rangle \rightarrow \langle P', d \cup \alpha \rangle = \langle P', d' \rangle \) follows from the fact that \(c \subseteq d \cup \alpha \) and by applying Rule R2.

- Using LR3 (a) then \(P = Q \mid R \) and \(P' = Q' \mid R \), which leads us to \(\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle \), by a shorter inference. By appeal to induction then \(\langle Q, d \cup \alpha \rangle \rightarrow \langle Q', d' \rangle \). Applying Rule R3(a) to the previous reduction we get \(\langle Q \mid R, d \cup \alpha \rangle \rightarrow \langle Q' \mid R, d' \rangle \).

- Using LR4' then \(P = \exists x Q, P' = \exists x Q', \alpha = \alpha'[x/z] \) and \(d' = d \cup (\exists x e') \cup \alpha'[x/z] \) with \(\langle Q, e \cup d[z/x] \rangle \xrightarrow{\alpha'} \langle Q', e'[z/x] \rangle \) by a shorter inference. By appeal to induction then \(\langle Q, e \cup d[z/x] \cup \alpha' \rangle \rightarrow \langle Q', e'[z/x] \cup \alpha' \rangle \). Note that \(\alpha' = (\alpha'[x/z])[z/x] = \alpha[z/x] \). Thus, the previous transition is equivalent to \(\langle Q, e \cup (d \cup \alpha)[z/x] \rangle \rightarrow \langle Q', e'[z/x] \cup (d \cup \alpha)[z/x] \rangle \). Using this reduction, the transition \(\langle \exists_x Q, d \cup \alpha \rangle \rightarrow \langle \exists_x Q', d \cup (\exists x e') \cup \alpha \rangle \) follows from Rule R4'. Hence \(\langle P, d \cup \alpha \rangle \rightarrow \langle P', d' \rangle \).

Lemma 2.3.2 (Completeness). If \(\langle P, d \cup a \rangle \rightarrow \langle P', d'' \rangle \) then \(\exists \alpha, b \ s.t. \langle P, d \rangle \xrightarrow{\alpha} \langle P', d'' \rangle \) and \(\alpha \cup b = a, d'' \cup b = d' \).

\(^{2}\)Rules LR3 (b) and R3 (b) can be also used instead too.
2.3. LABELED SEMANTICS

Proof The proof proceeds by induction on (the depth) of the inference of \(\langle P, d \sqcup a \rangle \rightarrow \langle P', d' \rangle \) and a case analysis on the last transition Rule used.

- Using the Rule R1. Then \(P = \text{tell}(c) \), \(d' = d \sqcup a \sqcup c \). By Rule LR1 \(\langle P, d \rangle \xrightarrow{\text{true}} \langle P', d \sqcup c \rangle \). Let \(d'' = d \sqcup c \) and \(a = b \). We have that \(a = \alpha \sqcup b \) and that \(d' = d \sqcup a \sqcup c = d \sqcup b \sqcup c = d'' \sqcup b \).

- Using the Rule R2. Then \(P = \text{ask}(c) \rightarrow P' \), \(d' = d \sqcup a \) and \(c \sqsubseteq d \sqcup a \). Note that \(a \in \{a' \in \text{Con}_0 | c \sqsubseteq d \sqcup a' \} \) and then, by Proposition 2.1.1, there exists \(\alpha \in \min \{a' \in \text{Con}_0 | c \sqsubseteq d \sqcup a' \} \) such that \(\alpha \sqsubseteq a \). By Rule LR2, \(\langle P, d \rangle \xrightarrow{\alpha} \langle P', d \sqcup \alpha \rangle \). Let \(d'' = d \sqcup \alpha \) and take \(b = a \). Since \(a = \alpha \sqcup b \) we have that \(a = \alpha \sqcup b \) and \(d'' = d \sqcup b = d \sqcup \alpha \sqcup b = d'' \sqcup b \).

- Using the Rule R3 (a). Then \(P = Q \mid R \), and \(P' = Q' \mid R \), which leads us to \(\langle Q, d \sqcup a \rangle \rightarrow \langle Q', d' \rangle \), by a shorter inference. Note that the active process generating this transition could be either an ask or a tell. Let suppose that the constraint that has been either asked or told is \(c \). If it is generated by an ask then \(d' = d \sqcup a \) and if it comes from a tell \(d' = d \sqcup a \sqcup c \). Thereafter, by inductive hypothesis, we have that there exist \(\alpha \) and \(b \) such that

\[
\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d'' \rangle
\]

s.t. \(a = \alpha \sqcup b \) and \(d'' = d'' \sqcup b \). Now by Rule LR3 (a), we have that

\[
\langle Q \mid R, d \rangle \xrightarrow{\alpha} \langle Q' \mid R, d'' \rangle
\]

- Using the Rule R4'. Then \(P = \exists x Q, P' = \exists x Q' \), and \(d' = d \sqcup a \sqcup \exists x e' \) with \(\langle Q, e \sqcup (d \sqcup a)[z/x] \rangle \rightarrow \langle Q', e' \sqcup (d \sqcup a)[z/x] \rangle \) where \(z \notin \text{fv}(Q) \sqcup \text{fv}(e) \sqcup \text{fv}(d) \sqcup \text{fv}(a) \), by a shorter inference. This transition is equivalent to \(\langle Q, (e \sqcup d[z/x]) \sqcup a[z/x] \rangle \rightarrow \langle Q', (e' \sqcup d[z/x]) \sqcup a[z/x] \rangle \). By induction hypothesis, we have that there exist \(\alpha \) and \(b \) such that

\[
\langle Q, e \sqcup d[z/x] \rangle \xrightarrow{\alpha} \langle Q', d'' \rangle
\]

\(^3\)R3 (b) and LR3 (b) can be also used instead.
with $a[z/x] = \alpha \sqcup b$ and $e' \sqcup d[z/x] \sqcup a[z/x] = d'' \sqcup b$.

Note that the active process generating this transition could be either an ask or a tell. If it is generated by an ask then $d'_1 = d[z/x] \sqcup e \sqcup \alpha$. If it is generated by a tell, then $\alpha = \text{true}$ and $d'_1 = d[z/x] \sqcup e' \sqcup \alpha$. Thus in both cases it is safe to assume that $d''_1 = d[z/x] \sqcup e' \sqcup \alpha$. Now, note that $x \notin \text{fv}(a[z/x]) = \text{fv}(\alpha \sqcup b)$, and thus $x \notin \text{fv}(\alpha) \cup \text{fv}(b)$. By Rule LR4’, we have that

$$\langle \exists^*Q,d \rangle \xrightarrow{a[x/z]} \langle \exists^*Q',d \sqcup \exists_x e' \sqcup \alpha[x/z] \rangle.$$

From $a[z/x] = \alpha \sqcup b$, we have that $(a[z/x])[x/z] = (\alpha \sqcup b)[x/z]$ that is $a = \alpha[x/z] \sqcup b[x/z]$. Now, take $d'' = d \sqcup \exists_x e' \sqcup \alpha[x/z]$. We have that $d'' \sqcup b[x/z] = d \sqcup \exists_x e' \sqcup \alpha[x/z] \sqcup b[x/z]$ that by the previous equivalence is equal to $d \sqcup \exists_x e' \sqcup a$, that is d'. □

Note that Proposition 2.1.1 is needed for the above proof in the case of Rule R2. This is the reason why in Sec. 2.1.1 we have assumed $(\text{Con}, \sqsubseteq)$ to be well-founded.

Corollary 2.3.1 $\langle P, d \rangle \xrightarrow{\text{true}} \langle P', d' \rangle$ if and only if $\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle$.

By virtue of the above, we will write $\xrightarrow{\text{true}}$ to mean $\xrightarrow{\alpha}$.

2.4 Strong and Weak Bisimilarity

Having defined our labeled transitions for ccp, we now proceed to define an equivalence that characterizes \sim_{sb} without the upward closure condition.

When defining bisimilarity over a labeled transition system (LTS), barbs are not usually needed because they can be somehow inferred by the labels of the transitions. For example in CCS, $P \downarrow_a P \xrightarrow{\alpha}$. The case of ccp is different: barbs cannot be removed from the definition of bisimilarity because they cannot be inferred by the transitions. In order to remove barbs from ccp, we could have inserted labels showing the store of processes (as in [SR90]) but this would have betrayed the philosophy of “labels as minimal constraints”. Then, we have to define bisimilarity as follows.
2.4. STRONG AND WEAK BISIMILARITY

Definition 2.4.1 (Syntactic bisimilarity) A syntactic bisimulation is a symmetric relation \(\mathcal{R} \) on configurations such that whenever \((\gamma_1, \gamma_2) \in \mathcal{R}\):

(i) if \(\gamma_1 \Downarrow c \) then \(\gamma_2 \Downarrow c \).

(ii) if \(\gamma_1 \xrightarrow{\alpha} \gamma'_1 \) then \(\exists \gamma'_2 \) such that \(\gamma_2 \xrightarrow{\alpha} \gamma'_2 \) and \((\gamma'_1, \gamma'_2) \in \mathcal{R}\).

We say that \(\gamma_1 \) and \(\gamma_2 \) are syntactically bisimilar, written \(\gamma_1 \sim s \gamma_2 \), if there exists a syntactic bisimulation \(\mathcal{R} \) such that \((\gamma_1, \gamma_2) \in \mathcal{R}\).

We called the above bisimilarity “syntactic”, because it does not take into account the “real meaning” of the labels. This equivalence coincides with the one in \([SR90]\) (apart from the fact that in the latter, barbs are implicitly observed by the transitions) and from a more general point of view can be seen as an instance of bisimilarity in \([LM00]\) (by identifying contexts with constraints). In \([BKM06]\), it is argued that the equivalence in \([LM00]\) is often over-discriminating. This is also the case of ccp, as illustrated in the following.

Example 2.4.1 Let \(P = \text{ask}(x < 5) \rightarrow Q \) and \(Q = \text{tell}(x < 5) \). The configurations \(\gamma_1 = \langle P \mid Q, \text{true} \rangle \) and \(\gamma_2 = \langle Q \mid Q \mid Q, \text{true} \rangle \) are not equivalent according to \(\sim s \). Indeed \(\gamma_1 \xrightarrow{x < 5} \gamma'_1 \), while \(\gamma_2 \) can only perform \(\gamma_2 \xrightarrow{\text{true}} \gamma'_2 \). However \(\gamma_1 \sim_o \gamma_2 \). \(\square \)

To obtain a coarser equivalence (coinciding with \(\sim_{sb} \)), we define the following semi-saturated version.

Definition 2.4.2 (Strong bisimilarity) A strong bisimulation is a symmetric relation \(\mathcal{R} \) on configurations such that whenever \((\gamma_1, \gamma_2) \in \mathcal{R}\) with \(\gamma_1 = \langle P, d \rangle \) and \(\gamma_2 = \langle Q, e \rangle \):

(i) if \(\gamma_1 \Downarrow e \) then \(\gamma_2 \Downarrow e \).

(ii) if \(\gamma_1 \xrightarrow{\alpha} \gamma'_1 \) then \(\exists \gamma'_2 \) s.t. \(\langle Q, e \sqcup \alpha \rangle \rightarrow \gamma'_2 \) and \((\gamma'_1, \gamma'_2) \in \mathcal{R}\).

We say that \(\gamma_1 \) and \(\gamma_2 \) are strongly bisimilar, written \(\gamma_1 \sim s \gamma_2 \), if there exists a strong bisimulation \(\mathcal{R} \) such that \((\gamma_1, \gamma_2) \in \mathcal{R}\).
2.4. STRONG AND WEAK BISIMILARITY

To give some intuition about the above definition, let us recall that in $\langle P, d \rangle \xrightarrow{\alpha} \gamma'$ the label α represents minimal information from the environment that needs to be added to the store d to evolve from $\langle P, d \rangle$ into γ'. We do not require the transitions from $\langle Q, e \rangle$ to match α. Instead (ii) requires something weaker: If α is added to the store e, it should be possible to reduce into some γ'' that is in bisimulation with γ'. This condition is weaker because α may not be a minimal information allowing a transition from $\langle Q, e \rangle$ into a γ'' in the bisimulation, as shown in the previous example.

After the definition of this new notion of strong bisimilarity we can easily find out a bisimulation relation \mathcal{R} in example 2.4.1 fulfilling our new conditions, i.e., \mathcal{R}, a symmetric relation where

$$\mathcal{R} = \{(\langle P \mid Q, \text{true} \rangle, \langle Q \mid Q \mid Q, \text{true} \rangle), (\langle P, x < 5 \rangle, \langle Q \mid Q, x < 5 \rangle), (\langle Q, x < 5 \rangle, \langle Q, x < 5 \rangle), (\langle \text{stop}, x < 5 \rangle, \langle \text{stop}, x < 5 \rangle)\}.$$

![Figure 2.3: Strong Bisimulation for Example 2.4.1](image)

Definition 2.4.3 (Weak bisimilarity) A weak bisimulation is a symmetric relation \mathcal{R} on configurations such that whenever $(\gamma_1, \gamma_2) \in \mathcal{R}$ with $\gamma_1 = \langle P, d \rangle$ and $\gamma_2 = \langle Q, e \rangle$:

(i) if $\gamma_1 \downarrow e$, then $\gamma_2 \downarrow_e$,

(ii) if $\gamma_1 \xrightarrow{\alpha} \gamma'_1$ then $\exists \gamma'_2$ s.t. $\langle Q, e \cup \alpha \rangle \xrightarrow{*} \gamma'_2$ and $(\gamma'_1, \gamma'_2) \in \mathcal{R}$.

2.4. STRONG AND WEAK BISIMILARITY

We say that γ_1 and γ_2 are weakly bisimilar, written $\gamma_1 \approx \gamma_2$, if there exists a weak bisimulation \mathcal{R} such that $(\gamma_1, \gamma_2) \in \mathcal{R}$.

Example 2.4.2 We can show that $\text{tell}(\text{true}) \approx \text{ask}(c) \rightarrow \text{tell}(d)$ when $d \sqsubseteq c$. Intuitively, this corresponds to the fact that the implication $c \Rightarrow d$ is equivalent to true when c entails d. Let us take $\gamma_1 = \langle \text{tell}(\text{true}), \text{true} \rangle$ and $\gamma_2 = \langle \text{ask}(c) \rightarrow \text{tell}(d), \text{true} \rangle$. Their labeled transition systems are the following: $\gamma_1 \overset{\text{true}}{\longrightarrow} \langle \text{stop}, \text{true} \rangle$ and $\gamma_2 \overset{c}{\longrightarrow} \langle \text{tell}(d), c \rangle \overset{\text{true}}{\longrightarrow} \langle \text{stop}, c \rangle$. It is now easy to see that the symmetric closure of the relation \mathcal{R} given below is a weak bisimulation.

$$\mathcal{R} = \{ (\gamma_2, \gamma_1), (\gamma_2, \langle \text{stop}, \text{true} \rangle), (\langle \text{tell}(d), c \rangle, \langle \text{stop}, c \rangle), (\langle \text{stop}, c \rangle, \langle \text{stop}, c \rangle) \}$$

![Figure 2.4: Weak Bisimulation for Example 2.4.2](image)

The following lemmata will lead us to conclude that strong and weak bisimilarity coincide, respectively, with \sim_{sb} and \approx_{sb}. Hence γ_1 and γ_2 in the above example are also in \approx_{sb} (and, by Theorem 2.2.1, also in \sim_o). It is worth noticing that any saturated barbed bisimulation (Definition 2.2.3) relating γ_1 and γ_2 is infinite in dimension, since it has to relate $\langle \text{tell}(\text{true}), a \rangle$ and $\langle \text{ask}(c) \rightarrow \text{tell}(d), a \rangle$ for all constraints $a \in Con_0$. Instead, the relation \mathcal{R} above is finite and it represents (by virtue of the following theorem) a proof also for $\gamma_1 \approx_{sb} \gamma_2$.

We start by showing that strong bisimulation (\sim) is preserved under parallel context.
2.4. STRONG AND WEAK BISIMILARITY

Lemma 2.4.1 If \(\langle P, d \rangle \sim \langle Q, e \rangle \), then \(\forall a \in \text{Con}_0, \langle P, d \uplus a \rangle \sim \langle Q, e \uplus a \rangle \).

Proof Let \(\mathcal{R} = \{ \langle \langle P, d \uplus a \rangle, \langle Q, e \uplus a \rangle \rangle \mid \langle P, d \rangle \sim \langle Q, e \rangle \} \). We show that \(\mathcal{R} \) is a strong bisimulation. We take \(\langle P, d \rangle \sim \langle Q, e \rangle \) s.t. \(\langle P, d \rangle \sim \langle Q, e \rangle \). We then prove that \(\sim \) satisfies the three conditions of Definition 2.2.2.

(i) By hypothesis \(\langle P, d \rangle \sim \langle Q, e \rangle \). Since \(\langle P, d \rangle \downarrow_d \) then \(\langle Q, e \rangle \downarrow_d \), that is, \(d \sqsubseteq e \). For the same reason, \(e \sqsubseteq d \) and thus \(d = e \). So, trivially, \(\langle P, d \uplus a \rangle \) and \(\langle Q, e \uplus a \rangle \) satisfy the same barbs.

(ii) Suppose that \(\langle P, d \uplus a \rangle \xrightarrow{\alpha} \langle P', d' \rangle \). We need to prove that there exist \(Q' \) and \(e' \) such that \(\langle Q, e \uplus a \uplus \alpha \rangle \rightarrow \langle Q', e' \rangle \) and \(\langle P', d' \rangle, \langle Q', e' \rangle \rangle \in \mathcal{R} \).

By Lemma 2.3.1, we have that \(\langle P, d \uplus a \uplus \alpha \rangle \rightarrow \langle P', d' \rangle \). From this, we can obtain a labeled transition of \(\langle P, d \rangle \) by using Lemma 2.3.2: \(\langle P, d \rangle \xrightarrow{\alpha'} \langle P', d'' \rangle \) and there exists \(b' \) such that \((1) \alpha' \sqcup b' = a \uplus \alpha \) and \((2) d'' \sqcup b' = d' \).

From the labeled transition of \(\langle P, d \rangle \) and the hypothesis \(\langle P, d \rangle \sim \langle Q, e \rangle \), we have that \(\langle Q, e \uplus a \uplus \alpha' \rangle \rightarrow \langle Q', e'' \rangle \) (matching the transition) with \(\langle P', d'' \rangle \sim \langle Q, e'' \rangle \). Note that by (1) \(\langle Q, e \uplus a \uplus \alpha \rangle = \langle Q, e' \uplus b' \rangle \) and that \(\langle Q, e \uplus a' \uplus b' \rangle \rightarrow \langle Q, e'' \uplus b' \rangle \), by monotonicity of the store. Finally, by the definition of \(\mathcal{R} \) and (3) we can conclude that \(\langle P', d'' \uplus b' \rangle, \langle Q', e'' \uplus b' \rangle \rangle \in \mathcal{R} \) and, by (2), \(\langle P', d'' \uplus b' \rangle = \langle P', d' \rangle \).

Combining the Lemma above, Soundness (Lemma 2.3.1) and Completeness (Lemma 2.3.2) we can proceed to prove that \(\sim_{sb} = \sim \). We split the two directions of the proof in two lemmas.

Lemma 2.4.2 \(\sim \subseteq \sim_{sb} \)

Proof Let \(\mathcal{R} = \{ \langle \langle P, d \rangle, \langle Q, e \rangle \rangle \mid \langle P, d \rangle \sim \langle Q, e \rangle \} \). We show that \(\mathcal{R} \) is a saturated barbed bisimulation. We take \(\langle \langle P, d \rangle, \langle Q, e \rangle \rangle \rangle \in \mathcal{R} \) and we prove that they satisfy the three conditions of Definition 2.2.2.

(i) Suppose \(\langle P, d \rangle \downarrow_c \). Since \(\langle P, d \rangle \sim \langle Q, e \rangle \) then \(\langle Q, e \rangle \downarrow_c \).

(ii) Suppose that \(\langle P, d \rangle \rightarrow \langle P', d' \rangle \). By Corollary 2.3.1, \(\langle P, d \rangle \xrightarrow{\text{true}} \langle P', d' \rangle \). Since \(\langle P, d \rangle \sim \langle Q, e \rangle \) then \(\langle Q, e \uplus \text{true} \rangle \rightarrow \langle Q', e' \rangle \) with \(\langle P', d' \rangle \sim \langle Q', e' \rangle \). Since \(e = e \uplus \text{true} \) we have \(\langle Q, e \rangle \rightarrow \langle Q', e' \rangle \) and \(\langle \langle P', d' \rangle, \langle Q', e' \rangle \rangle \rangle \in \mathcal{R} \).
(iii) By \((P, d) \sim (Q, e) \) and Lemma 2.4.1 we have that \(\forall c' \in \text{Con}_0, ((P, d \uplus c'), (Q, e \uplus c')) \in R. \square \\

Lemma 2.4.3 \(\sim_{sb} \subseteq \sim \)

Proof Let \(R = \{((P, d), (Q, e)) \text{ s.t. } (P, d) \sim_{sb} (Q, e)\} \). We show that \(R \) is a strong bisimulation. We take \(((P, d), (Q, e)) \in R \) and we prove that they satisfy the two conditions of Definition 2.4.2.

(i) Suppose \((P, d) \downarrow_c \). Since \((P, d) \sim_{sb} (Q, e) \) then \((Q, e) \downarrow_c \).

(ii) Suppose that \((P, d) \xrightarrow{\alpha} (P', d') \). Then by Lemma 2.3.1 \((P, d \uplus \alpha) \rightarrow (P', d') \). Since \((P, d) \sim_{sb} (Q, e) \) then \((Q, e \uplus \alpha) \rightarrow (Q', e') \) with \((P', d') \sim_{sb} (Q', e') \). Then \(((P', d'), (Q', e')) \in R. \square \\

Consequently, as a corollary we have shown that strong bisimilarity coincides with the strong saturated barbed bisimilarity.

Theorem 2.4.1 \(\sim_{sb} = \sim \).

Proof Using Lemma 2.4.2 and Lemma 2.4.3

In order to prove that \(\approx = \approx_{sb} \), we essentially use the same proof-scheme of the strong case \((\sim = \approx_{sb}) \). The main difference concerns two technical lemmata (namely Lemma 2.4.4 and Lemma 2.4.6) stating that weak barbs are preserved by the addition of constraints to the store (this was trivial for the strong case).

Lemma 2.4.4 Given \((P, d) \) and \((Q, e) \) such that \((P, d) \approx (Q, e) \), if \(\forall a \in \text{Con}_0 \) \((P, d \uplus a) \downarrow_c \) then \((Q, e \uplus a) \downarrow_c \).

Proof If \((P, d \uplus a) \downarrow_c \), then \(c \subseteq d \uplus a \). Since \((P, d) \approx (Q, e) \), then there exists a \((Q', e') \) such that \((Q, e) \xrightarrow{*} (Q', e') \) and \(d \subseteq e' \). Moreover \((Q, e \uplus a) \xrightarrow{*} (Q', e' \uplus a) \), because all reductions are preserved by the addition of constraints. Finally \(c \subseteq d \uplus a \subseteq e' \uplus a \), that means \((Q', e' \uplus a) \downarrow_c \), i.e., \((Q, e \uplus a) \downarrow_c \).

With the above lemma, we can use the same technique of Lemma 2.4.1 to prove that \(\approx \) is a congruence.
Lemma 2.4.5 If \(\langle P, d \rangle \approx \langle Q, e \rangle \) then \(\forall a \in \text{Con}_0, \langle P, d \sqcup a \rangle \approx \langle Q, e \sqcup a \rangle \).

Proof We take the relation \(\mathcal{R} = \{ (\langle P, d \sqcup a \rangle, \langle Q, e \sqcup a \rangle) \text{ s.t. } \langle P, d \rangle \approx \langle Q, e \rangle \} \) and we prove that it is a weak bisimulation.

(i) Suppose \(\langle P, d \sqcup a \rangle \downarrow_c \). Since \(\langle P, d \rangle \approx \langle Q, e \rangle \), by Lemma 2.4.4 then \(\langle Q, e \sqcup a \rangle \downarrow_c \).

(ii) Suppose \(\langle P, d \sqcup a \rangle \xrightarrow{\alpha} \langle P', d' \rangle \).

By Lemma 2.3.1 \(\langle P, d \sqcup a \sqcup \alpha \rangle \xrightarrow{} \langle P', d' \rangle \).

By Lemma 2.3.2 \(\langle P, d \rangle \xrightarrow{\beta} \langle P', d'' \rangle \) and there exists \(b \) such that \(\beta \sqcup b = a \sqcup \alpha \) and \(d'' \sqcup b = d' \). Since \(\langle P, d \rangle \approx \langle Q, e \rangle \), then \(\langle Q, e \sqcup \beta \rangle \xrightarrow{} \langle Q', e'' \rangle \) with \(\langle P', d'' \rangle \approx \langle Q', e'' \rangle \). Note that all reductions are preserved when adding constraints to the store, therefore from \(\langle Q, e \sqcup \beta \rangle \xrightarrow{} \langle Q', e'' \rangle \) we can derive that \(\langle Q, e \sqcup \beta \sqcup b \rangle \xrightarrow{} \langle Q', e'' \sqcup b \rangle \). This means that \(\langle Q, e \sqcup a \sqcup \alpha \rangle \xrightarrow{} \langle Q', e'' \sqcup b \rangle \). Now we have \(\langle P', d'' \rangle = \langle P', d'' \sqcup b \rangle \) and \(\langle P', d'' \sqcup b \rangle, \langle Q', e'' \sqcup b \rangle \in \mathcal{R} \), because \(\langle P', d'' \rangle \approx \langle Q', e'' \rangle \).

The following lemma extends Lemma 2.4.4 to the case of weak bars.

Lemma 2.4.6 Given \(\langle P, d \rangle \) and \(\langle Q, e \rangle \) such that \(\langle P, d \rangle \approx \langle Q, e \rangle \), if \(\forall a \in \text{Con}_0 \langle P, d \sqcup a \rangle \downarrow_c \) then \(\langle Q, e \sqcup a \rangle \downarrow_c \).

Proof If \(\langle P, d \sqcup a \rangle \downarrow_c \), then there are two possibilities:

(i) \(\langle P, d \sqcup a \rangle \downarrow_c \). The result follows by Lemma 2.4.4

(ii) \(\langle P, d \sqcup a \rangle \uparrow_c \) and \(\langle P, d \sqcup a \rangle \xrightarrow{} \langle P_1, d_1 \rangle \xrightarrow{} \ast \langle P_n, d_n \rangle \downarrow_c \). From \(\langle P, d \sqcup a \rangle \xrightarrow{} \langle P_1, d_1 \rangle \) and by Lemma 2.3.2 we have \(a = \beta \sqcup b \) such that \(\langle P, d \rangle \xrightarrow{\beta} \langle P_1, d'_1 \rangle \) and \(d'_1 \sqcup b = d_1 \). Since \(\langle P, d \rangle \approx \langle Q, e \rangle \), then \(\langle Q, e \sqcup \beta \rangle \xrightarrow{} \ast \langle Q_1, e'_1 \rangle \) with \(\langle P_1, d'_1 \rangle \approx \langle Q_1, e'_1 \rangle \). By Lemma 2.4.5 \(\langle P_1, d_1 \rangle = \langle P_1, d'_1 \sqcup b \rangle \approx \langle Q_1, e'_1 \sqcup b \rangle \) and thus \(\langle Q_1, e'_1 \sqcup b \rangle \xrightarrow{} \ast \langle Q_n, e_n \rangle \downarrow_c \). By putting all our pieces together, we have \(\langle Q, e \sqcup a \rangle = \langle Q, e \sqcup \beta \sqcup b \rangle \xrightarrow{} \ast \langle Q_1, e'_1 \sqcup b \rangle \xrightarrow{} \ast \langle Q_n, e_n \rangle \downarrow_c \), i.e., \(\langle Q, e \sqcup a \rangle \downarrow_c \).

We have now all the ingredients to prove that \(\approx \approx_{sb} \).
2.4. STRONG AND WEAK BISIMILARITY

Lemma 2.4.7 If $\langle P, d \rangle \approx (Q, e)$, then $\langle P, d \rangle \approx_{sb} (Q, e)$.

Proof We take the relation $R = \{ \langle \langle P, d \rangle, (Q, e) \rangle \mid \langle P, d \rangle \approx (Q, e) \}$ and we prove that R is a weak saturated barbed bisimulation (Definition 2.2.3).

(i) Suppose $\langle P, d \rangle \downarrow_c$. Since $\langle P, d \rangle \approx (Q, e)$ then by Lemma 2.4.6 $\langle Q, e \rangle \downarrow_c$.

(ii) Suppose $\langle P, d \rangle \rightarrow^* \langle P', d' \rangle$. By definition of \rightarrow^*, there exist $\langle P_1, d_1 \rangle, \langle P_2, d_2 \rangle, \ldots, \langle P_n, d_n \rangle$ such that

$\langle P, d \rangle \rightarrow \langle P_1, d_1 \rangle \rightarrow \langle P_2, d_2 \rangle \rightarrow \ldots \rightarrow \langle P_n, d_n \rangle \rightarrow \langle P', d' \rangle$

which means that

$\langle P, d \rangle \rightarrow^* \langle P_1, d_1 \rangle \rightarrow^* \langle P_2, d_2 \rangle \rightarrow^* \ldots \rightarrow^* \langle P_n, d_n \rangle \rightarrow^* \langle P', d' \rangle$.

Now, since $\langle P, d \rangle \approx (Q, e)$, then $\langle Q, e \rangle = \langle Q, e \sqcup \text{true} \rangle \rightarrow^* \langle Q_1, e_1 \rangle$ and $\langle P_1, d_1 \rangle \approx \langle Q_1, e_1 \rangle$. By iterating this reasoning one have that

$\langle Q, e \rangle \rightarrow^* \langle Q_1, e_1 \rangle \rightarrow^* \langle Q_2, e_2 \rangle \rightarrow^* \ldots \rightarrow^* \langle Q_n, e_n \rangle \rightarrow^* \langle Q', e' \rangle$

with $\langle P', d' \rangle \approx \langle Q', e' \rangle$.

Summarizing $\langle Q, e \rangle \rightarrow^* \langle Q', e' \rangle$ and $\langle \langle P', d' \rangle, (Q', e') \rangle \in R$.

(iii) $\forall a \in \text{Con}_0(\langle P, d \sqcup a \rangle, \langle Q, e \sqcup a \rangle) \in R$, by Lemma 2.4.5.

Lemma 2.4.8 If $\langle P, d \rangle \approx_{sb} (Q, e)$ then $\langle P, d \rangle \approx (Q, e)$.

Proof We take the relation $R = \{ \langle \langle P, d \rangle, (Q, e) \rangle \mid \langle P, d \rangle \approx_{sb} (Q, e) \}$ and we prove that it is a weak bisimulation (Definition 2.4.3).

(i) Suppose $\langle P, d \rangle \downarrow_c$. Then $\langle P, d \rangle \downarrow_c$. Since $\langle P, d \rangle \approx_{sb} (Q, e)$, then $\langle Q, e \rangle \downarrow_c$.

(ii) Suppose that $\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle$. By Lemma 2.3.1 $\langle P, d \sqcup \alpha \rangle \rightarrow \langle P', d' \rangle$. By Definition of \rightarrow^*, we can say that $\langle P, d \sqcup \alpha \rangle \rightarrow^* \langle P', d' \rangle$. Since $\langle P, d \rangle \approx_{sb} (Q, e)$ we have $\langle Q, e \sqcup \alpha \rangle \rightarrow^* \langle Q', e' \rangle$ with $\langle P', d' \rangle \approx_{sb} \langle Q', e' \rangle$.

Theorem 2.4.2 $\approx_{sb} = \approx$.

Proof Using Lemma 2.4.7 and Lemma 2.4.8.
2.5 Summary of Contributions and Related Work

In this chapter we provided a labeled transition semantics and a novel notion of labeled bisimilarity for ccp by building upon the work in [SR90, BGM09]. We also establish a strong correspondence with existing ccp notions by providing a fully-abstract characterization of a standard observable behaviour for infinite ccp processes: The limits of fair computations. From [SRP91] this implies a fully-abstract correspondence with the closure operator denotational semantics of ccp. Therefore, this work provides ccp with a new co-inductive proof technique, coherent with the existing ones, for reasoning about process equivalence. Furthermore, our characterization in terms of bisimilarity of the standard observable behaviour of ccp processes avoids complicated notions such as fairness and infinite elements.

In [BKM06, BGM09], it is argued that the standard notion of bisimilarity is often too fine grained and an alternative, coarser, definition of bisimilarity is provided. Intuitively, in the bisimulation game, each move (transition) \(P \xrightarrow{C} P' \), has to be matched it with a move \(C'[Q] \xrightarrow{} Q' \).

The operational semantics of ccp is expressed by reductions between configurations of the form \(\langle P, d \rangle \xrightarrow{e} \langle P', d' \rangle \) meaning that the process \(P \) with store \(d \) may reduce to \(P' \) with store \(d' \). From this semantics we derived a labeled transition system for ccp by exploiting the intuition of [Sew98, LM00]. The transition \(\langle P, d \rangle \xrightarrow{e} \langle P', d' \rangle \) means that \(e \) is a “minimal constraint” (from the environment) that needs to be added to \(d \) to reduce from \(\langle P, d \rangle \) into \(\langle P', d' \rangle \).

Similar ideas were already proposed in [SR90] but the recent developments in [BGM09] enlighten the way for obtaining a fully abstract equivalence. Indeed, the standard notion of bisimilarity defined on our labeled semantics can be seen as an instance of the one proposed in [LM00]. As for the bisimilarity in [SR90], it is too fine grained, i.e., it separates processes which are indistinguishable. Instead, the notion of bisimulation from [BGM09] (instantiated to the case of ccp) is fully abstract with respect to the standard observational equivalence given in [SRP91]. Our work can therefore be also regarded as a compelling application of the theory of reactive systems.
Chapter 3

Partition Refinement for Bisimilarity in CCP

Divide et impera.
– Gaius Julius Caesar.

Right, ok, let’s take out our scissors and refashion this.
– Paris C. Kanellakis.

In the previous chapter we gave an overview of concurrency and present the main insights of ccp, its operational semantics, and standard notion of bisimilarity for this language. Furthermore, we introduced labeled semantics and a new notion of labeled bisimilarity for ccp which is not over discriminative. In this chapter, we implement an algorithm which automatically calculates the well-behaved notion of bisimilarity for ccp presented in Definition 2.4.2 in Section 2.4.

When the state space of a system is finite, the ordinary notion of (strong) bisimilarity can be computed via the well-known partition refinement algorithm, but unfortunately, this algorithm does not work for our new definition of (strong) bisimilarity for ccp. Thus, in this chapter we propose a variation of the partition refinement algorithm for verifying ccp (strong) bisimilarity by borrowing some concepts involved in the Minimization Algorithm for Symbolic Bisimilarity [BM09].
3.1 Background

3.1.1 Partition Refinement

In this section we recall the partition refinement algorithm introduced in \cite{Kozen83} for checking bisimilarity over the states of an LTS. Recall that an LTS can be intuitively seen as a graph where nodes represent states (of a computation) and arcs represent transitions between states. A transition $P \xrightarrow{a} Q$ between P and Q labeled with a can be typically thought of as an evolution from P to Q provided that a condition a is met. Transition systems can be used to represent the evolution of processes in calculi such as CCS and the π-calculus \cite{Mil80, Mil99}. In this case states correspond to processes and transitions are given by the operational semantics of the respective calculus.

Let us now introduce some notation. Given a set S, a partition of S is a set of blocks, i.e., subsets of S, that are all disjoint and whose union is S. We write $\{B_1\} \ldots \{B_n\}$ to denote a partition consisting of non empty blocks B_1, \ldots, B_n. A partition represents an equivalence relation where equivalent elements belong to the same block. We write PPQ to mean that P and Q are equivalent in the partition P.

The partition refinement algorithm (see Algorithm 3.1.1) checks the bisimilarity of a set of initial states IS as follows. First, it computes IS^*, that is the set of all states that are reachable from IS. Then it creates the partition P^0 where all the elements of IS^* belong to the same block (i.e., they are all equivalent). After the initialization, it iteratively refines the partitions by employing the function F, defined as follows: for all partitions P, $P F(P) Q$ if

- if $P \xrightarrow{a} P'$ then exists Q' s.t. $Q \xrightarrow{a} Q'$ and $P' FQ'$.

The algorithm terminates whenever two consecutive partitions are equivalent. In such partition two states belong to the same block iff they are bisimilar.

Note that any iteration splits blocks and never fuses them. For this reason if IS^* is finite, the algorithm terminates in at most $|IS^*|$ iterations.

Proposition 3.1.1 If IS^* is finite, then the algorithm terminates and the resulting partition equates all and only the bisimilar states.
Algorithm 3.1.1 Partition-Refinement (IS)

Initialization

1. IS^* is the set of all processes reachable from IS,
2. $P^0 := \{IS^*\}$,

Iteration $P^{n+1} := F(P^n)$,

Termination If $P^n = P^{n+1}$ then return P^n.

Example 3.1.1 Let us take the following LTS:

According to Algorithm 3.1.1 after the initialization process $IS^* = \{A, B, C, D, E\}$ and the first partition $P^0 = \{A, B, C, D, E\}$. Afterwards, it iteratively refines partitions by employing the function $F(P)$ where the iteration proceeds as follows:
Therefore, the algorithm terminates whenever two consecutive partitions are equivalent, so finally $P^n = \{\{A, B\}, \{C\}, \{D\}, \{E\}\}$.

3.2 Irredundant Bisimilarity

For purposes related to the clarity of examples concerned with the way the modified partition refinement for ccp works (in particular, finding out redundant transitions), from now on we will consider a non-determinist fragment of ccp. (with this operator we can find redundant transitions and at the same time avoid complicated automata made from a parallel composition operator). Therefore we shall take into account the following syntax and reduction and labeled rules for ccp processes in this fragment:

Syntax for non-deterministic ccp. We extend the syntax in Definition 2.1.2 in Section 2.1.2 with the summation process of the form $P + Q$, i.e., the syntax is now given as $P, Q ::= ... | P + Q$

3.2.1 Reduction Semantics for Non-deterministic CCP

We use all rules in Table 2.1 plus the following rules:

$$
\begin{align*}
R6 (a) & : \langle P, d \rangle \rightarrow \langle P', d' \rangle \\
R6 (b) & : \langle P + Q, d \rangle \rightarrow \langle P' + Q, d' \rangle
\end{align*}
$$

3.2.2 Labeled Semantics for Non-deterministic CCP

We recall all rules in Table 2.2 and we add the following rules:
3.2. IRREDUNDANT BISIMILARITY

LR6 (a) \(\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle \)
\(\langle P + Q, d \rangle \xrightarrow{\alpha} \langle P' + Q, d' \rangle \)

LR6 (b) \(\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle \)
\(\langle Q, d \rangle \xrightarrow{\alpha} \langle Q + P', d' \rangle \)

3.2.3 Saturated Bisimilarity in a Non-deterministic CCP Fragment

As said in Section 2.2, an elegant solution to modify bisimilarity for obtaining a congruence consists in saturated bisimilarity (see Definition 2.2.2 in the aforementioned section). The basic idea is simple: saturated bisimulations are closed w.r.t. all the possible contexts of the language. In the case of ccp, it is enough to require that bisimulations are upward closed. Thus, now by introducing a non-deterministic fragment of ccp we can present some new interesting, nicer and much more simpler examples which are important for describing this particular notion in the case of this language. We shall emphasize that there is no standard semantics. In this case, we must also punctuate that the closure operators described in Section 2 only hold for the deterministic fragment of ccp.

Example 3.2.1 Take \(T = \text{tell}(\text{true}) \), \(P = \text{ask}(x < 7) \rightarrow T \) and \(Q = \text{ask}(x < 5) \rightarrow T \). You can see that \(\langle P, true \rangle \not\sim_{sb} \langle Q, true \rangle \), since \(\langle P, x < 7 \rangle \rightarrow \), while \(\langle Q, x < 7 \rangle \not\rightarrow \). Consider now the configuration \(\langle P + Q, true \rangle \) and observe that \(\langle P + Q, true \rangle \sim_{sb} \langle P, true \rangle \). Indeed, for all constraints \(e \) s.t. \(x < 7 \subseteq e \), both configurations evolve into \(\langle T, e \rangle \), while for all \(e \) s.t. \(x < 7 \nsubseteq e \), both configurations cannot proceed. Since \(x < 7 \subseteq x < 5 \), the behaviour of \(Q \) is somehow absorbed by the behaviour of \(P \).

Example 3.2.2 Since \(\sim_{sb} \) is upward closed, \(\langle P + Q, z < 5 \rangle \sim_{sb} \langle P, z < 5 \rangle \) follows immediately by the previous example. Now take \(R = \text{ask}(z < 5) \rightarrow (P + Q) \) and \(S = \text{ask}(z < 7) \rightarrow P \). By analogous arguments of the previous example, one can show that \(\langle R + S, true \rangle \sim_{sb} \langle S, true \rangle \).
Example 3.2.3 Take $T' = \text{tell}(y = 1)$, $Q' = \text{ask}(x < 5) \rightarrow T'$ and $R' = \text{ask}(z < 5) \rightarrow P + Q'$. Observe that $\langle P + Q', z < 5 \rangle \not\sim_{sb} \langle P, z < 5 \rangle$ and that $\langle R' + S, \text{true} \rangle \not\sim_{sb} \langle S, \text{true} \rangle$, since $\langle P + Q', x < 5 \rangle$ and $\langle R' + S, \text{true} \rangle$ can reach a store containing the constraint $y = 1$.

3.2.4 Soundness and Completeness

The labeled semantics can be related to the reduction semantics via the two following lemmata, namely soundness and completeness. The first one deals with the fact that if a process is able to perform an action using some (minimal) information from the environment, then providing such information to the process (in its store) will allow to perform a reduction instead.

Lemma 3.2.1 (Soundness of \rightarrow) If $\langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle$ then $\langle P, c \sqcup \alpha \rangle \rightarrow \langle P', c' \rangle$.

Proof By induction on (the depth) of the inference of $\langle P, d \rangle \xrightarrow{\alpha} \langle P', d' \rangle$. Here we consider just the additional case for the non-deterministic choice and refer the reader to Lemma 2.3.1 in Section 2.3 for further cases.

- Using rule LR6 (a) then $P = Q + R$ and $P' = Q'$ which lead us to $\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle$ by a shorter inference. By appeal to induction then $\langle Q, d \sqcup a \rangle \rightarrow \langle Q', d' \rangle$. Applying Rule R6 (a) to the previous reduction we get $\langle Q + R, d \rangle \rightarrow \langle Q', d' \rangle$.

Now completeness tries to do the opposite, if a process can perform a reduction then the idea is that one could use a piece of the store as a label, and the process should be able to arrive to the same result by means of a labeled transition. In this case, such label might not be exactly the piece of information we took from the store but something smaller, thus the result could also be smaller.

Lemma 3.2.2 (Completeness of \rightarrow) If $\langle P, c \sqcup a \rangle \rightarrow \langle P', c' \rangle$ then there exists α and b s.t. $\langle P, c \rangle \xrightarrow{\alpha} \langle P', c'' \rangle$ where $\alpha \uplus b = a$ and $c'' \sqcup b = c'$.

\[1\text{LR6 (b) and R6 (b) can be used instead.}\]
3.2. IRREDUNDANT BISIMILARITY

Proof The proof proceeds by induction on (the depth) of the inference of $\langle P, d \sqcup a \rangle \rightarrow \langle P', d' \rangle$. As in Lemma 3.2.1 we consider just the case for the non-deterministic choice.

- Using rule R6 (a) then $P = Q + R$ and $P' = Q'$ which lead us to $\langle Q, d \sqcup a \rangle \rightarrow \langle Q', d' \rangle$ by a shorter inference. Note that the active process generating the transition could be either an ask or a tell. Let suppose that the constraint that has been either asked or told is c. If it is generated by an ask then $d' = d \sqcup a$ and if it comes from a tell $d' = d \sqcup a \sqcup c$. Thereafter, by inductive hypothesis, we have that there exist α and b such that

$$\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d'' \rangle$$

$$ast a = \alpha \sqcup b \text{ and } d' = d'' \sqcup b.$$ Now by rule LR6 (a), we have that

$$\langle Q + R, d \rangle \xrightarrow{\alpha} \langle Q' + R, d'' \rangle.$$

3.2.5 Syntactic Bisimilarity and Redundancy

Here, we first consider the notion of Syntactic Bisimilarity (see Definition 2.4.1 in Section 2.4) since it is the obvious adaptation of the ordinary notion of bisimilarity (see [Mil80]) for the labeled semantics in ccp, which itself can be computed via the standard partition refinement algorithm [KS83]. Unfortunately syntactic bisimilarity, as we have already said in Section 2.4 in Chapter 2 is over-discriminating. This definition is too fine-grained because of some redundant transitions. Therefore we then try taking \sim_{sb}. But in this case the main problem for verifying this notion is the quantification over all contexts. This problem is addressed following the abstract approach in [BM09]. More precisely, we use an equivalent notion, namely irredundant bisimilarity \sim_I, which can be verified with the ccp partition refinement. As its name suggests, \sim_I only takes into account those transitions deemed irredundant. However, technically speaking, going from \sim_{sb} to \sim_I requires one intermediate notion, so-called symbolic bisimilarity. These three notions are shown to be equivalent, i.e., $\sim_{sb} = \sim_{sym} = \sim_I$. In

\footnote{Both rules R6 (b) and LR6 (b) can be used instead in this proof}
the following we recall all of them.

Let us first give some auxiliary definitions. The first concept is that of derivation. Consider the following transitions (taken from Figure 3.1):

(a) $\langle P+Q, z < 5 \rangle \xrightarrow{x < 7} \langle T, z < 5 \sqcup x < 7 \rangle$
(b) $\langle P+Q, z < 5 \rangle \xrightarrow{x < 5} \langle T, z < 5 \sqcup x < 5 \rangle$

Transition (a) means that for all constraints e s.t. $x < 7$ is entailed by e (formally $x < 7 \sqsubseteq e$), the transition $\langle P + Q, z < 5 \sqcup e \rangle \rightarrow \langle T, z < 5 \sqcup e \rangle$ can be performed, while transition (b) means that the reduction (c) is possible for all e s.t. $x < 5 \sqsubseteq e$. Since $x < 7 \sqsubseteq x < 5$, transition (b) is “redundant”, in the sense that its meaning is “logically derived” by transition (a).

The following notion captures the above intuition:

Definition 3.2.1 (Derivation) We say that the transition $t = \langle P, c \rangle \xrightarrow{\alpha} \langle P_1, c' \rangle$ derives $t' = \langle P, c \rangle \xrightarrow{\beta} \langle P_1, c'' \rangle$, written $\langle P, c \rangle \xrightarrow{\alpha} \langle P_1, c' \rangle \vdash_D \langle P_1, c'' \rangle$, if there exists e s.t. the following conditions hold:

(i) $\beta = \alpha \sqcup e$
(ii) $c'' = c' \sqcup e$

Figure 3.1 illustrates the LTSs of our running example 3.2.2.
3.2. IRREDUNDANT BSIMILARITY

\[
\begin{align*}
T &= \text{tell}(true) & P &= \text{ask}(x < 7) \rightarrow T \\
T' &= \text{tell}(y = 1) & S &= \text{ask}(z < 7) \rightarrow P \\
Q &= \text{ask}(x < 5) \rightarrow T & R &= \text{ask}(z < 5) \rightarrow (P + Q) \\
Q' &= \text{ask}(x < 5) \rightarrow T' & R' &= \text{ask}(z < 5) \rightarrow (P + Q')
\end{align*}
\]

\[
\begin{align*}
\langle R + S, true \rangle &
\langle S, true \rangle &
\langle R' + S, true \rangle \\
\langle P, z < 5 \rangle &
\langle P + Q, z < 5 \rangle &
\langle P, z < 7 \rangle &
\langle P + Q', z < 5 \rangle \\
x < 7 &
\langle P + Q, z < 5 \rangle &
\langle P, z < 7 \rangle &
\langle P + Q', z < 5 \rangle \\
\langle T, z < 5 \sqcup x < 7 \rangle &
\langle T, z < 5 \sqcup x < 5 \rangle &
\langle T, z < 7 \sqcup x < 7 \rangle &
\langle T', z < 5 \sqcup x < 5 \rangle \\
true &
true &
true &
true \\
\langle \text{stop}, z < 5 \sqcup x < 7 \rangle &
\langle \text{stop}, z < 5 \sqcup x < 5 \rangle &
\langle \text{stop}, z < 7 \sqcup x < 7 \rangle &
\langle \text{stop}, z < 5 \sqcup x < 5 \sqcup y = 1 \rangle
\end{align*}
\]

Figure 3.1: The Labeled Transition System of a Running Example.
3.2. **IRREDUNDANT BISIMILARITY**

\[\mathcal{P}^0 = \{ \langle R' + S, true \rangle, \langle S, true \rangle, \langle R + S, true \rangle \}, \]
\[\{ \langle P + Q', z < 5 \rangle, \langle P + Q, z < 5 \rangle, \langle P, z < 5 \rangle \}, \{ \langle P, z < 7 \rangle \}, \]
\[\{ \langle T', z < 5 \cup x < 5 \rangle, \langle T, z < 5 \cup x < 5 \rangle, \langle stop, z < 5 \cup x < 5 \rangle \}, \]
\[\{ \langle T, z < 7 \cup x < 7 \rangle, \langle stop, z < 7 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 5 \cup y = 1 \rangle \} \]

\[\mathcal{P}^1 = \{ \langle R' + S, true \rangle, \langle S, true \rangle, \langle R + S, true \rangle \}, \]
\[\{ \langle P + Q', z < 5 \rangle, \langle P + Q, z < 5 \rangle, \langle P, z < 5 \rangle \}, \{ \langle P, z < 7 \rangle \}, \]
\[\{ \langle T', z < 5 \cup x < 5 \rangle, \{ \langle T, z < 5 \cup x < 5 \rangle, \{ \langle stop, z < 5 \cup x < 5 \rangle \}, \{ \langle T, z < 7 \cup x < 7 \rangle \}, \{ \langle stop, z < 7 \cup x < 7 \rangle \}, \{ \langle T, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 5 \cup y = 1 \rangle \} \]

\[\mathcal{P}^2 = \{ \langle R' + S, true \rangle, \langle S, true \rangle, \langle R + S, true \rangle \}, \{ \langle P + Q', z < 5 \rangle \}, \]
\[\{ \langle P + Q, z < 5 \rangle, \langle P, z < 5 \rangle \}, \{ \langle P, z < 7 \rangle \}, \{ \langle T', z < 5 \cup x < 5 \rangle \}, \]
\[\{ \langle T, z < 5 \cup x < 5 \rangle, \{ \langle stop, z < 5 \cup x < 5 \rangle \}, \{ \langle T, z < 7 \cup x < 7 \rangle \}, \{ \langle stop, z < 7 \cup x < 7 \rangle \}, \{ \langle T, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 5 \cup y = 1 \rangle \} \]

\[\mathcal{P}^3 = \{ \langle R' + S, true \rangle \}, \{ \langle S, true \rangle, \langle R + S, true \rangle \}, \{ \langle P + Q', z < 5 \rangle \}, \]
\[\{ \langle P + Q, z < 5 \rangle, \langle P, z < 5 \rangle \}, \{ \langle P, z < 7 \rangle \}, \{ \langle T', z < 5 \cup x < 5 \rangle \}, \]
\[\{ \langle T, z < 5 \cup x < 5 \rangle, \{ \langle stop, z < 5 \cup x < 5 \rangle \}, \{ \langle T, z < 7 \cup x < 7 \rangle \}, \{ \langle stop, z < 7 \cup x < 7 \rangle \}, \{ \langle T, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 7 \rangle \}, \{ \langle stop, z < 5 \cup x < 5 \cup y = 1 \rangle \} \]

\[\mathcal{P}^4 = \mathcal{P}^3 \]

Figure 3.2: Partitions Computed by the CCP-Partition-Refinement Algorithm.

One can verify in the above example that (a) \(\vdash_D \) (b), and notice that both
transitions arrive at the same process P': The difference lies in the label and the store. Now imagine the situation where the initial configuration is able to perform another transition with β (as in t'), and let us also assume that such transition arrives at a configuration which is equivalent to the result of t'. Therefore, it is natural to think that, since t derives t', such new transition should also be derivated by t. Let us explain with an example. Consider the two following transitions:

(e) \(<R + S, true> \xrightarrow{z \leq 7} <P, z < 7>\)
(f) \(<R + S, true> \xrightarrow{z \leq 5} <P + Q, z < 5>\)

Note that transition (f) cannot be derived by other transitions, since \((e) \not\models_D (f)\). Indeed, P is syntactically different from $P + Q$, even if they have the same behaviour when inserted in the store $z < 5$, i.e., $\langle P, z < 5 > \sim_{sb} \langle P + Q, z < 5 >$ (since \sim_{sb} is upward closed). Transition (f) is also “redundant”, since its behaviour “does not add anything” to the behavior of (e). The following definition encompasses this situation:

Definition 3.2.2 (Derivation w.r.t R, \vdash_R) We say that the transition $t = \gamma \xrightarrow{\alpha} \gamma_1$ derives $t' = \gamma \xrightarrow{\beta} \gamma_2$ w.r.t. to R (written $t \vdash_R t'$) if there exists γ_2' s.t. $t \vdash_D \gamma \xrightarrow{\beta} \gamma'_2$ and $\gamma'_2 R \gamma_2$.

Then, when R represents some sort of equivalence, this notion will capture the situation above mentioned. Notice that \vdash_D is \vdash_R with R being the identity relation (id). Now we introduce the concept of domination, which consists in strengthening the notion of derivation by requiring labels to be different.

Definition 3.2.3 (Domination \succ_D) We say that the transition $t = \langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle$ dominates $t' = \langle P, c \rangle \xrightarrow{\beta} \langle P', c'' \rangle$ (written $t \succ_D t'$) if $t \vdash_D t'$ and $\alpha \neq \beta$. In other terms: (i) $\beta = \alpha \sqcup e$
(ii) $c'' = c' \sqcup e$
(iii) $\alpha \neq \beta$

Similarly, as we did for derivation, we can define domination depending on a relation. Again, \succ_D is just \succ_R when R is the identity relation (id).

Definition 3.2.4 (Redundancy and Domination w.r.t R, \succ_R) We say that the transition $t = \langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle$ dominates $t' = \langle P, c \rangle \xrightarrow{\beta} \langle Q, d \rangle$ w.r.t. to R (written $t \succ_R t'$) if there exists c'' s.t. $t \succ_D \langle P, c \rangle \xrightarrow{\beta} \langle P', c'' \rangle$ and $\langle P', c'' \rangle R \langle Q, d \rangle$. Also,
3.2. IRREDUNDANT BISIMILARITY

A transition is said to be redundant when it is dominated by another, otherwise it is said to be irredundant.

Definition 3.2.5 We say that a relation $\mathcal{R} \subseteq \text{Conf} \times \text{Conf}$ is closed under the addition of constraints if whenever $\langle P, c \rangle \mathcal{R} \langle Q, d \rangle$ then for all $e \in \text{Con}_0$ we have that $\langle P, c \sqcup e \rangle \mathcal{R} \langle Q, d \sqcup e \rangle$.

In other words, if a pair of configurations belong to the relation, then any pair obtained by adding more information in both stores should also be in the relation. We can now prove that under certain conditions $\vdash_{\mathcal{R}}$ and $\trianglerighteq_{\mathcal{R}}$ are a partial order and a strict partial order respectively.

Proposition 3.2.1 If \mathcal{R} is reflexive and closed under the addition of constraints then $\vdash_{\mathcal{R}}$ is a partial order.

Proof We will proceed by showing that $\vdash_{\mathcal{R}}$ is reflexive, transitive and antisymmetric. Let $t_1 = \langle P, c \rangle \xrightarrow{\alpha_1} \langle P_1, c_1 \rangle$, $t_2 = \langle P, c \rangle \xrightarrow{\alpha_2} \langle P_2, c_2 \rangle$ and $t_3 = \langle P, c \rangle \xrightarrow{\alpha_3} \langle P_3, c_3 \rangle$ be transitions s.t. $t_1 \vdash_{\mathcal{R}} t_2$ and $t_2 \vdash_{\mathcal{R}} t_3$.

- (Reflexivity) We need to prove that $t_1 \vdash_{\mathcal{R}} t_1$. First notice that $t_1 \vdash_D t_1$ just by taking $e = \text{true}$ and since \mathcal{R} is reflexive then $t_1 \vdash_{\mathcal{R}} t_1$.

- (Transitive) We need to prove that $t_1 \vdash_{\mathcal{R}} t_3$. Since $t_1 \vdash_{\mathcal{R}} t_2$ we know there exists $t'_2 = \langle P, c \rangle \xrightarrow{\alpha_2} \langle P_2, d_2 \rangle$ s.t. $t_1 \vdash_D t'_2$ and $\langle P_1, d_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle$ which by definition means that there exists an e_1 s.t. $\alpha_1 \sqcup e_1 = \alpha_2$ and $c_1 \sqcup e_1 = d_1$. Now from $t_2 \vdash_D t_3$ we can deduce that there exists $t'_3 = \langle P, c \rangle \xrightarrow{\alpha_3} \langle P_3, c_3 \rangle$ s.t. $t_2 \vdash_D t'_3$ and $\langle P_2, d_2 \rangle \mathcal{R} \langle P_3, c_3 \rangle$ which in this case means that there exists an e_2 s.t. $\alpha_2 \sqcup e_2 = \alpha_3$ and $c_2 \sqcup e_2 = d_2$. To conclude, take $e' = e_1 \sqcup e_2$ and $t' = \langle P, c \rangle \xrightarrow{\alpha_1 \sqcup e'} \langle P_1, c_1 \sqcup e' \rangle$, we can check that $t_1 \vdash_D t'$ by taking e equal to e', we can also verify that since $\langle P_1, d_1 \rangle = \langle P_1, c_1 \sqcup e_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle$ and \mathcal{R} is closed under the addition of constraints (Definition 3.2.5) then $\langle P_1, c_1 \sqcup e_1 \sqcup e_2 \rangle = \langle P_1, c_1 \sqcup e' \rangle \mathcal{R} \langle P_3, c_3 \rangle$ and hence $t_1 \vdash_{\mathcal{R}} t_3$.

- (Antisymmetry) We need to prove that if $t_1 \vdash_{\mathcal{R}} t_2$ and $t_2 \vdash_{\mathcal{R}} t_1$ then $\alpha_1 = \alpha_2$ and $\langle P_1, c_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle$. Since $t_1 \vdash_{\mathcal{R}} t_2$ we know there exists $t'_2 = \langle P, c \rangle \xrightarrow{\alpha_2} \langle P_2, d_2 \rangle$ s.t. $t_1 \vdash_D t'_2$ and $\langle P_1, d_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle$.

Notice that we do not require that $\langle P_1, c_1 \rangle$ is syntactically equivalent to $\langle P_2, c_2 \rangle$ but that they are related in \mathcal{R}, this is due to the fact that \mathcal{R} is said to contain configurations that are equivalent.
3.2. IRREDUNDANT BISIMILARITY

\[\langle P, c \rangle \xrightarrow{\alpha_2} \langle P_1, d_1 \rangle \text{ s.t. } t_1 \vdash_D t'_2 \text{ and } \langle P_1, d_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle \text{ where there exists an } e \text{ s.t. } \alpha_1 \sqcup e = \alpha_2 \text{ and } c_1 \sqcup e = d_1, \text{ therefore } \alpha_1 \sqsubseteq \alpha_2. \]

Following the same reasoning on \(t_2 \vdash_R t_1 \) we can get that \(\alpha_2 \sqsubseteq \alpha_1 \) hence \(\alpha_1 = \alpha_2 \). This also means that \(\alpha_1 \sqcup e = \alpha_1 \) and so \(e \sqsubseteq \alpha_1 \), now since \(\alpha_1 \sqsubseteq c_1 \) then \(e \sqsubseteq c_1 \) therefore \(c_1 = d_1 \) and finally \(\langle P_1, d_1 \rangle = \langle P_1, c_1 \rangle \mathcal{R} \langle P_2, c_2 \rangle \).

Since \(id^4 \) is reflexive and is closed under the addition of constraints, the following proposition follows directly.

Proposition 3.2.2 \(\vdash_D \) is a partial order.

Proof Follows from the fact that \(\vdash_D \) is \(\vdash_R \) when \(\mathcal{R} = id \), and since \(id \) is reflexive and is closed under the addition of constraints (Definition 3.2.5) then by Proposition 3.2.2 we can conclude that \(\vdash_D \) is a partial order.

Now regarding domination, we can prove a similar property, but in this case we can see that requiring the two labels being different does not allow it to be reflexive, therefore \(\succ_R \) is a strict (irreflexive) partial order.

Proposition 3.2.3 If \(\mathcal{R} \) is closed under the addition of constraints then \(\succ_R \) is a strict (irreflexive) partial order.

Proof In this case we will show that \(\succ_R \) is irreflexive and transitive. Let \(t = \langle P, c \rangle \xrightarrow{\alpha_1} \langle P', c' \rangle \): We proceed to prove each characteristic separately.

- (Irreflexivity) Let us assume by means of contradiction that \(t \succ_R t \) then this would mean that there exists \(t' = \langle P, c \rangle \xrightarrow{\alpha_1} \langle Q, d \rangle \) s.t. \(t \succ_D t' \) where \(\langle P', c' \rangle \mathcal{R} \langle Q, d \rangle \). But for any such \(t' \) the label is \(\alpha_1 \) and therefore \(t \not\succ_D t' \) since its labels are not different, a contradiction. Hence, \(t \not\succ_R t \).

- (Transitivity) The proof follows the line of Proposition 3.2.1 where in this case \(\alpha_1 \neq \alpha_2 \neq \alpha_3 \), notice that this fact does not affect the argument above.

Again, since \(id \) is closed under the addition of constraints, then the following proposition is a consequence of the one above.

4The identity relation.
Proposition 3.2.4 \(\succ_D \) is a strict partial order.

Proof Follows from the fact that \(\succ_D \) is \(\succ_R \) when \(R = id \), and since \(id \) is closed under the addition of constraints (Definition 3.2.5) then by Proposition 3.2.3 we can conclude that \(\vdash_D \) is a partial order.

As we pointed out for the entailment relation, another important property is well-foundedness. It is obtained via Proposition 2.1.1 in Section 2.1.1 (\(\sqsubseteq \) is well-founded).

Proposition 3.2.5 \(\vdash_D \) and \(\succ_D \) are well-founded.

Proposition 3.2.6 \(\vdash_R \) and \(\succ_R \) are well-founded.

3.2.6 Symbolic and Irredundant Bisimilarity

We are now able to introduce an equivalence called *irredundant bisimilarity* which allows to compute bisimilarity and redundancy *at the same time*. This notion can be used to efficiently compute \(\hat{\sim} \). As its name suggests, the idea is to consider only the transitions that are irredundant (up to \(\sim_{sb} \) itself). It is proven that both notions coincide, and it is achieved via an intermediate notion called *symbolic bisimilarity* that we will introduce below.

Intuitively, two configurations \(\gamma_1 \) and \(\gamma_2 \) are symbolic bisimilar iff (i) they have the same barbs and (ii) whenever there is a transition from \(\gamma_1 \) to \(\gamma'_1 \) using \(\alpha \), then we require that \(\gamma_2 \) must reply with a similar transition \(\gamma_2 \xrightarrow{\alpha} \gamma'_2 \) (where \(\gamma'_1 \) and \(\gamma'_2 \) are now equivalent) or some other transition that derives it. In other words, the move from the defender does not need to use exactly the same label, but a transition that is “stronger” (in terms of derivation \(\vdash_D \)) could also do the job. Formally we have the definition below.

Definition 3.2.6 (Symbolic Bisimilarity) A symbolic bisimulation is a symmetric relation \(R \) on configurations s.t. whenever \((\gamma_1, \gamma_2) \in R \) with \(\gamma_1 = \langle P, c \rangle \) and \(\gamma_2 = \langle Q, d \rangle \):

1. if \(\gamma_1 \downarrow e \) then \(\gamma_2 \downarrow e \).
3.2. IRREDUNDANT BISIMILARITY

(ii) if \(\langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle \) then there exists a transition \(t = \langle Q, d \rangle \xrightarrow{\beta} \langle Q', d'' \rangle \)
s.t. \(t \vdash_D \langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle \) and \(\langle P', c' \rangle \mathcal{R} \langle Q', d' \rangle \)

We say that \(\gamma_1 \) and \(\gamma_2 \) are symbolic bisimilar \((\gamma_1 \sim_{\text{sym}} \gamma_2)\) if there exists a symbolic bisimulation \(\mathcal{R} \) s.t. \((\gamma_1, \gamma_2) \in \mathcal{R} \).

Example 3.2.4 To illustrate the notion of symbolic bisimilarity \((\sim_{\text{sym}})\), we take \(\langle P + Q, \text{true} \rangle \) and \(\langle P, \text{true} \rangle \) from Example 3.2.1 We provide a symbolic bisimulation \(\mathcal{R} = \{(\langle P + Q, \text{true} \rangle, \langle P, \text{true} \rangle)\} \cup \text{id} \) (relation \(\mathcal{R} \) is shown in Figure 3.3) to prove \(\langle P + Q, \text{true} \rangle \sim_{\text{sym}} \langle P, \text{true} \rangle \). We take the pair \((\langle P + Q, \text{true} \rangle, \langle P, \text{true} \rangle)\).

The first condition in Definition 3.2.6 concerning the barbs is trivial. For the second one we take \(\langle P + Q, \text{true} \rangle \xrightarrow{z < 5} \langle T, x < 7 \rangle \) and one can find transitions \(t = \langle P, \text{true} \rangle \xrightarrow{z < 5} \langle T, x < 7 \rangle \) and \(t' = \langle P, \text{true} \rangle \xrightarrow{z < 5} \langle T, x < 7 \rangle \) s.t. \(t \vdash_D t' \) and \(\langle T, x < 5 \rangle \mathcal{R} \langle T, x < 5 \rangle \).

The remaining transitions are trivially verified.

![Figure 3.3: Symbolic Bisimulation for Example 3.2.4](image)

The following lemmata will lead us to conclude that symbolic bisimilarity (Definition 3.2.6) is equivalent to saturated barbed bisimilarity (Definition 2.2.2 in Section 2.2.1).

Lemma 3.2.3 If \(\langle P, c \rangle \sim_{\text{sym}} \langle Q, d \rangle \) then \(\langle P, c \rangle \sim_{\text{sb}} \langle Q, d \rangle \).
3.2. irredundant bisimilarity

Proof We will prove that $\mathcal{R} = \{(\langle P, c \sqcup a \rangle, \langle Q, d \sqcup a \rangle) \mid \langle P, c \rangle \sim_{\text{sym}} \langle Q, d \rangle\}$ is a saturated barbed bisimulation.

(i) Since $\langle P, c \rangle \sim_{\text{sym}} \langle Q, d \rangle$ then from condition (i) and by monotonicity we have that for all e s.t. $\langle P, c \sqcup a \rangle \Downarrow e$ then $\langle Q, d \sqcup a \rangle \Downarrow e$.

(ii) We need to prove that if $\langle P, c \sqcup a \rangle \rightarrow \langle P_1, c_1 \rangle$ then there exists $\langle Q_1, d_1 \rangle$ s.t. $\langle Q, d \sqcup a \rangle \rightarrow \langle Q_1, d_1 \rangle$ and $\langle P_1, c_1 \rangle \mathcal{R} \langle Q_1, d_1 \rangle$. Now let us assume that $\langle P, c \sqcup a \rangle \rightarrow \langle P', c' \rangle$ (take $P_1 = P'$ and $c_1 = c'$) then by completeness (Lemma 3.2.2) we know that there exist α and β s.t. $\langle P, c \rangle \xrightarrow{\alpha} \langle P', c'' \rangle$ where $\alpha \sqcup b = a$ and $c'' \sqcup b = c'$, thus if such transition exists then by $\langle P, c \rangle \sim_{\text{sym}} \langle Q, d \rangle$ we get that there exists a transition $t = \langle Q, d \rangle \xrightarrow{\beta} \langle Q', d' \rangle$ s.t. $t \vdash_{\Delta} \langle Q', d' \rangle$ and $\langle P', c'' \rangle \sim_{\text{sym}} \langle Q', d' \rangle$. Expanding the definition of \vdash_{Δ} there is a b' s.t. $\beta \sqcup b' = \alpha$ and $d' \sqcup b' = d''$. We are now able to apply soundness (Lemma 3.2.1) on t hence $\langle Q, d \sqcup b' \rangle \rightarrow \langle Q', d'' \rangle$, and by monotonicity we are able to add $b \sqcup b'$ to the store to obtain $\langle Q, d \sqcup \beta \sqcup b \sqcup b' \rangle \rightarrow \langle Q', d' \sqcup b \rangle$ which is equivalent to say (by using the equations above) $\langle Q, d \sqcup a \rangle \rightarrow \langle Q', d'' \sqcup b \rangle$. To conclude, take $Q_1 = Q'$ and $d_1 = d'' \sqcup b$, therefore $\langle Q, d \sqcup a \rangle \rightarrow \langle Q_1, d_1 \rangle$ and since $\langle P', c'' \rangle \sim_{\text{sym}} \langle Q', d'' \rangle$ then $\langle P_1, c_1 \rangle = \langle P', c' \rangle = \langle P', c' \sqcup b \rangle \mathcal{R} \langle Q', d'' \sqcup b \rangle = \langle Q_1, d_1 \rangle$.

(iii) By definition of \mathcal{R}, it is already closed under the addition of constraints.

Lemma 3.2.4 If $\langle P, c \rangle \sim_{sb} \langle Q, d \rangle$ then $\langle P, c \rangle \sim_{\text{sym}} \langle Q, d \rangle$.

Proof We will prove that $\mathcal{R} = \{(\langle P, c \rangle, \langle Q, d \rangle) \mid \langle P, c \rangle \sim_{sb} \langle Q, d \rangle\}$ is a symbolic bisimulation.

(i) Since $\langle P, c \rangle \sim_{sb} \langle Q, d \rangle$ then from condition (i) we have that if $\langle P, c \rangle \Downarrow e$ then $\langle Q, d \rangle \Downarrow e$.

(ii) Let us start by assuming that $\langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle$: Then we need to prove that there exists a transition $t = \langle Q, d \rangle \xrightarrow{\beta} \langle Q', d'' \rangle$ s.t. $t \vdash_{\Delta} \langle Q', d'' \rangle$ and $\langle P', c' \rangle \mathcal{R} \langle Q', d'' \rangle$. By soundness we know $\langle P, c \sqcup \alpha \rangle \rightarrow \langle P', c' \rangle$, now since $\langle P, c \rangle \sim_{sb} \langle Q, d \rangle$ by condition (ii) we obtain $\langle Q, d \sqcup \alpha \rangle \rightarrow \langle Q', d'' \rangle$.
3.2. IRREDUNDANT BISIMILARITY

where \((P', c') \dot\sim_{sb} (Q', d')\). From this transition and completeness we can deduce that there exist \(\beta\) and \(b\) s.t. \(\langle Q, d \rangle \xrightarrow{\beta} \langle Q', d'' \rangle\) (let us call this transition \(t\)) where \(\beta \sqcup b = \alpha\) and \(d'' \sqcup b = d'\). Thus by definition of \(\vdash_D\) we can conclude that \(t \vdash_D \langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle\) and since \((P', c') \dot\sim_{sb} (Q', d')\) then \((P', c') R (Q', d')\).

This notion, that does not quantify over all possible contexts, coincides with \(\dot\sim_{sb}\).

Theorem 3.2.1 \((P, c) \dot\sim_{sb} (Q, d) \iff (P, c) \dot\sim_{sym} (Q, d)\).

Proof Using Lemma 3.2.3 and Lemma 3.2.4.

Since \(\dot\sim_{sb}\) is closed under the addition of constraints, then \(\dot\sim_{sym}\) should also have this property.

Lemma 3.2.5 If \((P, c) \dot\sim_{sym} (Q, d)\) then \(\forall a \in Con_0, \langle P, c \sqcup a \rangle \dot\sim_{sym} \langle Q, d \sqcup a \rangle\).

Proof It follows directly from Theorem 3.2.1.

We now present the irredudant bisimilarity. As we mentioned before, the idea is to focus on the transitions that are irredudant. It then follows the usual bisimulation game where the defender is required to reply with the same label and ends up in an equivalent configuration to the attacker’s move. Such irredudancy can be computed along with the equivalence classes of \(\dot\sim_{sb}\).

Definition 3.2.7 (Irredundant Bisimilarity) An irredundant bisimulation is a symmetric relation \(R\) on configurations s.t. whenever \((\gamma_1, \gamma_2) \in R\):

(i) if \(\gamma_1 \downarrow_e\) then \(\gamma_2 \downarrow_e\),

(ii) if \(\gamma_1 \xrightarrow{\alpha} \gamma'_1\) and it is irredundant in \(R\) then there exists \(\gamma'_2\) s.t. \(\gamma_2 \xrightarrow{\alpha} \gamma'_2\) and \((\gamma'_1, \gamma'_2) \in R\).

We say that \(\gamma_1\) and \(\gamma_2\) are irredundant bisimilar \((\gamma_1 \dot\sim_I \gamma_2)\) if there exists an irredundant bisimulation \(R\) s.t. \((\gamma_1, \gamma_2) \in R\).
Example 3.2.5 We can verify that the relation \mathcal{R} in Example 3.2.4 is an irredundant bisimulation to show that $\langle P + Q, \text{true} \rangle \sim_I \langle P, \text{true} \rangle$. We take the pair $\langle (P + Q, \text{true}), (P, \text{true}) \rangle$. The first item in Definition 3.2.7 is obvious. Then take $\langle P + Q, \text{true} \rangle \xrightarrow{x<7} \langle T, x < 7 \rangle$, which is irredundant according to Definition 3.2.4, then there exists a $\langle T, x < 7 \rangle$ s.t. $\langle P, \text{true} \rangle \xrightarrow{x<7} \langle T, x < 7 \rangle$ and $(\langle T, x < 7 \rangle, (T, x < 7)) \in \mathcal{R}$. The other pairs are trivially proven. Notice that $\langle P + Q, \text{true} \rangle \xrightarrow{x<7} \langle T, x < 7 \rangle \sim \langle P + Q, \text{true} \rangle \xrightarrow{x<5} \langle T, x < 5 \rangle$ hence $\langle P + Q, \text{true} \rangle \xrightarrow{x<5} \langle T, x < 5 \rangle$ is redundant, thus it does not need to be matched by $\langle P, \text{true} \rangle$.

This previous notion of irredundant bisimilarity turns out to be closed under the addition of constraints, something we prove with the following lemma.

Lemma 3.2.6 If $\langle P, c \rangle \sim_I \langle Q, d \rangle$ then for all $a \in \text{Con}_0$, $\langle P \sqcup a, c \rangle \sim_I \langle Q \sqcup a, d \rangle$.

Proof We need to prove that $\mathcal{R} = \{ ((P \sqcup e, Q \sqcup e) | \langle P, c \rangle \sim_I \langle Q, d \rangle) \}$ is an irredundant bisimulation.

(i) Since $\langle P, c \rangle \sim_I \langle Q, d \rangle$ then from condition (i) and by monotonicity we have that for all e s.t. $\langle P, c \rangle \xrightarrow{e} \langle P', c' \rangle$ which is irredundant in \mathcal{R}.

(ii) Let us start by assuming that

$$\langle P, c \sqcup a \rangle \xrightarrow{\alpha} \langle P', c' \rangle$$

then we need to prove that there exists $\langle Q', d' \rangle$ s.t. $\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle$ and $\langle P', c' \rangle \mathcal{R} \langle Q', d' \rangle$. Now by soundness on the transition from $\langle P, c \sqcup a \rangle$ we know that $\langle P, c \sqcup a \sqcup \alpha \rangle \xrightarrow{\beta} \langle P', c' \rangle$ and from completeness we get that there exist b and β s.t.

$$t_1 = \langle P, c \rangle \xrightarrow{\beta} \langle P', c'' \rangle \text{ where } \beta \sqcup b = a \sqcup \alpha \text{ and } c'' \sqcup b = c'$$

Since $\Rightarrow_{\mathcal{R}}$ is well founded then there exist an irredundant (not dominated by the rest) transition $t_2 = \langle P, c \rangle \xrightarrow{\lambda} \langle P_1, c_1 \rangle$ that dominates t_1 in \mathcal{R} ($t_2 \Rightarrow_{\mathcal{R}} t_1$), therefore

$$t_2 \Rightarrow_{\mathcal{R}} \langle P, c \rangle \xrightarrow{\beta} \langle P_1, c_2 \rangle \text{ and } \langle P_1, c_2 \rangle \mathcal{R} \langle P', c'' \rangle$$

(3.3)
3.2. IRREDUNDANT BISIMILARITY

by definition of \succ_D there exists b' s.t.

$$\lambda \sqcup b' = \beta, c_1 \sqcup b' = c_2 \text{ and } \lambda \neq \beta$$

(3.4)

Now since $⟨P, c⟩ ∼_I ⟨Q, d⟩$ and the irredundant t_2, then there exists $⟨Q_1, d_1⟩$ s.t.

$$⟨Q, d⟩ \xrightarrow{\lambda} ⟨Q_1, d_1⟩ \text{ and } ⟨P_1, c_1⟩ ∼_I ⟨Q_1, d_1⟩$$

(3.5)

using soundness $⟨Q, d \sqcup \lambda⟩ \rightarrow ⟨Q_1, d_1⟩$ and monotonicity we can obtain

$$⟨Q, d \sqcup \lambda \sqcup b \sqcup b⟩ \rightarrow ⟨Q_1, d_1 \sqcup b' \sqcup b⟩$$

and from the latter condition in (3.5) we can also deduce that $⟨Q_1, d_1 \sqcup b' \sqcup b⟩ \lesssim_{\mathcal{R}} ⟨P_1, c_1 \sqcup b' \sqcup b⟩$ therefore by the second condition in (3.3) we know that $⟨P_1, c_2 \sqcup b⟩ \lesssim_{\mathcal{R}} ⟨P', c' \sqcup b⟩$. Let $d'_1 = d_1 \sqcup b' \sqcup b$, we can summarize this part by saying that

$$⟨Q, d \sqcup a \sqcup \alpha⟩ \rightarrow ⟨Q_1, d'_1⟩ \text{ and } ⟨P', c'⟩ \lesssim_{\mathcal{R}} ⟨Q_1, d'_1⟩$$

(3.6)

Now let us reason on this transition, by completeness there exist a_1 and b_1 s.t.

$$t_3 = ⟨Q, d \sqcup a⟩ \xrightarrow{a_1} ⟨Q_1, d_2⟩ \text{ where } a_1 \sqcup b_1 = \alpha \text{ and } d_2 \sqcup b_1 = d'_1$$

(3.7)

By means of contradiction let us assume that $a_1 \neq \alpha$, then by soundness (on t_3) $⟨Q, d \sqcup a \sqcup \alpha_1⟩ \rightarrow ⟨Q_1, d_2⟩$ and, by completeness on this transition, we know there exist a_2 and b_2 s.t.

$$t_4 = ⟨Q, d⟩ \xrightarrow{a_2} ⟨Q_1, d'_2⟩ \text{ where } a_2 \sqcup b_2 = \alpha \sqcup \alpha_1 \text{ and } d'_2 \sqcup b_2 = d_2$$

(3.8)

By the well-foundedness of $\succ_{\mathcal{R}}$, we know there exists an irredundant transition $t_5 = ⟨Q, d⟩ \xrightarrow{a'_1} ⟨Q_3, d_3⟩$ s.t. $t_5 \sqsupseteq R t_4$, namely,

$$t_5 \succ_D ⟨Q, d⟩ \xrightarrow{a_2} ⟨Q_3, d'_3⟩ \text{ and } ⟨Q_3, d'_3⟩ \lesssim_{\mathcal{R}} ⟨Q_1, d'_2⟩$$

(3.9)

hence, there exists b_3 s.t. $\alpha' \sqcup b_3 = \alpha_2$, $d_3 \sqcup b_3 = d'_3$ and $\alpha' \neq \alpha_2$. Now since
\[(P, c) \sim_1 (Q, d) \] then from the irredundant \(t_5 \) we can deduce that
\[(P, c) \xrightarrow{\alpha'} (P_3, c_3) \] and \((P_3, c_3) \mathcal{R} (Q_3, d_3) \) (3.10)

by soundness we get \((P, c \uplus \alpha') \rightarrow (P_3, c_3) \) and by monotonicity
\[(P, c \uplus \alpha' \uplus b_2 \uplus b_3) \xrightarrow{\alpha_1 \uplus b_1} (P_3, c_4 \uplus b_4) \] (3.11)

from the latter condition in (3.10) and by definition of \(\mathcal{R} \) we have \((P_3, c_3 \uplus b_2 \uplus b_3) \mathcal{R} (Q_3, d_3 \uplus b_2 \uplus b_3) \), and since \(d_3 \uplus b_3 = d'_3 \) and from the latter condition in (3.9) then \((Q_3, d'_3 \uplus b_2) \mathcal{R} (Q_1, d'_2 \uplus b_2) \) and using \(d'_2 \uplus b_2 = d_2 \) we can conclude that \((P_3, c_4) \mathcal{R} (Q_1, d_2) \). Going back to the transition in (3.11), we can rewrite it as \((P, c \uplus a \uplus \alpha_1) \rightarrow (P_3, c_4) \), then by completeness we know there exist \(b_4 \) and \(\alpha_1' \) s.t.
\[t_6 = (P, c \uplus a) \xrightarrow{\alpha'} (P_3, c_4) \] where \(\alpha_1' \uplus b_4 = \alpha_1 \) and \(c_4' \uplus b_4 = c_4 \) (3.12)

Notice that if such transition exists then \(t_6 \succeq \mathcal{R} (3.1) \), as we prove as follows
\[t_6 \succeq D (P, c \uplus a) \xrightarrow{\alpha'_1 \uplus b_1} (P_3, c_4' \uplus b_1) \] (3.13)

and now it is left to prove that \((P_3, c_4 \uplus b_1) \mathcal{R} (P', c') \), given that \((P_3, c_4) \mathcal{R} (Q_1, d_2) \) then by definition of \(\mathcal{R} \) we have \((P_3, c_4 \uplus b_1) \mathcal{R} (Q_1, d_2 \uplus b_1) \). Since \((Q_1, d_2 \uplus b_1) = (Q_1, d'_1) \) and we have already proven that \((P', c') \mathcal{R} (Q_1, d'_1) \) (latter condition in (3.6)), finally we can conclude that \((P_3, c_4 \uplus b_1) \mathcal{R} (P', c') \) and therefore (3.1) is redundant, a contradiction. To conclude, \(\alpha_1 \) must be equal to \(\alpha \), otherwise we would get an absurd as shown previously, thus we can conclude our main result by using (3.6), (3.7) and assuming \(Q' = Q_1 \), \(d' = d'_1 \),
\[(Q, d \uplus a) \xrightarrow{\alpha} (Q_1, d'_1) \] and \((P', c') \mathcal{R} (Q_1, d'_1) \) (3.14)

Indeed \((Q, d \uplus a) \) can defend from the attacker’s move (the token game) by using the same label and still remain in the relation.
3.2. IRREDUNDANT BISIMILARITY

As we had already done with Lemma 3.2.3 and Lemma 3.2.4 to prove that \(\langle P, c \rangle \sim_{sb} \langle Q, d \rangle \) iff \(\langle P, c \rangle \sim_{sym} \langle Q, d \rangle \), the following lemmata will help us find the correspondence between symbolic bisimilarity (Definition 3.2.6) and irredundant bisimilarity (Definition 3.2.7).

Lemma 3.2.7 If \(\langle P, c \rangle \sim_{sym} \langle Q, d \rangle \) then \(\langle P, c \rangle \sim_\text{irr} \langle Q, d \rangle \)

Proof We will prove that \(\mathcal{R} = \{ (\langle P, c \rangle, \langle Q, d \rangle) \mid \langle P, c \rangle \sim_{sym} \langle Q, d \rangle \} \) is an irredundant bisimulation.

(i) Since \(\langle P, c \rangle \sim_{sym} \langle Q, d \rangle \) it is direct result from condition (i).

(ii) Assume that \(\langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle \) (1) which is irredundant in \(\mathcal{R} \) then we need to prove that there exists \(\langle Q', d' \rangle \) s.t. \(\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle \) and \(\langle P', c' \rangle \mathcal{R} \langle Q', d' \rangle \). Since \(\langle P, c \rangle \sim_{sym} \langle Q, d \rangle \) and from (1), we have that there exists \(t = \langle Q, d \rangle \xrightarrow{\beta} \langle Q', d'' \rangle \) s.t. \(t \vdash_D \langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle \) and \(\langle P', c' \rangle \sim_{sym} \langle Q', d' \rangle \), thus by definition of \(\vdash_D \), there is \(b \) s.t. \(\beta \cup b = \alpha \) and \(d'' \cup b = d' \). Now let us assume by means of contradiction that \(\beta \neq \alpha \), then we can use \(t \) to reason about what \(\langle P, c \rangle \) can do, again from \(\langle P, c \rangle \sim_{sym} \langle Q, d \rangle \) and \(t \) we can say that there exists a transition \(t' = \langle P, c \rangle \xrightarrow{\lambda} \langle P_1, c_1 \rangle \) s.t. \(t' \vdash_D \langle P, c \rangle \xrightarrow{\beta} \langle P_1, c_1 \rangle \) and \(\langle P_1, c_1 \rangle \sim_{sym} \langle Q', d'' \rangle \) (2). By definition of \(\vdash_D \), the last derivation means that there is a \(b' \) s.t. \(\lambda \cup b' = \beta \) and \(c_1' \cup b' = c_1 \). Now we can use Lemma 3.2.5 on (2) to get \(\langle P_1, c_1 \cup b \rangle \mathcal{R} \langle Q', d'' \cup b \rangle \) therefore, given that \(d'' \cup b = d' \), then \(\langle P_1, c_1 \cup b \rangle \mathcal{R} \langle Q', d' \rangle \), which by definition of \(\mathcal{R} \) means \(\langle P_1, c_1 \cup b \rangle \sim_{sym} \langle Q', d' \rangle \) (3). We can also conclude that since \(\langle P', c' \rangle \sim_{sym} \langle Q', d' \rangle \) then by transitivity \(\langle P_1, c_1 \cup b \rangle \mathcal{R} \langle P', c' \rangle \) and hence \(\langle P_1, c_1 \cup b \rangle \mathcal{R} \langle P', c' \rangle \) (4). On the other hand, notice that now \(t' \) is able to dominate our originally irredundant transition, namely \(t' \succ_\mathcal{R} \) (1), as follows

\[
\begin{align*}
\xrightarrow{\alpha} \\
\xrightarrow{\lambda \cup b \cup b'} \\
\xrightarrow{c_1}
\end{align*}
\]

dominate

therefore if \(\alpha \neq \beta \) then we would get an absurd since (1) would be redundant in \(\mathcal{R} \), thus we can finally say that \(\alpha = \beta \) which allow us to conclude that \(\langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \rangle \) and \(\langle P', c' \rangle \sim_{sym} \langle Q', d' \rangle \) then \(\langle P', c' \rangle \mathcal{R} \langle Q', d' \rangle \).
Lemma 3.2.8 If $\langle P, c \rangle \sim_I (Q, d)$ then $\langle P, c \rangle \sim_{sym} (Q, d)$

Proof We will prove that $\mathcal{R} = \{ (\langle P, c \rangle, (Q, d)) \mid \langle P, c \rangle \sim_I (Q, d) \}$ is a symbolic bisimulation.

(i) Since $\langle P, c \rangle \sim_I (Q, d)$ it is direct result from condition (i)

(ii) Take $t = \langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle$ then since $\succ \mathcal{R}$ is well founded then there exists an irredundant transition $t' = \langle P, c \rangle \xrightarrow{\beta} \langle P_1, c_1 \rangle$ s.t. $t' \succ \mathcal{R} t$.

$$t' \succ_D \langle P, c \rangle \xrightarrow{\alpha} \langle P_1, c_1' \rangle \text{ where } \langle P_1, c_1' \rangle \mathcal{R} \langle P', c' \rangle \quad (3.15)$$

By definition of \succ_D, there exists a b s.t. $\beta \sqcup b = \alpha$, $c_1 \sqcup b = c_1'$ and $\alpha \neq \beta$. Now since $\langle P, c \rangle \sim_I (Q, d)$ and t' then we know there is a transition $t'' = \langle Q, d \rangle \xrightarrow{\beta} \langle Q', d' \rangle$ and $\langle P_1, c_1 \rangle \sim_{sym} (Q', d')$. Thus, from Lemma 3.2.6 $\langle P_1, c_1 \sqcup b \rangle \mathcal{R} \langle Q', d' \sqcup b \rangle$, equivalently $\langle P_1, c_1' \rangle \mathcal{R} \langle Q', d' \sqcup b \rangle$ and using the latter condition in (3.15) then $\langle Q', d' \sqcup b \rangle \mathcal{R} \langle P', c' \rangle$. We can finally conclude that $t'' \succ_D \langle Q, d \rangle \xrightarrow{\alpha} \langle Q', d' \sqcup b \rangle$ and $\langle Q', d' \sqcup b \rangle \mathcal{R} \langle P', c' \rangle$, therefore the condition for being a symbolic bisimulation is proven.

And most importantly, it coincides with the symbolic one.

Theorem 3.2.2 $\langle P, c \rangle \sim_{sym} (Q, d)$ iff $\langle P, c \rangle \sim_I (Q, d)$

Proof Using Lemma 3.2.7 and Lemma 3.2.8

Finally, we can clearly see that the above-defined equivalences (Definition 3.2.6 and Definition 3.2.7) coincide with \sim_{sb}.

Theorem 3.2.3 $\langle P, c \rangle \sim_I (Q, d)$ iff $\langle P, c \rangle \sim_{sym} (Q, d)$ iff $\langle P, c \rangle \sim_{sb} (Q, d)$

Proof Using transitivity, Theorem 3.2.1 and Theorem 3.2.2

3.3 Partition Refinement for CCP

Recall that we mentioned in Section 2.2 that checking \sim_{sb} seems hard because of the quantification over all possible constraints. However, by using the relations
showed in Theorem 3.2.3 we shall introduce an algorithm for checking \sim_{sb} by employing the notion of irredundant bisimulation. In Figure 3.4 we show the design of this algorithm.

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{partitionRefinement.png}
\caption{CCP Partition Refinement}
\end{figure}

The first novelty w.r.t. the standard partition refinement (Algorithm 3.1.1) consists in using barbs. Since configurations satisfying different barbs are surely different, we can safely start with a partition that equates all and only those states satisfying the same barbs. Note that two configurations satisfy the same barbs iff they have the same store. Thus, we take as initial partition $\mathcal{P}^0 = \{IS_{d_1}^+\} \ldots \{IS_{d_n}^+\}$, where $IS_{d_i}^+$ is the subset of the configurations of IS^+ with store d_i.

Another difference is that instead of using the function F of Algorithm 3.1.1 we refine the partitions by employing the function IR defined as follows:

Definition 3.3.1 (IR) For all partitions \mathcal{P}, $\gamma_1 IR(\mathcal{P}) \gamma_2$ if

\[
\sim_I \gamma \sim_{sb} \gamma' \Rightarrow \gamma_1 IR(\mathcal{P}) \gamma_2
\]
• if $\gamma_1 \xrightarrow{\alpha} \gamma'_1$ is irredundant in P, then there exists γ_2 s.t. $\gamma_2 \xrightarrow{\alpha} \gamma'_2$ and $\gamma'_1 P \gamma'_2$.

It is now important to observe that in the computation of $\text{IR}(P')$, there might be involved also states that are not reachable from the initial states IS. For instance, consider the LTSs of $\langle S, \text{true} \rangle$ and $\langle R + S, \text{true} \rangle$ in Figure 3.1. The state $\langle P, z < 5 \rangle$ is not reachable but is needed to check if $\langle R + S, \text{true} \rangle \xrightarrow{z \leq 5} \langle P + Q, z < 5 \rangle$ is redundant.

For this reason, we have also to change the initialization step of our algorithm, by including in the set IS^* all the states that are needed to check redundancy. This is done by using the following closure rules.

$$
(IS) \quad \gamma \in IS \quad \Rightarrow \quad \gamma \in IS^*
$$

$$
(RS) \quad \gamma_1 \in IS^* \quad \xrightarrow{\alpha} \gamma_2 \quad \Rightarrow \quad \gamma_2 \in IS^*
$$

$$
(RD) \quad \gamma \in IS^* \quad \xrightarrow{\alpha_1} \gamma_1 \quad \xrightarrow{\alpha_2} \gamma_2 \quad \gamma \xrightarrow{\alpha_1} \gamma_1 \triangleright \gamma \xrightarrow{\alpha_2} \gamma_3 \quad \Rightarrow \quad \gamma_3 \in IS^*
$$

The rule (RD) adds all the states that are needed to check redundancy. Indeed, if γ can perform both $\xrightarrow{\alpha_1} \gamma_1$ and $\xrightarrow{\alpha_2} \gamma_2$ s.t. $\gamma \xrightarrow{\alpha_1} \gamma_1 \triangleright \gamma \xrightarrow{\alpha_2} \gamma_3$, then $\gamma \xrightarrow{\alpha_2} \gamma_2$ would be redundant whenever $\gamma_2 \simeq_{sb} \gamma_3$.

In Example 3.3.1 we can understand how ‘possibly’ redundant transitions are found, in order to check redundancy. Likewise, we show how rule (RD) adds new states to the set of reachable states IS^*.

Example 3.3.1 Let us assume that we have an automaton generated by a ccp program where $\langle P_0, \text{true} \rangle$, $\langle P_1, x < 10 \rangle$, $\langle P_2, x < 5 \rangle \in IS^*$ and with transitions $\langle P_0, \text{true} \rangle \xrightarrow{z \leq 10} \langle P_1, x < 10 \rangle$ and $\langle P_0, \text{true} \rangle \xrightarrow{z \leq 5} \langle P_2, x < 5 \rangle$. Therefore, $\langle P_0, \text{true} \rangle \xrightarrow{z \leq 10} \langle P_2, x < 5 \rangle$ is ‘possibly’ redundant, $\langle P_0, \text{true} \rangle \xrightarrow{z \leq 10} \langle P_1, x < 10 \rangle \triangleright \langle P_0, \text{true} \rangle \xrightarrow{z \leq 5} \langle P_1, x < 5 \rangle$ and we get $\langle P_1, x < 5 \rangle \in IR^*$.

Figure 3.2 shows the partitions computed by the algorithm with initial states $\langle R' + S, \text{true} \rangle$, $\langle S, \text{true} \rangle$ and $\langle R + S, \text{true} \rangle$. Note that, as expected, in the final
3.3. PARTITION REFINEMENT FOR CCP

Algorithm 3.3.1 CCP-Partition-Refinement (IS)

Initialization

1. Compute IS^* with the rules (IS), (RS) and (RD),
2. $P^0 := \{ IS^*_d_1 \} \ldots \{ IS^*_d_n \}$.

Iteration $P^{n+1} := IR(P^n)$

Termination If $P^n = P^{n+1}$ then return P^n.

Note that any iteration splits blocks and never fuse them. For this reason if IS^* is finite, the algorithm terminates in at most $|IS^*|$ iterations. The proof of the next proposition assumes that \vdash_D is decidable. However, as we shall prove in the next section, the decidability of \vdash_D follows from our assumption about the decidability of the ordering relation \sqsubseteq of the underlying constraint system and Theorem 3.3.2.
3.3. PARTITION REFINEMENT FOR CCP

in the next section.

Proposition 3.3.1 If IS^* is finite, then the algorithm terminates and the resulting partition coincides with \sim_{sb}.

Proof Using Corollary 1 of [BM09] and the decidability of \succ_D.

We now prove that if the set $\text{Config}(IS)$ of all configurations reachable from IS (through the LTS generated by the rules in Table 2.2) is finite, then IS^* is finite. This necessary and sufficient condition is standard in all the partition refinement approaches, like e.g. those in [KS83, PS96, MPLS] for CCS and π-calculus.

Although we lose expressiveness, this condition can be easily guaranteed by imposing some syntactic restrictions on ccp terms, like for instance, by excluding either the procedure call or the hiding operator.

Theorem 3.3.1 If $\text{Config}(IS)$ is finite, then IS^* is finite.

Proof As a first step, we observe that a configuration $\gamma \in IS^*$ only if $\gamma = \langle P, d \sqcup e \rangle$ and $\langle P, d \rangle \in \text{Config}(IS)$. Then we prove that there are only finitely many such constraints e.

Let $\text{Label}(IS)$ be the set of all labels in the LTS of IS generated by rules in Table 2.2. This set is finite (since $\text{Config}(IS)$ is finite), and its downward closure $\downarrow \text{Label}(IS) = \{ a \mid \exists b \in \text{Label}(IS) \text{ with } a \subseteq b \}$ is also finite (since \subseteq is well-founded). The set of all e s.t. $\langle P, d \sqcup e \rangle \in IS^*$ (with $\langle P, d \rangle \in \text{Config}(IS)$) is a subset of $\downarrow \text{Label}(IS)$ and thus it is finite.

Indeed, observe that if $\langle P, d \sqcup e \rangle \xrightarrow{c_1} \text{c} \rightarrow$, then $\langle P, d \rangle \xrightarrow{c_2}$ with $c_1 \subseteq c_2$. Therefore $\text{Label}(IS^*) \subseteq \downarrow \text{Label}(IS)$. Moreover, if $\langle P, d \sqcup e \rangle$ is added to IS^* by the rule (RD) then, by definition of \succ_D (Definition 3.2.3), $e \subseteq \beta$ for β being a label in $\text{Label}(IS^*)$ (i.e., in $\downarrow \text{Label}(IS)$).

3.3.2 Complexity of the Algorithm

Here we give asymptotic bounds for the execution time of Algorithm 3.3.1. We assume that the reader is familiar with the $O(.)$ notation for asymptotic upper bounds in analysis of algorithms—see [CLRS09].
Our implementation of Algorithm 3.3.1 is a variant of the original partition refinement algorithm in [KS83] with two main differences: The computation of I_{\ast} according to rules (IS), (RS) and (RD) (line 2, Algorithm 3.3.1) and the decision procedure for \triangleright_D (Definition 3.2.3) needed in the redundancy checks.

We assume \sqsubseteq to be decidable. Notice that the requirement of having some e that satisfies conditions (i), (ii) and (iii) in Definition 3.2.3 suggests that deciding whether two given transitions belong to \triangleright_D may be costly. The following theorem, however, provides a simpler characterization of \triangleright_D allowing us to reduce the decision problem of \triangleright_D to that of \sqsubseteq.

Theorem 3.3.2

\[(P, c) \xrightarrow{\alpha} (P_1, c') \triangleright_D (P, c) \xrightarrow{\beta} (P_1, c'') \iff \text{the following conditions hold:} \]

1. (a) $\alpha \sqsubseteq \beta$
2. (b) $c'' = c' \sqcup \beta$

Proof

(\Rightarrow) We assume \((P, c) \xrightarrow{\alpha} (P_1, c') \triangleright_D (P, c) \xrightarrow{\beta} (P_1, c'') \) namely (i), (ii) and (iii) in Definition 3.2.3 hold. Take $e_2 = e \sqcup \alpha$ therefore we have $\alpha \sqcup e_2 = \alpha \sqcup e \sqcup \alpha = \alpha \sqcup e$ that by condition (ii) is equal to β. Since $\alpha \neq \beta$ (iii), then $\alpha \sqsubseteq \beta$, i.e., condition (a) holds.

Notice that $\alpha \sqsubseteq c'$ since labels are added to the stores when performing transitions. By condition (ii), we have that $c'' = c' \sqcup e = c' \sqcup \alpha \sqcup e$ that, by condition (i), is equal to $c' \sqcup \beta$. Thus, (b) holds.

(\Leftarrow) Conversely, assume that (a) and (b) hold. Since $\alpha \sqsubseteq \beta$, there exists an e_2 s.t. $\beta = \alpha \sqcup e_2$ and $\alpha \neq \beta$ (the latter is condition (iii) in Definition 3.2.3).

Now to prove (i), (ii) we take $e = e_2 \sqcup \alpha$. Since $\beta = \alpha \sqcup e_2$, then $\beta = \alpha \sqcup e_2 = \alpha \sqcup e_2 \sqcup \alpha = \alpha \sqcup e$, i.e., (i) holds. By (b), $c'' = c' \sqcup \beta = c' \sqcup \alpha \sqcup e_2 = c' \sqcup e$, i.e., (ii) also holds.

Henceforth we shall assume that given a constraint system C, the function f_C represents the time complexity of deciding (whether two given constraints are in) \sqsubseteq. The following is a useful corollary of the above theorem.

Corollary 3.3.1

Given two transitions t and t', deciding whether $t \triangleright_D t'$ takes $O(f_C)$ time.

Remark 3.3.1

We introduced \triangleright_D as in Definition 3.2.3 as natural adaptation of the corresponding notion in [BM09]. The simpler characterization given by the
above theorem is due to particular properties of ccp transitions, in particular monotonicity of the store, and hence it may not hold in a more general scenario.

Complexity. The size of the set IS^* is central to the complexity of Algorithm 3.3.1 and depends on topology of the underlying transition graph. For tree-like topologies, a typical representation of many transition graphs, one can show by using a simple combinatorial argument that the size of IS^* is quadratic w.r.t. the size of the set of reachable configurations from IS, i.e., $Config(IS)$. For arbitrary graphs, however, the size of IS^* may be exponential in the number of transitions between the states of $Config(IS)$ as shown by the following construction.

Definition 3.3.2 Let $P^0 = stop$ and $P^1 = P$. Given an even number n, define $s_n(n, 0) = stop, s_n(n, 1) = \text{ask}(\text{true}) \rightarrow s_n(n, 0)$ and for each $0 \leq i < n \land 0 \leq j \leq 1$ let $s_n(i, j) = (\text{ask}(\text{true}) \rightarrow s_n(i, j \oplus 1) + (\text{ask}(b_{i,j}) \rightarrow \text{stop}) + (\text{ask}(a_i) \rightarrow s_n(i + 1, j))$ where \oplus means addition modulo 2. We also assume that (1) for each $i, j : a_i \sqsubseteq b_{i,j}$ and (2) for each two different i and $i' : a_i \nsubseteq a_{i'}$, and (3) for each two different (i, j) and $(i', j') : b_{i,j} \nsubseteq b_{i',j'}$.

Let $IS = \{s_n(0, 0)\}$. Figure 3.5 shows the transitions for the states in $Config(IS)$. One can verify that the size of IS^* is indeed exponential in the number of transitions between the states of $Config(IS)$.

Since Algorithm 3.3.1 computes IS^* the above construction shows that on some inputs Algorithm 3.3.1 take at least exponential time. We conclude by stating an upper-bound on the execution time of Algorithm 3.3.1.

Theorem 3.3.3 Let n be the size of the set of states $Config(IS)$ and let m be the number of transitions between those states. Then $n \times 2^{O(m)} \times f_C$ is an upper bound for the running time of Algorithm 3.3.1.

Proof Let N be the size of the set of states IS^* and let M be the number of transitions between those states. One can verify that each state s in IS^* corresponds to a state of s' in $Config(IS)$ so that s and s' have the same process and the store of s results from some least upper bound of the stores in the transitions between the states of $Config(IS)$. Hence, N is bounded by $O(n \times 2^m)$. Similarly, we can conclude that M is bounded by $O(m \times 2^m)$. Notice that we need to check for \succ_D
in each transition (between the states) in IS^*. With the help of Corollary 3.3.1 we conclude that constructing IS^* takes $O(f_C \times m \times 2^m)$ time.

Let N be the size of the set of states IS^* and let M be the number of transitions between those states. Following the implementation of [KS83] and taking into account the checks for irredundancy we can obtain a $O(NM^3)$ time bound for the overall executions of the iterations of Algorithm 3.3.1. From the above upper-bounds for N and M it follows that $n \times 2^{O(m)} \times f_C$ is indeed an upper bound for the time execution of Algorithm 3.3.1.

Figure 3.5: Transitions for $s_n(0, 0)$ as in Definition 3.3.2.

3.4 Summary of Contributions and Related Work

In this Chapter we introduced an algorithm to verify saturated barbed bisimilarity for ccp, a new notion of strong bisimilarity for concurrent constraint programming. To the best of our knowledge, this is the first algorithm for the automatic verification of a ccp program equivalence. We do this by building upon the results of [BM09], which introduces into the standard partition refinement algorithm a new notion of behavioural equivalence which corresponds to the notion of saturated barbed bisimilarity, namely irredundant bisimilarity, which allows this al-
3.4. SUMMARY OF CONTRIBUTIONS AND RELATED WORK

Algorithm to calculate the new notion of strong bisimilarity for ccp which as said before is non over-discriminative. We showed that the new algorithm terminates, since any iteration splits blocks and never fuses them. This means that IS^* is finite, and therefore the algorithm terminates in at most $|IS^*|$ iterations.

As said before, [BM09] studies the notion of saturated bisimilarity from a general perspective and thus proposes an abstract checking procedure. Hence, one can say somehow that our partition refinement algorithm for ccp can be regarded as an instance of the one introduced in the aforementioned paper. As told all along this chapter, even though the Minimization Algorithm for Symbolic Bisimilarity focuses mainly on the symbolic semantics for interactive systems, it has a lot to do with the core of our algorithm. More precisely, some notions such as saturated and symbolic bisimilarity have been central for the development of our algorithm. Likewise, regarding the practical point of view, the concept of redundant transitions and the way Bonchi and Montanari compute redundancy and bisimilarity at the same time, is the key to achieve our goal, that is to verify the well-behaved notion of strong bisimilarity presented in Definition 2.4.2 in Section 2.4.
Chapter 4

Reducing Weak to Strong Bisimilarity in CCP

‘Think simple’ as my old master used to say - meaning reduce the whole of its parts into the simplest terms, getting back to first principles.

– Frank Lloyd Wright.

In Chapter 2 we presented weak bisimilarity, a central behavioural equivalence in process calculi which is obtained from the strong case [SR90] by taking into account only the actions that are observable in the system. In Chapter 3 we gave an algorithm based on the partition refinement one [KS83] to check strong bisimilarity for ccp (Definition 2.4.2 in Section 2.4). Typically, the standard partition refinement algorithm can also be used for deciding weak bisimilarity simply by using Milner’s reduction from weak to strong bisimilarity; a technique referred to as saturation (Chapter 3, The algorithmics of bisimilarity in [San11]). In this chapter we demonstrate that, because of its labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence.
4.1 Background

4.1.1 Reducing Weak to Strong Bisimilarity

We shall briefly present the standard way for computing weak bisimilarity [Mil80] by means of the partition refinement algorithm [KS83] and the saturation method proposed by Milner [Mil80].

A major dichotomy among behavioural equivalences concerns the standard notions of strong and weak equivalences. In strong equivalences, all the transitions performed by a system are deemed observable. In weak equivalences, instead, internal transitions (usually denoted by τ) are unobservable. On the one hand, weak equivalences [Mil80] are more abstract (and thus closer to the intuitive notion of behaviour); on the other hand, strong equivalences [Mil80] are usually much easier to be checked (for instance, in [LPSS11], a standard strong equivalence which is computable for a Turing complete formalism is introduced).

The standard notion of strong bisimilarity [Mil80] is one of the most studied behavioral equivalence and many algorithms (e.g., [VM94, Fer89, FGM+98]) have been developed to check whether two systems are equivalent up to this definition of strong bisimilarity. Among these, the partition refinement algorithm [KS83] is one of the best known.

Weak bisimilarity [Mil80] can be computed by reducing it to strong bisimilarity [Mil80]. Given an LTS $a \rightarrow$, one can build \Rightarrow as follows.

\[
\begin{align*}
P & \xrightarrow{a} Q & P & \xrightarrow{\tau} P & P & \xrightarrow{\tau} P \\
P & \Rightarrow Q & P & \Rightarrow P & P & \Rightarrow P
\end{align*}
\]

Since weak bisimilarity [Mil80] on $a \rightarrow$ coincides with strong bisimilarity [Mil80] on \Rightarrow, then one can check weak bisimilarity with the algorithms for strong bisimilarity on the new LTS $a \Rightarrow$.

In this Chapter, first we show that the standard method for reducing weak to strong bisimilarity (see Chapter 3 of [San11], [Mil80] or [Mil99]) does not work for ccp and then we provide a way out of the impasse. Let us recall Section 2.3
where a ccp transition is:

\[\gamma \xrightarrow{\alpha} \gamma' \]

where \(\gamma, \gamma' \) are configurations and \(\alpha \) is the label that represents a minimal information (from the environment) that needs to be added to the store of configuration \(\gamma \) to evolve from \(\gamma \) into \(\gamma' \). Therefore, our solution can be readily explained by observing that the labels in the LTS of a ccp agent are constraints (in other words, they are “the minimal constraints” that the store should satisfy in order to make the agent progress). These constraints form a lattice where the least upper bound (denoted by \(\sqcup \) intuitively corresponds to conjunction and the bottom element is the constraint \text{true} (as expected, transitions labeled by \text{true} are internal transitions, corresponding to the \(\tau \) moves in standard process calculi). Now, rather than closing the transitions just with respect to \text{true}, we need to close them w.r.t. all the constraints. Formally we build the new LTS with the following rules.

\[
\begin{align*}
\gamma \xrightarrow{a} \gamma' \\
\gamma \xrightarrow{\alpha} \gamma' \quad \quad \quad \quad \gamma \xrightarrow{b} \gamma' \\
\gamma \xrightarrow{\alpha} \gamma' \quad \quad \quad \quad \gamma \xrightarrow{\tau} \gamma \\
\gamma \xrightarrow{a \sqcup b} \gamma' \\
\end{align*}
\]

Note that, since \(\sqcup \) is idempotent, if the original LTS \(\xrightarrow{a} \) has finitely many transitions, then also \(\xrightarrow{\alpha} \) is finite. This allows us to use the Algorithm 3.3.1 in Section 3.3 to check weak bisimilarity on (the finite fragment) of concurrent constraint programming. We have implemented this procedure in a tool that is available at http://www.lix.polytechnique.fr/~andresaristii/checkers/. To the best of our knowledge, this is the first tool for checking weak equivalence of ccp programs.

Standard Reduction from Weak to Strong Bismilarity

As pointed out in the literature (Chapter 3 from [SR12]), in order to compute weak bisimilarity [Mil80] we can use the partition refinement introduced in Section 3.1.1. The idea is to start from the graph generated via the operational semantics and then saturate it using the rules described in Table 4.1 to produce a new labeled relation \(\equiv \). Recall that \(\rightarrow^* \) is the reflexive and transitive closure of the relation
4.1. BACKGROUND

Now the problem whether two states are weakly bisimiliar can be reduced to checking whether they are strongly bisimilar w.r.t. \Rightarrow using the ccp-partition refinement algorithm in Section 3.3. As we will show later on, this approach does not work in a formalism like concurrent constraint programming. We shall see that the problem involves the ccp transition labels which, being constraints, can be arbitrary combined using the lub operation \sqcup to form a new one. Such a situation does not arise in CCS-like labeled transitions.

$$\begin{array}{c|c|c}
\text{MR1} & \gamma \xrightarrow{\alpha} \gamma' & \text{MR2} \\
\gamma \Rightarrow \gamma' & \gamma \xrightarrow{\text{true}} \gamma & \gamma \xrightarrow{\text{true}} \gamma' \\
\text{MR3} & \gamma_1 \xrightarrow{\alpha} \gamma_2 \xrightarrow{\text{true}} \gamma' & \\
\end{array}$$

Table 4.1: Milner’s Saturation Method

Notation 4.1.1 When the label of a transition is true we will omit it. Namely, henceforth we will use $\gamma \longrightarrow \gamma'$ and $\gamma \Rightarrow \gamma'$ to denote $\gamma \xrightarrow{\text{true}} \gamma'$ and $\gamma \xrightarrow{\text{true}} \gamma'$.

Recall that the labeled semantics in Section 2.3 can be related to the reduction semantics in Section 2.1.3 via the lemmata: Lemma 3.2.1 (soundness) and Lemma 3.2.2 (completeness). (See Section 2.4). The first one deals with the fact that if a process is able to perform an action using some (minimal) information from the environment, then providing such information to the process (in its store) will allow to perform a reduction instead. Now completeness goes from reductions to labeled transitions: if a configuration can perform a reduction then the idea is that one could use a piece of its store as a label, and the process should be able to arrive to the same result by means of a labeled transition. In this case, such label might not be exactly the piece of information we took from the store but something smaller, thus the resulting store could also be smaller. We must mention that Lemma 3.2.1 and Lemma 3.2.2 are essential for proving the correspondence between the alternative notions of saturated strong barbed bisimilarity in ccp (see Definition 2.2.2 in Section 2.2), symbolic bisimilarity (see Definition 3.2.6 in Section 3.2.6) and irredudant bisimilarity (see Definition 3.2.7 in Section 3.2.6). As a matter of fact there is an arising problem we must deal with. Completeness does
not hold when we reduce weak bisimilarity for ccp into the strong one by means of using Milner’s saturation method, i.e., replacing \rightarrow with \Rightarrow in Table 4.1. Henceforth, we will show that the standard reduction from weak to strong does not work.

Incompleteness of Milner’s Saturation Method in CCP

As mentioned at the beginning of this section, the standard approach for deciding weak equivalences is to add some transitions to the original processes, so-called *saturation*, and then check for the strong equivalence. In calculi like CCS, such saturation consists in forgetting about the internal actions that make part of a sequence containing one observable action (Table 4.1). However, for ccp this method does not work. The problem is that the relation proposed by Milner is not complete for ccp, hence the relation among the saturated, symbolic and irredundant equivalences is broken. In the next section we will provide a stronger saturation, which is complete, and allows us to use the ccp partition refinement to compute \approx_{sb}.

Let us show why Milner’s approach does not work. First, we need to introduce formally the concept of *completeness* for a given relation.

Definition 4.1.1 We say that a relation $\beta \subseteq \text{Conf} \times \text{Con}_0 \times \text{Conf}$ is complete if whenever $(\langle P, c \sqcup a \rangle, \text{true}, \langle P', c' \rangle) \in \beta$ then there exist $\alpha, b \in \text{Con}_0$ s.t. $\langle P, c \rangle \alpha \Rightarrow \langle P', c'' \rangle$ where $\alpha \sqcup b = a$ and $c'' \sqcup b = c'$.

Notice that \rightarrow (see Table 2.1 in Section 2.1.3 for the definition of this relation) is complete (see Lemma 3.2.2). Now Milner’s method defines a new relation \Rightarrow using the rules in Table 4.1 but it turns out not to be complete.

Proposition 4.1.1 The relation \Rightarrow defined in Table 4.1 is not complete.

Proof We will show a counter-example where the completeness for \Rightarrow does not hold. Let $P = \text{ask} \alpha \rightarrow (\text{ask} \beta \rightarrow \text{stop})$ and $d = \alpha \sqcup \beta$. Now consider the transition $\langle P, d \rangle \Rightarrow \langle \text{stop}, d \rangle$ and let us apply the completeness lemma, we can take $c = \text{true}$ and $a = \alpha \sqcup \beta$, therefore by completeness there must exist b and λ s.t. $\langle P, \text{true} \rangle \overset{\lambda}{\Rightarrow} \langle \text{stop}, c'' \rangle$ where $\lambda \sqcup b = \alpha \sqcup \beta$ and $c'' \sqcup b = d$. However,
notice that the only transition possible is \((P, \text{true}) \xrightarrow{\alpha} (\text{ask } \beta \rightarrow \text{stop}, \alpha) \), hence completeness does not hold since there is no transition from \((P, \text{true}) \) to \((\text{stop}, c'') \) for some \(c'' \). Figure 4.1 illustrates the problem.

\[
\begin{align*}
(\text{ask } \alpha \rightarrow (\text{ask } \beta \rightarrow \text{stop}), \alpha \sqcup \beta) & \xrightarrow{\alpha} (\text{ask } \beta \rightarrow \text{stop}, \alpha \sqcup \beta) \\
(\text{ask } \beta \rightarrow \text{stop}, \alpha \sqcup \beta) & \xrightarrow{\beta} (\text{stop}, \alpha \sqcup \beta)
\end{align*}
\]

Figure 4.1: Counterexample for Completeness using Milner’s Sat. Method.
(Cycles from MR2 are omitted). Both graphs are obtained by applying the rules in Table 4.1

We can now use this fact to see why the method does not work for computing \(\approx_{sb} \) (see Definition 2.2.2 in Section 2.2.1) using the ccp partition refinement algorithm. First, let us redefine some concepts using the new relation \(\Rightarrow \). Because of condition (i) in \(\approx_{sb} \), we need a new definition of barbs, namely weak barbs w.r.t. \(\Rightarrow \).

Definition 4.1.2 (Weak barb w.r.t. \(\Rightarrow \)) We say \(\gamma \) has a weak barb \(e \) w.r.t. \(\Rightarrow \) (written \(\gamma \updownarrow e \)) if \(\gamma \xrightarrow{\Rightarrow}^* \gamma' \downarrow e \).

Using this notion, we introduce Symbolic and Irredundant bisimilarity w.r.t. \(\Rightarrow \), denoted by \(\sim_{sym}^{\Rightarrow} \) and \(\sim_{I}^{\Rightarrow} \) respectively. They are defined as in Definition 3.2.6 and Definition 3.2.7 in Section 3.2.6, where in condition (i) weak barbs \(\downarrow \) are replaced with \(\updownarrow \) and in condition (ii) the relation is now \(\Rightarrow \). More precisely:

Definition 4.1.3 (Symbolic Bisimilarity over \(\Rightarrow \)) A symbolic bisimulation is a symmetric relation \(\mathcal{R} \) on configurations s.t. whenever \((\gamma_1, \gamma_2) \in \mathcal{R} \) with \(\gamma_1 = (P, c) \) and \(\gamma_2 = (Q, d) \):

(i) if \(\gamma_1 \updownarrow e \) then \(\gamma_2 \updownarrow e \).

(ii) if \((P, c) \xrightarrow{\alpha} (P', c') \) then there exists a transition \(t = (Q, d) \xrightarrow{\beta} (Q', d'') \) s.t. \(t \vdash_D (Q, d) \xrightarrow{\alpha} (Q', d') \) and \((P', c') \mathcal{R} (Q', d') \)
We say that \(\gamma_1 \) and \(\gamma_2 \) are symbolic bisimilar over \(\Rightarrow \) \((\gamma_1 \sim_{sb} \gamma_2)\) if there exists a symbolic bisimulation over a relation \(\mathcal{R} \) which is a symbolic bisimulation over \(\Rightarrow \) s.t. \((\gamma_1, \gamma_2) \in \mathcal{R}\).

Definition 4.1.4 (Irredundant Bisimilarity over \(\Rightarrow \)) An irredundant bisimulation is a symmetric relation \(\mathcal{R} \) on configurations s.t. whenever \((\gamma_1, \gamma_2) \in \mathcal{R}\):

(i) if \(\gamma_1 \not{\sim}_{e} \) then \(\gamma_2 \not{\sim}_{e} \),

(ii) if \(\gamma_1 \xrightarrow{\alpha} \gamma'_1 \) and it is irredundant in \(\mathcal{R} \) then there exists \(\gamma'_2 \) s.t. \(\gamma_2 \xrightarrow{\alpha} \gamma'_2 \) and \((\gamma'_1, \gamma'_2) \in \mathcal{R}\).

We say that \(\gamma_1 \) and \(\gamma_2 \) are irredundant bisimilar over \(\Rightarrow \) \((\gamma_1 \sim_{I} \gamma_2)\) if there exists an irredundant bisimulation over a relation \(\mathcal{R} \) which is an irredundant bisimulation over \(\Rightarrow \) s.t. \((\gamma_1, \gamma_2) \in \mathcal{R}\).

One would expect that since \(\sim_{sb} = \sim_{sym} = \sim_{I} \) then the natural consequence will be that \(\sim_{sb} = \sim_{sym} = \sim_{I} \), given that these new notions are supposed to be the weak versions of the former ones when using the saturation method. However, completeness is necessary for proving \(\sim_{sb} = \sim_{sym} = \sim_{I} \), and from Proposition 4.1.1 we know that \(\Rightarrow \) is not complete hence we might expect \(\sim_{sb} \neq \sim_{sym} \neq \sim_{I} \). In fact, the following counter-example shows these inequalities.

Example 4.1.1 Let \(P, P' \) and \(Q \) as in Figure 4.3 The figure shows \(\langle P, \text{true} \rangle \) and \(\langle Q, \text{true} \rangle \) after we saturate them using Milner’s method. First, notice that \(\langle P, \text{true} \rangle \sim_{sb} \langle Q, \text{true} \rangle \), since there exists a saturated weak barbed bisimulation \(\mathcal{R} = \{(\langle P, \text{true} \rangle, \langle Q, \text{true} \rangle)\} \cup \text{id} \). However, \(\langle P, \text{true} \rangle \not{\sim_{I}} \langle Q, \text{true} \rangle \). To prove that, we need to pick an irredundant transition from \(\langle P, \text{true} \rangle \) or \(\langle Q, \text{true} \rangle \) (after saturation) s.t. the other cannot match. Thus, take \(\langle Q, \text{true} \rangle \xrightarrow{\alpha \cup \beta} \langle \text{tell}(c), \alpha \cup \beta \rangle \) which is irredundant and given that \(\langle P, \text{true} \rangle \) does not have a transition with \(\alpha \cup \beta \) then we know that there is no irredundant bisimulation containing \(\{(\langle P, \text{true} \rangle, \langle Q, \text{true} \rangle)\} \) therefore \(\langle P, \text{true} \rangle \not{\sim_{I}} \langle Q, \text{true} \rangle \). Using the same reasoning we can also show that \(\sim_{sb} \neq \sim_{sym} \).
Let $P = \text{ask}\ (\alpha) \rightarrow P'$, $P' = (\text{ask}\ (\beta) \rightarrow \text{tell}(c)) + (\text{ask}\ (\text{true}) \rightarrow \text{tell}(d))$ and $Q = P + (\text{ask}\ (\alpha \sqcup \beta) \rightarrow \text{tell}(c))$. The figure represents $\langle P, \text{true} \rangle$ and $\langle Q, \text{true} \rangle$ after being saturated using Milner’s method (cycles from MR2 omitted). The red dashed transitions are the new ones added by the rules in Table 4.1. The blue dotted transition is the (irredundant) one that $\langle Q, \text{true} \rangle$ can take but $\langle P, \text{true} \rangle$ cannot match, therefore showing that $\langle P, \text{true} \rangle \not\sim I \Rightarrow I\langle Q, \text{true} \rangle$.

Figure 4.2: Transitions from $\langle P, \text{true} \rangle$ and $\langle Q, \text{true} \rangle$.

Figure 4.3: Saturated Transitions from $\langle P, \text{true} \rangle$ and $\langle Q, \text{true} \rangle$.
4.2 Defining a New Saturation Method for CCP

In this section we shall provide a method for deciding weak bisimilarity (\(\approx\)) in ccp. As shown in Section 4.1.1, the usual method for deciding weak bisimilarity does not work for ccp. We shall proceed by redefining \(\Rightarrow\) in such a way that it is sound and complete for this language. Then we prove that, w.r.t. \(\Rightarrow\), symbolic and irredundant bisimilarity coincide with \(\approx_{sb}\), i.e. \(\approx_{sb} = \approx_{sym} = \approx_{I}\). We therefore conclude that the partition refinement algorithm in Section 3.3 can be used to verify \(\approx_{sb}\) w.r.t. \(\Rightarrow\).

If we analyze the counter-example to completeness (see Figure 4.1), one can see that the problem arises because of the nature of the labels in ccp, namely using this method \(\langle\text{ask } \alpha \rightarrow (\text{ask } \beta \rightarrow \text{stop}), \text{true} \rangle\) does not have a transition with \(\alpha \sqcup \beta\) to \(\langle\text{stop}, \alpha \sqcup \beta \rangle\), hence that fact can be exploited to break the relation among the weak equivalences. Following this reasoning, instead of only forgetting about the silent actions we also take into account that labels in ccp can be added together. Thus we have a new rule that creates a new transition for each two consecutive ones, whose label is the lub of the labels in them. This method can also be thought as the reflexive and transitive closure of the labeled relation \((\xrightarrow{\alpha})\). This relation turns out to be sound and complete and it can be used to decide \(\approx_{sb}\).

4.2.1 A New Saturation Method

Formally, our new relation \(\Rightarrow\) is defined by the rules in Table 4.2. For simplicity, we are using the same arrow \(\Rightarrow\) to denote this relation. Consequently the definitions of weak barbs, symbolic and irredundant bisimilarity are now interpreted w.r.t. \(\Rightarrow\) (\(\approx_{sym}\) and \(\approx_{I}\) respectively).

<table>
<thead>
<tr>
<th>R-Tau</th>
<th>(\gamma \Rightarrow \gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Label</td>
<td>(\gamma \xrightarrow{\alpha} \gamma')</td>
</tr>
<tr>
<td>R-Add</td>
<td>(\gamma \xrightarrow{\alpha \sqcup \beta} \gamma'')</td>
</tr>
</tbody>
</table>

Table 4.2: New Labeled Transition System.
4.2. DEFINING A NEW SATURATION METHOD FOR CCP

We now prove that \downarrow coincides with \downarrow, given that a transition under the new relation corresponds to a sequence of reductions.

Lemma 4.2.1 $\gamma \rightarrow^* \gamma'$ iff $\gamma \Rightarrow \gamma'$.

Proof (\Rightarrow) We can decompose $\gamma \rightarrow^* \gamma'$ as follows $\gamma \rightarrow \gamma_1 \rightarrow \ldots \rightarrow \gamma_i \rightarrow \gamma'$, now we proceed by induction on i. The base case is $i = 0$, then $\gamma \rightarrow \gamma'$ and by rule R-Label we have $\gamma \Rightarrow \gamma'$. For the inductive step, first we have by induction hypothesis that $\gamma \rightarrow^i \gamma_i$ implies $\gamma \Rightarrow \gamma_i$ (1), on the other hand, by rule R-Label on $\gamma_i \rightarrow \gamma'$ we can deduce $\gamma_i \Rightarrow \gamma'$ (2). Finally by R-Add on (1) and (2) $\gamma \Rightarrow \gamma'$.

(\Leftarrow) We proceed by induction on the depth of the inference of $\gamma \Rightarrow \gamma'$. First, using R-Tau, we can directly conclude $\gamma \rightarrow^* \gamma$. Secondly, using R-Label, $\gamma \Rightarrow \gamma'$ implies that $\gamma \rightarrow \gamma'$. Finally, using R-Add, we get $\gamma \Rightarrow \gamma'' \Rightarrow \gamma'$ and by induction hypothesis this means that $\gamma \rightarrow^* \gamma'' \rightarrow^* \gamma'$ therefore $\gamma \rightarrow^* \gamma'$.

Using this lemma, it is straightforward to see that the notions of weak barbs coincide.

Lemma 4.2.2 $\gamma \downarrow_e \iff \gamma \downarrow_e$.

Proof First, let us assume that $\gamma \downarrow_e$ then by definition $\gamma \rightarrow^* \gamma' \downarrow_e$, and from *Lemma 4.2.1* we know that $\gamma \Rightarrow \gamma' \downarrow_e$, hence $\gamma \downarrow_e$. On the other hand, if $\gamma \downarrow_e$ then by definition $\gamma \Rightarrow \gamma' \downarrow_e$, if we decompose these transitions then $\gamma \Rightarrow \ldots \Rightarrow \gamma'$, and from *Lemma 4.2.1*, $\gamma \rightarrow^* \ldots \rightarrow^* \gamma'$, therefore $\gamma \rightarrow^* \gamma' \downarrow_e$, finally $\gamma \downarrow_e$.

An important property that the new labeled transition system defined by the new relation \Rightarrow must fulfill is that it must be finitely branching, if \rightarrow is also finitely branching. We prove this next.

The following set represents the possible results after performing one step starting from a given configuration γ and using a relation \rightarrow. Such set contains pairs of the form $[\gamma', \alpha]$ in which the first item (γ') is the configuration reached and the second one (α) is the label used for that purpose. Formally we have:
4.2. DEFINING A NEW SATURATION METHOD FOR CCP

Definition 4.2.1 (Single-step Reachable Pairs) The set of Single-step reachable pairs is defined as
\[\text{Reach}(\gamma, \rightarrow) = \{[\gamma', \alpha] \mid \gamma \xrightarrow{\alpha} \gamma'\}.\]

We can extend this definition to consider more than one step at a time. We will call this new set \(\text{Reach}^*(\gamma, \rightarrow)\) and it is defined below.

Definition 4.2.2 (Reachable Pairs) The set of reachable pairs is defined as
\[\text{Reach}^*(\gamma, \rightarrow) = \{[\gamma', \alpha] \mid \exists \alpha_1, \ldots, \alpha_n. \gamma \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} \gamma' \land \alpha = \alpha_n\}.\]

For convenience, in order to project the first or the second item of such pairs we will define the functions \(C\) and \(L\) which extract the configuration and the label respectively (hence the name).

Definition 4.2.3 The functions \(C\) and \(L\) are defined as follows, \(C([\gamma, \alpha]) = \{\gamma\}\) and \(L([\gamma, \alpha]) = \{\alpha\}\). They extend to set of pairs as expected, namely given a set of pairs \(S = \{p_1, \ldots\}\) then \(L(S) = \bigcup_{p_i \in S} L(p_i)\) and similarly for \(C\).

The first step to prove that \(\Rightarrow\) is finitely branching is to assume that its strong version is indeed finitely branching.

Definition 4.2.4 We say that a relation \(\rightsquigarrow\) is finitely branching if for any \(\gamma\),
\[|\text{Reach}(\gamma, \rightsquigarrow)| < \infty.\]

Now, under the assumption that \(\rightarrow\) is finitely branching, we can observe that if the amount of configurations that can be reached (in one or more steps) is finite, then the amount of labels should also be finite.

Lemma 4.2.3 Suppose that \(\rightarrow\) is finitely branching, then for any \(\gamma\), if
\[|C(\text{Reach}^*(\gamma, \rightarrow))| < \infty\text{ then }|L(\text{Reach}^*(\gamma, \rightarrow))| < \infty.\]

Proof From the hypothesis we know that there are finite \(\gamma'\) that can be reached, and using the finitely branching assumption we can see that from each of those \(\gamma'\) there are only finitely possible \(\alpha\), hence the conclusion.

Finally, the nature of the labels in ccp is one of the reasons why our new transition system works. The following Lemma illustrates the fact that when generating new labels, with the rule \(R\text{-Add}\) we will not add an infinite amount of those. In the following, \(C^*\sqcup\) will represent the Kleene closure over \(\sqcup\) of the set of constraints \(C\).
Lemma 4.2.4 Given a set of constraints C, if $|C| < \infty$ then $|C^{*\sqcup}| < \infty$.

Proof Follows from the idempotency of \sqcup ($c \sqcup c = c$).

Using these elements, the finitely branching of \Longrightarrow follows directly under the assumption that \rightarrow is finitely branching.

Lemma 4.2.5 Assume that \rightarrow is finitely branching, then for any γ, if $|C(\text{Reach}^*(\gamma, \rightarrow))| < \infty$ then for any γ, \Longrightarrow is finitely branching.

Proof (1) One can verify that $C(\text{Reach}^*(\gamma, \Longrightarrow)) = C(\text{Reach}^*(\gamma, \rightarrow))$ hence from the hypothesis, $|C(\text{Reach}^*(\gamma, \Longrightarrow))| < \infty$.

(2) From the hypothesis and from Lemma 4.2.3 $|L(\text{Reach}(\gamma, \Longrightarrow))| < \infty$.

(3) One can check that $L(\text{Reach}(\gamma, \Longrightarrow)) \subseteq L(\text{Reach}^*(\gamma, \rightarrow))^{*\sqcup}$ therefore from Lemma 4.2.4 and (2) $|L(\text{Reach}(\gamma, \Longrightarrow))| < \infty$.

Finally, from (1) and (3) we can conclude that for any γ, \Longrightarrow is finitely branching.

4.2.2 A Remark about our Saturation in CCS

We assume that the reader is familiar with CCS [Mil80]. In this section the transitions, processes and relations are understood in the context of CCS. It is worth noticing that we could use the saturation method mentioned in the previous section for other formalisms like CCS, but unlike in ccp it would not work as intended. More precisely it will generate a transition system that is not finitely branching. Now, the actions that a process can perform need to be sequences of actions. Moreover, the rules we defined in Table 4.2 must be modified, and the result is in Table 4.3 Essentially, the lub operation (\sqcup) is replaced by the concatenation of actions given that now the labels used for are sequences of actions.
4.2. DEFINING A NEW SATURATION METHOD FOR CCP

Here \(s = a_1 \ldots a_n \), is a sequence of observable actions, hence for the Rule RCCS3 we will take \(\tau.s = \tau.s = s \).

Table 4.3: New Labeled Transition System for CCS.

Using these rules we can now define weak bisimilarity in terms of the new relation \(\Rightarrow \) as follows.

Definition 4.2.5 (CCS-Weak Bisimilarity) A symmetric relation \(\mathcal{R} \) is a CCS-weak bisimulation if for every \((P, Q) \in \mathcal{R} \):

- If \(P \xrightarrow{s} P' \) then there exists \(Q' \) s.t. \(Q \xrightarrow{s} Q' \) and \((P', Q') \in \mathcal{R} \).

We say that \(P \) and \(Q \) are CCS-weakly bisimilar \((P \approx Q) \) iff there is a CSS-weak bisimulation containing \((P, Q) \).

This definition resembles the standard definition of strong bisimilarity, hence we could use the procedure to verify the strong version under \(\Rightarrow \) in order to verify the weak one.

Now the problem is that by applying the rules in Table 4.3, even for a finite LTS, we could end up adding an infinite amount of transitions. I.e., \(\Rightarrow \) in Table 4.3.

The following example illustrates the problem.

Example 4.2.1 Let us take a very simple recursive CCS process:

\[P = a.P \]

We can easily see that this process is finitely branching because it just has one transition from the same state \(P \) to itself labeled by \(a \). (See Figure 4.4).
4.2. DEFINING A NEW SATURATION METHOD FOR CCP

Figure 4.4: CCS Process \(P = a.P \) (finitely branching).

But if we apply the rules in Table 4.3 even for Example 4.2.1 we could end up adding an infinite amount of transitions, i.e., infinitely branching (see Figure 4.5). Notice that this is not the case for our ccp transition \(\rightarrow \) defined in Table 4.2 (see Lemma 4.2.5).

Figure 4.5: Saturated CCS Process \(P = a.P \) (infinitely branching).

4.2.3 Soundness and Completeness

As mentioned before, soundness and completeness of the relation are the core properties when proving \(\sim_{sb} = \sim_{sym} = \sim_1 \). We now proceed to show that our method enjoys these properties and they will allow us to prove the correspondence among the equivalences for the weak case.

In Definition 4.1.1 we have introduced the formal definition of completeness, now we shall introduce the notion of soundness in Definition 4.2.6.
Definition 4.2.6 We say that a relation $\mathcal{R} \subseteq \text{Conf} \times \text{Conf} \times \text{Conf}_0$ is sound whenever $\langle P, c \rangle \mathcal{R} \langle P', c' \rangle$ then $\langle P, c \sqcup \alpha \rangle \mathcal{R} \langle P', c' \rangle$.

After introducing Definition 4.1.1 and Definition 4.2.6 we prove these properties for the relation \Rightarrow.

Lemma 4.2.6 (Soundness of \Rightarrow) The relation \Rightarrow defined in Table 4.2 is sound.

Proof We proceed by induction on the depth of the inference of $\langle P, c \rangle \mathcal{R} \langle P', c' \rangle$.

- Using $\textbf{R-Tau}$ we have $\langle P, c \rangle \Rightarrow \langle P', c' \rangle$ and the result follows directly given that $\alpha = \text{true}$.

- Using $\textbf{R-Label}$ we have $\langle P, c \rangle \Rightarrow \langle P', c' \rangle$ then $\langle P, c \sqcup \alpha \rangle \Rightarrow \langle P', c' \rangle$. By Lemma 3.2.1 we get $\langle P, c \sqcup \alpha \rangle \Rightarrow \langle P', c' \rangle$.

- Using $\textbf{R-Add}$ then we have $\langle P, c \rangle \Rightarrow \langle P', c' \rangle$ then $\langle P', c' \sqcup \beta \rangle \Rightarrow \langle P', c' \rangle$ where $\beta \sqcup \lambda = \alpha$. By induction hypothesis, $\langle P, c \sqcup \beta \rangle \Rightarrow \langle P', c' \rangle$ (1) and $\langle P', c' \sqcup \lambda \rangle \Rightarrow \langle P', c' \rangle$ (2). By monotonicity on (1), $\langle P, c \sqcup \beta \sqcup \lambda \rangle \Rightarrow \langle P', c' \rangle$ and by rule $\textbf{R-Add}$ on this transition and (2) then, given that $\beta \sqcup \lambda = \alpha$, we obtain $\langle P, c \sqcup \alpha \rangle \Rightarrow \langle P', c' \rangle$.

Lemma 4.2.7 (Completeness of \Rightarrow) Relation \Rightarrow defined in Table 4.2 is complete.

Proof Assuming that $\langle P, c \sqcup a \rangle \Rightarrow \langle P', c' \rangle$ then, from Lemma 4.2.1 we can say that $\langle P, c \sqcup a \rangle \Rightarrow^* \langle P', c' \rangle$ which can be written as $\langle P, c \sqcup a \rangle \Rightarrow \langle P_1, c_1 \rangle \Rightarrow \ldots \Rightarrow \langle P_i, c_i \rangle \Rightarrow \langle P', c' \rangle$, we will proceed by induction on i.

- (Base Case) Assuming $i = 0$ then $\langle P, c \sqcup a \rangle \Rightarrow \langle P', c' \rangle$ and the result follows directly from Lemma 3.2.2 and $\textbf{R-Label}$.

- (Induction) Let us assume that $\langle P, c \sqcup a \rangle \Rightarrow \langle P', c' \rangle$ then by induction hypothesis there exist β and b' s.t. $\langle P, c \rangle \Rightarrow \langle P_b, c_b \rangle$ (1) where $\beta \sqcup b' = a$ and $c_b \sqcup b' = c_i$. Now by completeness on the last transition $\langle P_b, c_b \sqcup b' \rangle \Rightarrow \langle P', c' \rangle$, there exists λ and b'' s.t. $\langle P_b, c_b \rangle \Rightarrow \langle P', c' \rangle$.

...
\[\langle P', c'' \rangle \text{ where } \lambda \sqcup b'' = b' \text{ and } c'' \sqcup b'' = c', \text{ thus by rule R-Label we have } \langle P, c' \rangle \xrightarrow{\lambda} \langle P', c'' \rangle \] (2). We can now proceed to apply rule R-Add on (1) and (2) to obtain the transition \[\langle P, c \rangle \xrightarrow{\alpha} \langle P', c'' \rangle \] where \(\alpha = b \sqcup \lambda \) and finally take \(b = b'' \), therefore the conditions hold \(\alpha \sqcup b = \beta \sqcup \lambda \sqcup b'' = a \) and \(c'' \sqcup b = c'' \sqcup b'' = c' \).

4.3 Correspondence between \(\approx_{sb}, \sim_{sym}, \sim_I \)

We show our main result of this chapter, a method for deciding \(\approx_{sb} \). Recall that \(\approx_{sb} \) is the standard weak bisimilarity for ccp (see Section 2), and it is defined in terms of \(\rightarrow \), therefore it does not depend on \(\Rightarrow \). Roughly, we start from the fact that the ccp partition refinement is able to check whether two configurations are irredundant bisimilar \(\sim_I \). Such configurations evolve according to a relation \(\rightarrow \), then we provide a new way for them to evolve \(\Rightarrow \) and we use the same algorithm to compute now \(\sim_I \Rightarrow \). Here we prove that \(\approx_{sb} = \sim_{sym} = \sim_I \Rightarrow \) hence we give a reduction from \(\approx_{sb} \) to \(\sim_I \Rightarrow \) which has an effective decision procedure.

Given that the relation \(\rightarrow \) is sound and complete (see Lemma 3.2.1 and Lemma 3.2.2 in Section 3.2), then there exists a correspondence between the symbolic and irredundant bisimilarity over \(\rightarrow \) shown in Theorem 3.2.3 in Section 3.2.6. From this statement and since we have proven that new relation \(\Rightarrow \) is sound and complete, a correspondence between the symbolic and irredundant bisimilarity over \(\Rightarrow \) exists.

Corollary 4.3.1 \(\gamma \sim_{sym} \gamma' \iff \gamma \sim_I \Rightarrow \gamma' \)

Finally, in the next two lemmata, we prove that \(\approx_{sb} = \sim_{sym} \).

Lemma 4.3.1 If \(\gamma \approx_{sb} \gamma' \) then \(\gamma \sim_{sym} \gamma' \)

Proof We need to prove that \(R = \{ \langle (P, c), (Q, d) \rangle \mid \langle P, c \rangle \approx_{sb} \langle Q, d \rangle \} \) is a symbolic bisimulation over \(\Rightarrow \). The first condition (i) of the bisimulation follows directly from Lemma 4.2.2. As for (ii), let us assume that \(\langle P, c \rangle \xrightarrow{\alpha} \langle P', c' \rangle \) then by soundness of \(\Rightarrow \) we have \(\langle P, c \sqcup \alpha \rangle \Rightarrow \langle P', c' \rangle \), now by Lemma 4.2.1 we obtain \(\langle P, c \sqcup \alpha \rangle \Rightarrow^* \langle P', c' \rangle \). Given that \(\langle P, c \rangle \approx_{sb} \langle Q, d \rangle \) then from the latter transition we can conclude that \(\langle Q, d \sqcup \alpha \rangle \Rightarrow^* \langle Q', d' \rangle \) where \(\langle P', c' \rangle \approx_{sb} \langle Q', d' \rangle \),
hence we can use Lemma 4.2.1 again to deduce that $\langle Q, d \uplus \alpha \rangle \Rightarrow \langle Q', d' \rangle$. Finally, by completeness of \Rightarrow, there exist β and b s.t. $t = \langle Q, d \rangle \Rightarrow \langle Q', d'' \rangle$ where $\beta \uplus b = \alpha$ and $d'' \uplus b = d'$, therefore $t \vdash_D \langle Q, d \rangle \Rightarrow \langle Q', d' \rangle$ and $\langle P', c' \rangle \mathcal{R} \langle Q', d' \rangle$.

Lemma 4.3.2 If $\gamma \sim_{sym} \gamma'$ then $\gamma \sim_{sb} \gamma'$

Proof We need to prove that $\mathcal{R} = \{(\langle P, c \uplus a \rangle, \langle Q, d \uplus a \rangle) \mid \langle P, c \rangle \sim_{sym} \langle Q, d \rangle\}$ is a weak saturated bisimulation. First, condition (i) follows from Lemma 4.2.2 and (iii) by definition of \mathcal{R}. Let us prove condition (ii). Assume $\langle P, c \uplus a \rangle \Rightarrow^* \langle P', c' \rangle$ then by Lemma 4.2.1 $\langle P, c \rangle \Rightarrow^* \langle P', c' \rangle$. Now by completeness of \Rightarrow there exist α and b s.t. $\langle P, c \rangle \Rightarrow^* \langle P', c'' \rangle$ where $\alpha \uplus b = a$ and $c'' \uplus b = c'$. Since $\langle P, c \rangle \sim_{sym} \langle Q, d \rangle$ then we know there exists a transition $t = \langle Q, d \rangle \Rightarrow \langle Q', d'' \rangle$ s.t. $t \vdash_D \langle Q, d \rangle \Rightarrow \langle Q', d'' \rangle$ and (a) $\langle P', c' \rangle \Rightarrow^* \langle Q', d'' \rangle$, by definition of \vdash_D there exists b' s.t. $\beta \uplus b' = \alpha$ and $d' \uplus b' = d''$. Using soundness of \Rightarrow on t we get $\langle Q, d \uplus \beta \rangle \Rightarrow \langle Q', d' \rangle$, thus by Lemma 4.2.1 $\langle Q, d \uplus \beta \rangle \Rightarrow^* \langle Q', d' \rangle$ and finally by monotonicity

$$\langle Q, d \uplus \beta \uplus b' \uplus b \rangle \Rightarrow^* \langle Q', d' \uplus b' \uplus b \rangle \tag{4.1}$$

Notice that the initial transition $\langle P, c \uplus a \rangle \Rightarrow^* \langle P', c' \rangle$ can be rewritten as $\langle P, c \uplus a \rangle \Rightarrow^* \langle P', c'' \uplus b \rangle$, therefore using the transition in (4.1), $\langle Q, d \uplus a \rangle \Rightarrow^* \langle Q', d' \uplus b \rangle$, it is left to prove that $\langle P', c'' \uplus b \rangle \mathcal{R} \langle Q', d' \uplus b \rangle$ which follows from (a).

Using Lemma 4.3.1 and Lemma 4.3.2 we obtain the following theorem.

Theorem 4.3.1 $\langle P, c \rangle \sim_{sym} \langle Q, d \rangle$ iff $\langle P, c \rangle \approx_{sb} \langle Q, d \rangle$

From the above results, we conclude that $\approx_{sb} = \approx_I$. Therefore, given that using the ccp partition refinement in combination with \Rightarrow (and \downarrow) we can decide \sim_I, then we can use the same procedure to check whether two configurations are in \approx_{sb}.

4.3. CORRESPONDENCE BETWEEN \approx_{sb}, \approx_{sym}, \approx_I
4.4 Algorithm for the Weak Notion of the CCP Partition Refinement Algorithm

In Section 3.3 introduced Definition 3.3.1 and the closure rules to change the initialization step of the algorithm in order to be able to calculate the weak bisimilarity (\approx) for ccp (we have to change \rightarrow by \Rightarrow in both cases).

Therefore instead of using the function IR of Algorithm 3.3.1, we refine the partitions by employing the function WIR defined as follows:

Definition 4.4.1 (WIR) For all partitions \mathcal{P}, $\gamma_1 \text{ WIR}(\mathcal{P}) \gamma_2$ if

- if $\gamma_1 \xrightarrow{\alpha} \gamma_1'$ is irredundant in \mathcal{P}, then there exists γ_2' s.t. $\gamma_2 \xrightarrow{\alpha} \gamma_2'$ and $\gamma_1' \mathcal{P} \gamma_2'$.

In the computation of $\text{WIR}(\mathcal{P}^n)$ also states that are not reachable from the initial states IS might be needed (these are the ones needed to check redundancy: Read the comment after Definition 3.3.1 in Section 3.3).

Thus we need to change the initialization step (prerefinement) of the algorithm by including in the set IS^*, i.e., all the states that are needed to check redundancy. In this particular case, this is done by using the following closure rules:

\[
\begin{align*}
(W\text{IS}) & \quad \gamma \in \text{IS} & \quad & \gamma \in \text{IS}^* \\
(W\text{RS}) & \quad \gamma_1 \in \text{IS}^* & \quad & \gamma_1 \xrightarrow{\alpha} \gamma_2 & \quad & \gamma_2 \in \text{IS}^* \\
(W\text{RD}) & \quad \gamma \in \text{IS}^* & \quad & \gamma \xrightarrow{\alpha_1} \gamma_1 & \quad & \gamma \xrightarrow{\alpha_2} \gamma_2 & \quad & \gamma \xrightarrow{\alpha_1} \gamma_1 \triangleright \gamma \xrightarrow{\alpha_2} \gamma_3 & \quad & \gamma_3 \in \text{IS}^*
\end{align*}
\]

In Figure 4.6 we design the ccp-weak partition refinement algorithm.
4.4. ALGORITHM FOR THE WEAK NOTION OF THE CCP PARTITION
REFINEMENT ALGORITHM

Now, in Algorithm 4.4.1 we show the way to calculate the weak notion for ccp.

Algorithm 4.4.1 CCP-Partition-Refinement-Weak (IS)

Initialization

1. Compute IS^* with the rules Wis, Wrs and Wrd,

2. $P^0 := \{IS^*_{d1}\} \ldots \{IS^*_{d,n}\}$,

Iteration $P^{n+1} := \text{WIR}(P^n)$

Termination If $P^n = P^{n+1}$ then return P^n
4.5 Summary of Contributions and Related Work

In this chapter, we showed that the relation given by Milner’s saturation method is not complete for ccp. Thus, we pointed out that weak saturated barbed bisimilarity \approx_{sb} introduced in Section 2.2 cannot be computed immediately by using the ccp partition refinement algorithm for (strong) bisimilarity ccp w.r.t. to this last relation. Because of this problem, we then introduced a new relation, which is finitely branching, using a different saturation mechanism, which we showed to be complete for ccp. As a consequence, we also showed that the ccp partition refinement can be used to compute \approx_{sb} using the new relation we have reached by using this new saturation method. Likewise, we have shown that although this new saturation method elaborated for ccp could be used for any other formalisms such as CCS, it would not work as desired because it would generate an infinite branching. To the best of our knowledge, this is also the first approach to verifying weak bisimilarity for ccp in an automatic way by means of any kind of algorithm. As future work, we plan to analyze different calculi with similar transition systems.

Ccp is not the only formalism where weak bisimilarity cannot be naively reduced to the strong one. Probably the first case in literature can be found in [VM94] that introduces an algorithm for checking weak open bisimilarity of π-calculus. This algorithm is rather different from ours, since it is on-the-fly [Fer89] and thus it checks the equivalence of only two given states (while our algorithm, and more generally all algorithms based on partition refinement, check the equivalence of all the states of a given LTS).

Analogous problems to the one discussed in this chapter arise in Petri nets [Sob10, BMM11], in tile transition systems [GM00] and, more generally, in the theory of reactive systems [Jen06] (the interested reader is referred to [Sob12] for an overview). In all these cases, labels form a monoid where the neutral element is the label of internal transitions. Roughly, when reducing from weak to strong bisimilarity, one needs to close the transitions with respect to the composition of the monoid (and not only with respect to the neutral element). However, in all these cases, labels composition is not idempotent (as it is for ccp) and thus a finite LTS might be transformed into an infinite one. For this reason, this procedure applied to the afore mentioned cases is not effective for automatic verification.
Chapter 5

Conclusions

I think and think for months and years. Ninety-nine times, the conclusion is false. The hundredth time I am right.

– Albert Einstein.

In this PhD thesis we introduced labeled semantics and bisimilarity for ccp. Our equivalence characterizes the observational semantics introduced in [SRP91], which is based on limits of infinite computations, by means of a co-inductive definition. It follows from [SRP91] that our bisimilarity coincides with the equivalence induced by the standard closure operators semantics of ccp. Therefore, our weak bisimulation approach represents a novel sound and complete proof technique for observational equivalence in ccp.

Our work is also interesting for the research programme on “labels derivation”. Our labeled semantics can be regarded as an instance of the one introduced at an abstract level in [LM00]. Syntactical bisimulation (Definition 2.4.1) as an instance of the one in [LM00], while strong and weak bisimulations (Definition 2.4.2 and Definition 2.4.3) are instances of those in [BGM09]. Furthermore, syntactical bisimulation intuitively coincides with the one in [SR90], while saturated barbed bisimulation (Definition 2.2.2) with the one in [MPSS95]. Recall that syntactical bisimilarity is too fine grained, while saturated barbed bisimulation requires the relation to be upward closed (and thus, infinite in dimension). Instead, our weak bisimulation is fully abstract and avoids the upward closure. Summarizing, the framework in [BGM09] provides us an abstract approach for deriving a novel
interesting notion of bisimulation.

It is worth noticing that the restriction to the summation-free fragment is only needed for proving the coincidence with \[\text{SRP91}\]. Theorem 2.4.1 in Section 2.4 still holds in the presence of summation. Analogously, we could extend all the definitions to infinite constraints without invalidating these theorems.

Bisimilarity for novel languages featuring the interaction paradigms of both ccp and the π-calculus has been defined in recent work \[\text{BM08, JVP10, JBPV10}\]. Bisimilarity is defined starting from transition systems whose labels represent communications in the style of the π-calculus. Instead we employ barbs on a purely unlabeled semantics. We have shown a correspondence with our semantics, although defining it is not trivial as seen in the completeness and soundness proofs in Section 2.3.

In this dissertation we provided an algorithm for verifying (strong) bisimilarity for ccp by building upon the work in \[\text{BM09}\]. That is, we include into the standard partition refinement algorithm a new behavioural equivalence, namely, irredundant bisimilarity. By showing that this notion corresponds to saturated bisimilarity we are able to prove that this modified partition refinement algorithm indeed verifies our well-behaved approach of strong bisimilarity. We showed that the transition relation given by Milner’s saturation method is not complete for ccp (in the sense of Definition 4.2.7 and as show in Figure 4.1). As a consequence we also showed that weak saturated barbed bisimilarity $\hat{\approx}_{sb}$ cannot be computed using the ccp partition refinement algorithm for (strong) bisimilarity for ccp w.r.t. to this transition relation. We then presented a new transition relation using another saturation mechanism and showed that it is complete for ccp. We also showed that the ccp partition refinement can be used to compute \approx_{sb}, an equivalent relation to $\hat{\approx}$ as shown in Chapter 2 Theorem 2.4.2 using the new transition relation. This is an important issue, since the same piece of code works correctly with both transition relations. To the best of our knowledge, this is the first approach to verifying weak bisimilarity for ccp.

As shown in \[\text{MPSS95}\] there are strong connections between ccp processes and logic formulae. As future work we would like to investigate whether our present results can be adapted to provide a novel characterization of logic equivalence in terms of bisimilarity. Preliminary results show that at least the propo-
sitional fragment, without negation, can be characterized in terms of bisimilarity. Likewise, we plan to investigate other calculi where the nature of their transitions systems gives rise to similar situations regarding weak and strong bisimilarity, in particular tcc [SJG], ntcc [PV01], utcc [OV08] and eccp [KPPV12].
Appendix A

Implementation and Experiments for the CCP Partition Refinement

Perfection (in design) is achieved not when there is nothing more to add, but rather when there is nothing more to take away.

— Antoine de Saint-Exupery.

In this Appendix we give a brief review about the main insights of the implementation and execution of the algorithm for verifying a well-behaved notion of (strong and weak) bisimilarity for ccp. We shall briefly present the programming language used, give a summary of some of the most relevant auxiliary procedures and functions, and present and analyze some examples of families of automata generated by pairs of ccp processes. We present just a brief sample with important information with the purpose of getting an idea of which details affect the performance of the ccp partition refinement algorithm. The cs we are able to handle under this implementation involves the following simple constraints of the form \(\text{var oper num} \), where \(\text{var} \in \text{variables} \), represents a set of variables in the problem; \(\text{oper} \in \{<,>,\leq,\geq,=\} \), represents a set of operators; and \(\text{num} \in [0..99] \), represents the domain of the variables.
A.1 Programming Language

As very well said in [JKOK98, Fer89], several data structures are required to represent states, transitions, classes, splitters, etc. Therefore, in order to implement Algorithm 3.3.1 and Algorithm 4.4.1 the most adequate programming language is an object oriented one. Moreover, the use of classes is important to model ccp, since we can abstract each component of the cs into a class, i.e., constraint, store, configuration, etc. Thus, we choose C++, a very well-known and vastly used language with several application domains. Although Java was another nice candidate, C++ was the chosen one because of several benefits. It is an efficient compiler to native code, exposes low-level system facilities rather than running in a virtual machine, supports pointers, references, and pass-by-value, has an explicit memory management and provides cross-platform access to many different features available in platform-specific libraries.

Also, due to its longevity and popularity, it has several libraries useful enough to integrate its code with other languages. It is important to stress that this language also has a combination of high and low level language features. Another important characteristic of this language, is that it is implemented in a wide variety of hardware and operative systems. Taking into account our future work, its compatibility with PHP (user interface), JSON (parser) [Wil11] and obviously Gecode (library for solving constraint satisfaction problems) [Gec06] is an important issue.

A.2 Abstract Data Types

As mentioned before, we have selected an object oriented language to implement the partition refinement algorithm. This language seems appropriate for modeling all the parts and methods needed. Summing up, we implemented the following abstract data types: store, configuration, transition, automaton, and redundant class. In addition, our tool includes simple constraints, more precisely, in our case, encapsulation is an important issue because it allows hiding information in order to ensure that data structures and operators are used as intended and to make the model more obvious to the developer.
A.2. ABSTRACT DATA TYPES

A.2.1 Implementation Layout

In this section we present as figures the general layouts of the main abstract data types. Moreover, we introduce the general overview of the proposed tool (for this layout we include future elements such as the user interface, parser and converter).

A.2.2 Layout of the Automaton

In Figure A.1 we show the design of the automaton used in our algorithm.

![Diagram of an Automaton Class]

Figure A.1: A Design of an Automaton Class

A.2.3 Layout of the Redundant Class

In Figure A.2 we display a design of the redundant class we use to save the 'possibly' redundant transitions, i.e., the dominated ones.
A.2. ABSTRACT DATA TYPES

A.2.4 Layout of a Tool to Verify Bisimilarity in CCP

In Figure A.3 we introduce the design of how the tool would work to verify Strong Bisimilarity in CCP.
Figure A.3: Layout of a Tool to Verify Strong Bisimilarity in CCP

Now, in the Figure A.4 we present the way in which the tool would verify Weak Bisimilarity in ccp
A.3 Procedures and Functions

A.3.1 Calculating Irredundancy

Calculating the notion of irredundancy is crucial to our algorithm. It is the central modification used on the partition refinement algorithm so it can be used to verify bisimilarity equivalence for CCP. Calculating this notion depends on two defini-
A.3. PROCEDURES AND FUNCTIONS

The first one of these that calculates redundant transitions (see Definition 3.2.4 in Section 3.2) and the second one, the irredundant bisimilarity (see Definition 3.2.7 in Section 3.2.6). As a previous step we define a class and a way of storing information related to 'possibly' redundant transitions. Now, as related in Section 3.2 instead of using the function F of Algorithm 3.1.1 in Section 3.1.1, we refine the partitions by employing the function IR in Definition 3.3.1 in Section 3.3 (this new function is based upon irredundant bisimilarity). However to use this function (see Algorithm A.3.1 to briefly understand how irredundancy can be checked) we might need to get involved also states that are not reachable from the initial states. This is not a difficult task since we have previously saved those artificial states in the redundant class. We receive as an input the actual partition, the redundant classes, and the transition to be checked. We start by iterating over the redundant classes (see line 1). While doing the cycle we check two properties by means of two functions. First, if the transition belongs to the 'possibly' redundant transitions (we use findTranRed(), line 4). Second, if the related transitions we take out from the redundant class belong to the same partition, i.e., if they are in the same equivalent bisimilar equivalence class (line 4). If they do, then they are redundant (line 5), otherwise, we continue looping until the end (lines 1-7), therefore, if the two statements are not fulfilled, the transition is not redundant (line 8).

Algorithm A.3.1 $\text{isredundant}(\text{partition}, \text{reds}, \text{tran})$

1: for (each $rd \in \text{reds}$) do
2: \hspace{1em} $\text{state1} \leftarrow \text{getState1}(\text{tran}, \text{rd})$;
3: \hspace{1em} $\text{state2} \leftarrow \text{getState2}(\text{tran}, \text{rd})$;
4: \hspace{1em} if ($\text{findTranRed(} \text{tran}, \text{rd})$ and $\text{inSameBlock(} \text{partition, state1, state2)})$ then
5: \hspace{2em} return true;
6: \hspace{1em} end if
7: end for
8: return false;

A.3.2 Strong Prerefinement

This function is another change we have made to the standard partition refinement algorithm so it can be suited to verify bisimilarity in ccp. This method makes
a first partition of a block of all configurations, those reachable from the initial
states of the labeled transitions and the other ones created artificially to check re-
dundancy. We call it a strong prerefinement because it divides the only block into
several blocks conformed of configurations which satisfy the same strong barb. In
this way we guarantee the first item stated in the definition of irredundant bisim-
ilarity, and then, let the new partition function IR deal with the token game in
Definition 3.2.7 in Section 3.2.6.

Algorithm A.3.2 depicts the barbcutS() algorithm. It receives a set of states
named states and loops two times over each state so each and every state belonging
to this set can be compared with the rest of them. During this cycle if the two
states, st, st'' are the same, then the former, st, will go to the the temporal set
sameBarbs (see line 10) and so another cycle will start over the states. In that
case, if the actual state taken as the loop starts, st', is the same as the one from
the first loop, st (line 12), the first state st will be sent into the set of repeated
states $states''$ (see line 13). Otherwise, the algorithm will loop through the set
of repeated states and it will verify if the actual state st'' is already a member of
states' (lines 15-19). If it does not and it satisfies the same strong barb as st, then
$states''$ add st and st' (since from then on they will be already repeated) and add
st' to sameBarbs (lines 21-23). After getting out from the third loop sameBarbs
will be the set of all states satisfying the same strong barb, so we will add it into
the set of sets result (line 28) and we will clear the temporal set sameBarbs to be
used for another set (line 29), and we continue the same iterations until result has
all its components and can be returned.
Algorithm A.3.2 barbcutS(states)

1: value, value1 ← true;
2: for each st ∈ states do
3: for each st″ ∈ states do
4: if st″.id = st.id and entails(st″.store, state.store) and entails(st.store(), st″.store) then
5: value ← false;
6: end if
7: end for
8: if value and st.id ≠ ∅ then
9: value ← true;
10: sameBarbs ← sameBarbs ∪ {st};
11: for each st′ ∈ states do
12: if st.id = st′.id and entails(st.store, st′.store) and entails(st′.store, st.store) then
13: states″ ← states″ ∪ {st};
14: else
15: for each st‴ ∈ states‴ do
16: if (st‴.id = st′.id and entails(st‴.store, st′.store) and entails(st′.store, st‴.store) then
17: value1 ← false;
18: end if
19: end for
20: if value1 and entails(st.store, st′.store) and entails(st′.store, st.store) then
21: states‴ ← states‴ ∪ {st′};
22: states‴ ← states‴ ∪ {st};
23: sameBarbs ← sameBarbs ∪ {st′};
24: end if
25: value1 ← true;
26: end if
27: end for
28: result ← result ∪ {sameBarbs};
29: sameBarbs ← ∅
30: else
31: value ← true;
32: end if
33: end for
34: return result;

A.3.3 Weak Prerefinement

As well as in the previous section here we present the function which prerefinement
the first block, but instead of refining according to the strong barbs, it does it with
relation to the weak barbs. Algorithm A.3.3 works similar to Algorithm A.3.2
however, instead of using the function entails(), it uses de weakEntailsAuts().
Algorithm A.3.3 \texttt{barbcutW}(\textit{states, auts})

1: \textbf{value, value1} \leftarrow true;
2: \textbf{for each } \textit{st} \in \textit{states} \textbf{do}
3: \textbf{for each } \textit{st''} \in \textit{states} \textbf{do}
4: \hspace{1em} if \textit{st''}.id = \textit{st}.id and entails\((\textit{st''}.store, \textit{st}.store)\) and entails\((\textit{st}.store, \textit{st''}.store)\) then
5: \hspace{2em} \textbf{value} \leftarrow false;
6: \hspace{1em} end if
7: \textbf{end for}
8: \hspace{1em} if \textbf{value} and \textit{st}.id $\neq \emptyset$ then
9: \hspace{2em} \textbf{value} \leftarrow true;
10: \hspace{2em} \textit{sameBarbs} \leftarrow \textit{sameBarbs} \cup \{\textit{st}\};
11: \textbf{for each } \textit{st'} \in \textit{states} \textbf{do}
12: \hspace{2em} if \textit{st'.id} = \textit{st}.id and weakEntails\textit{Auts}(\textit{st}, \textit{st'}.store, \textit{auts}) and weakEntails\textit{Auts}(\textit{st'}, \textit{st}.store, \textit{auts}) then
13: \hspace{3em} \textit{states'} \leftarrow \textit{states'} \cup \{\textit{st'}\};
14: \hspace{2em} end if
15: \textbf{end for}
16: \hspace{2em} if value1 and weakEntails\textit{Auts}(\textit{st}, \textit{st'}.store, \textit{auts}) and weakEntails\textit{Auts}(\textit{st'}, \textit{st}.store, \textit{auts}) then
17: \hspace{3em} \textit{states'} \leftarrow \textit{states'} \cup \{\textit{st'}\};
18: \hspace{2em} end if
19: \hspace{2em} \textbf{end if}
20: \hspace{1em} \textbf{end for}
21: \hspace{1em} \textbf{if } value1 \textbf{ then}
22: \hspace{2em} \textit{value1} \leftarrow true;
23: \hspace{1em} \textbf{end if}
24: \hspace{1em} \textbf{end for}
25: \hspace{1em} \textbf{return} \textit{result};
26: \textbf{else}
27: \hspace{1em} \textbf{value} \leftarrow true;
28: \hspace{1em} \textbf{end if}
29: \textbf{end for}
30: \textbf{return} \textit{result};

A.3.4 Final Algorithm

In this section we explain the Partition Refinement algorithm for ccp. \texttt{bisimilarity_check()} receives as an input a set of states \textit{S}, a set of Transitions \textit{T}, and a type which will be used to see if we are using this algorithm to check weak bisimilarity or strong bisimilarity. This is important because if we are checking weak bisimilarity we need to reduce weak into strong bisimilarity by means of the saturation method. Finally it receives as an input a predicate which will either
be a function barbcutS() which will make a strong prerefinement or a function barbcutW() which will make a weak prerefinement.

The algorithm starts by filling the automaton aut with the transitions trans and the set of states states via the methods: $\text{changeTransitions()}$ and changeStates() (see lines 1 and 2). By means of the type (line 3) we now know which way to take. Therefore, if we deal with the weak case, we take automaton aut and we do the first part of our new saturation method. We do this by adding new transitions to the old automaton. These new transitions are made out of two nodes which are not the same. Neither of them must be related by a previous transition, but a path shall exists between the nodes. The last item of these transitions is the label, made out of the least upper bound of all actions from all the transitions in the path (line 4). Afterwards, to finish the saturation method we add silent cycles to each node in automaton aut (line 5).

Now we have a saturated automaton, by which we are able to start the partition refinement in order to verify weak bisimilarity. We already know that the standard partition refinement does not work for this notion. Therefore, we need to calculate the possibly redundant transitions and their correspondent possible evolutions. These will take the form of a new automaton. Functions allreds() and constructAuts() generate the first redundant classes reds and the first automata auts respectively (lines 6 and 7). Afterwards, changeAllAuts (line 8) changes the automata to its final state auts while getAllReds() does the same for reds (line 9). Finally, we add the first automaton aut to the set of states auts (line 10). If we are dealing with the strong case we do not saturate the automaton and skip that part.
Algorithm A.3.4

bisimilarity_check(states, trans, type, pred)

1: aut.changeStates(states);
2: aut.changeTransitions(trans);
3: if type = "weak" then
4: addWeakTransitions1(aut);
5: addTau(aut);
6: reds ← allReds(aut);
7: auts ← constructAuts(aut, reds);
8: changeAllAuts(auts);
9: reds ← getAllReds(auts, reds);
10: auts ← auts ∪ {aut};
11: tmp ← appendStates_Auts(auts);
12: else
13: reds ← allReds(aut);
14: auts ← constructAuts(aut, reds);
15: changeAllAuts(auts);
16: reds ← getAllReds(auts, reds);
17: auts ← auts ∪ {aut};
18: tmp ← appendStates_Auts(auts);
19: end if
20: w ← pred(tmp, auts);
21: p ← pred(tmp, auts);
22: acts ← getAlphabet(aut);
23: while w ≠ ∅ do
24: assign an element from w to block;
25: for each act ∈ act do
26: for each part ∈ p do
27: if inter(part, pIR(act, auts, reds, p, block, part)).size ≠ 0 and ¬sbset(part, pIR(act, auts, reds, p, block, part)) then
28: Iab ← lab ∪ {part};
29: end if
30: pIR ← pIR(act, auts, reds, p, block, part);
31: for each lb ∈ lab do
32: Iab1 ← lab1 ∪ inter(pIR, lb));
33: end for
34: for each lb ∈ lab do
35: Iab2 ← lab2 ∪ difference(lb, pIR));
36: end for
37: p ← appending2(difference2(p, lab), appending2(Iab1, Iab2));
38: w ← appending2(difference2(w, lab), appending2(Iab1, Iab2));
39: if ¬w.empty then
40: block ← act;
41: end if
42: if ¬lab.empty() then
43: lab, lab1, lab2 ← ∅;
44: end if
45: end for
46: end for
47: erase assigned element to block from w
48: end while
49: return p;
A.3.5 Final Strong Algorithm

In this Section we show how we manage to take the final algorithm to verify the new notion of bisimilarity for ccp described in Section A.3.4. To this end, we define Algorithm A.3.5 which uses the output of Algorithm A.3.4 to check the strong notion of bisimilarity for ccp. Summing up, this algorithm checks whether the first nodes or states from both automata belong to the same set of states inside the bigger set. If it does, then they are strongly bisimilar. If not, they are not behavioural equivalent.

\textbf{Algorithm A.3.5} \texttt{check_strong(p,s1,s2)}

\begin{verbatim}
1: for each part \epsilon p do
2: if isitin(s1,part) and isitin(s2,part) then
3: print "They are strongly Bisimilar":
4: return;
5: end if
6: end for
7: print "They are not strongly Bisimilar";
\end{verbatim}

A.3.6 Saturation

In this section we show how we saturate the automaton to reduce it from weak bisimilarity to strong. The first step is to construct all possible paths which may take several steps into one single step. This is achieved by following Algorithm A.3.6. The algorithm receives an automaton and adds all the possible weak paths it can take (as a single step), except the one where it stays still. It takes out all the states from the automaton and assigns them to a set of states. It goes over the set and inside this cycle it goes over the same set. Then, it checks if there is a path between the state from the first loop and the one from the second loop. Also, it verifies if they are not equal and they are not involved in a transition in the automaton. If this is fulfilled, a new transition is created where the initial state of the transition is the state from the first set; the final state of the transition is the state of the second set and the action/Store is: first the least upper bound of all the Stores collected during the path between the States and second, that result trimmed by the store of the first State, because if the Store has already information
asked in the label it cannot be, therefore the Store/label must be modified taking out this information, and this is done by the function \textit{mixminus1()}.

\begin{algorithm}[H]
\caption{addWeakTransitions1(aut)}
\begin{algorithmic}[1]
\State listSt \leftarrow aut.getAllStates();
\For {each $st1 \in$ listSt}
\For {each $st2 \in$ listSt}
\If {\textit{path}(st1, st2, aut) and \textit{equalStates}(st1, st2) and \textit{isTransition}(st1, st2, aut) then}
\State pathmix \leftarrow \textit{pathMixStr}(st1, st2, aut);
\State lab \leftarrow \textit{mixminus1}(st1.store, pathmix);
\State temp \leftarrow temp $\cup \{\text{createTransition}(st1, st2, lab)\}$;
\EndIf
\EndFor
\EndFor
\For {each tran \in temp}
\State aut.AddTransition2(tran);
\EndFor
\State return aut;
\end{algorithmic}
\end{algorithm}

But this is not the final function needed to reduce a weak automaton into a strong automaton. There is the issue of a weak bisimilarity been able to stay still, therefore not moving through a transition to another state. We simply model this as a transition which has the same initial and final state. We follow the function in Algorithm \ref{addTau}. This function adds the tau transitions to the automaton, the ones which go from a State to itself resembling the staying still action. It receives the automaton and takes all the states from it, creates a True Store and iterates over each State. Meanwhile it adds to the automaton a transition with the considered State as the initial and initial State of the created Transition and with the Store \textit{true} as its label.

\begin{algorithm}[H]
\caption{addTau(aut)}
\begin{algorithmic}[1]
\State listSt \leftarrow aut.getAllStates();
\State sil.AddTrue();
\For {each st \in listSt}
\State aut.AddTransition(st, st, sil);
\EndFor
\State return aut;
\end{algorithmic}
\end{algorithm}
A.3.7 Final Weak Algorithm

Here we follow the same path as in Section A.3.5. Therefore we just present a few lines of code which allows us to give out a final result about the two CCP programs we are comparing, that is, if they are weakly bisimilar or not. So as stated before we use the result given by Algorithm A.3.4 but specifically stating at the beginning of the algorithm by means of a string, given as a parameter, that we are checking the weak case. So therefore the algorithm will know that it needs to apply additional procedures to saturate the automata so it can be ready to apply the weak notion between the two CCP programs. As pointed out before, Algorithm A.3.8 is similar to Algorithm A.3.5.

Algorithm A.3.8 check_weak(p, s1, s2)
1: for each part ∈ p do
2: if isitin(s1, part) and isitin(s2, part) then
3: print “They are weakly Bisimilar”;
4: return ;
5: end if
6: end for
7: print “They are not weakly Bisimilar”;

A.4 Results and Examples

In this Section we present families of generated automata resembling CCP configurations in order to analyze the behavior in time of the CCP partition refinement algorithm. We select several variables from the automata which we consider to be relevant regarding the algorithm’s execution, i.e., those which will directly affect the behavior of the algorithm in relation to execution time. In order to do this we choose the following variables: transitions (Section A.4.1), nodes (Section A.4.1), percentage of transitions with the same label (Section A.4.2), percentage of configurations satisfying the same barb (Section A.4.3) and number of branches (we consider our automata as trees, therefore this name) (Section A.4.5). This analysis shall help us explain the relevance and the insights of how the main algorithm for checking bisimilarity works (in terms of execution time) with respect to the characteristics of the LTS. The examples to be used in this section are simple and satisfy all the properties of any automaton generated by a CCP program. In order
A.4. RESULTS AND EXAMPLES

To analyze the different and interesting variables that may influence the execution time of the ccp partition refinement algorithm, we shall generate preferably the same family of automata. We consider this as just changing the value of the variable to be studied in each instance of the family, and turning the other properties which are themselves variables into constants. With this procedure we isolate the variable in order to measure the real influence it has on the algorithm.

The machine used to carry out the experiments has a processor of 2.4 GHz Intel Core 2 Duo with ram memory of 4GB 1067 MHz DDR3.

In order to make things simpler and not overfill the reader with more graphs than needed, in this chapter we will mostly constraint to the analysis of the algorithm for checking strong bisimilarity for ccp, since the result given by the weaker equivalence somehow give us the same feedback (See Chapter 4). Although that does not mean we will not take into account the execution of weak bisimilarity to check some examples. Actually, in Section A.4.5 checking this weaker notion is needed. Therefore, in that case we shall present the saturated automata of the examples. We must remark that although we study several examples per each case, we just give two diagrams of the examples for each of the analyzed properties.

A.4.1 Transitions/Nodes

Here we give several examples where the automata are almost the same. In this case we shall have two properties that variate, the number of transitions and the number of nodes. These two characteristics are the ones that we study along this section. Figure A.5 and A.6 shows a sample of the family of automata that will be used in this first case.

![Figure A.5: Example 1 Transitions/Nodes](image-url)
A.4. RESULTS AND EXAMPLES

Now we have shown the several automata which are constrained to have almost the same constants and just two elements which variate.

Graphs and Analysis

From now on, we limit our attention to the execution time of the previous examples. Taking this into account, Table A.1 shows the total number of transitions and nodes vs time. These two tables and Figures A.7 and A.8 help us to understand the importance of these particular variables in relation to the execution time of the ccp partition refinement algorithm.
A.4. RESULTS AND EXAMPLES

<table>
<thead>
<tr>
<th>Processes</th>
<th>Nodes</th>
<th>Transitions</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>8</td>
<td>6</td>
<td>11 ms</td>
</tr>
<tr>
<td>Process 2</td>
<td>10</td>
<td>8</td>
<td>18 ms</td>
</tr>
<tr>
<td>Process 3</td>
<td>6</td>
<td>4</td>
<td>6 ms</td>
</tr>
<tr>
<td>Process 4</td>
<td>12</td>
<td>10</td>
<td>26 ms</td>
</tr>
<tr>
<td>Process 5</td>
<td>14</td>
<td>12</td>
<td>42 ms</td>
</tr>
<tr>
<td>Process 6</td>
<td>18</td>
<td>16</td>
<td>78 ms</td>
</tr>
<tr>
<td>Process 7</td>
<td>22</td>
<td>20</td>
<td>131 ms</td>
</tr>
<tr>
<td>Process 8</td>
<td>20</td>
<td>18</td>
<td>109 ms</td>
</tr>
<tr>
<td>Process 9</td>
<td>24</td>
<td>22</td>
<td>172 ms</td>
</tr>
<tr>
<td>Process 10</td>
<td>34</td>
<td>32</td>
<td>380 ms</td>
</tr>
<tr>
<td>Process 11</td>
<td>16</td>
<td>14</td>
<td>58 ms</td>
</tr>
<tr>
<td>Process 12</td>
<td>28</td>
<td>26</td>
<td>222 ms</td>
</tr>
<tr>
<td>Process 13</td>
<td>30</td>
<td>28</td>
<td>281 ms</td>
</tr>
<tr>
<td>Process 14</td>
<td>32</td>
<td>30</td>
<td>320 ms</td>
</tr>
<tr>
<td>Process 15</td>
<td>50</td>
<td>48</td>
<td>970 ms</td>
</tr>
<tr>
<td>Process 16</td>
<td>682</td>
<td>680</td>
<td>5960420 ms</td>
</tr>
<tr>
<td>Process 17</td>
<td>170</td>
<td>168</td>
<td>66947 ms</td>
</tr>
<tr>
<td>Process 18</td>
<td>426</td>
<td>424</td>
<td>2570960 ms</td>
</tr>
<tr>
<td>Process 19</td>
<td>218</td>
<td>216</td>
<td>522674 ms</td>
</tr>
<tr>
<td>Process 20</td>
<td>274</td>
<td>272</td>
<td>896211 ms</td>
</tr>
</tbody>
</table>

Table A.1: Time vs. Transitions/Nodes
In Figure A.7, it can be observed that the execution time increases (linearly) as the number of transitions increase. Actually, this is reasonable since the main goal of the algorithm is to partition set of states in order to refine, and it does that by means of the relations between states or configurations and the transitions. Hence, if there exist more transitions, while the execution of the algorithm, the current splitter (which is the set of states chosen to divide and refine iteratively the set or sets of states) must verify if all the possible existing transitions can be able to separate one or more states from the current set of states in each step. Therefore, if in each step, the splitter needs to check more transitions in order to refine each set of states, the algorithm will take more time to finish its execution.
A.4. RESULTS AND EXAMPLES

115

Figure A.8: Time vs. Nodes

Regarding Figure A.8 we can state that as Figure A.7 the graph resembles a linear growth which shows us that if there are more nodes in the automata, the algorithm will take longer to finish. This is feasible since most of the times if they are more nodes there are more transitions. Thus we could use the same analysis used for the amount of transitions. Moreover, since there are more configurations or nodes in order to refine, during the algorithm run, the splitter must go over each set which will have more components. This, in order to see which of these states can be separated so the partition can be refined. Hence, if the quantity of this nodes is bigger then the execution time will be higher.

A.4.2 Percentage of Same Labels

As already seen in Section A.4.1 we shall present and analyze some examples in order to study one particular property regarding the automata generated by the ccp processes. We take the percentage of transitions with the same labels (to refer to a percentage we must include in the examples just one label, in this particular case, the label true that can be repeated over the transitions of the automata). Mean-
while the other labels shall remain constant. This in order to guarantee that the graphical result will resemble only the impact of the actual variable in the execution of the algorithm).

The following figures show the automata that will be used as our case of study:

Figure A.9: Example 1 % of Same Labels
A.4. RESULTS AND EXAMPLES

Figure A.10: Example 2 % of Same Labels
A.4. RESULTS AND EXAMPLES

Graphs and Analysis

<table>
<thead>
<tr>
<th>Processes</th>
<th>% of same labels</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>29%</td>
<td>43514 ms</td>
</tr>
<tr>
<td>Process 2</td>
<td>33%</td>
<td>37644 ms</td>
</tr>
<tr>
<td>Process 3</td>
<td>38%</td>
<td>28849 ms</td>
</tr>
<tr>
<td>Process 4</td>
<td>43%</td>
<td>26187 ms</td>
</tr>
<tr>
<td>Process 5</td>
<td>48%</td>
<td>24290 ms</td>
</tr>
<tr>
<td>Process 6</td>
<td>52%</td>
<td>22527 ms</td>
</tr>
<tr>
<td>Process 7</td>
<td>62%</td>
<td>8952 ms</td>
</tr>
<tr>
<td>Process 8</td>
<td>71%</td>
<td>3245 ms</td>
</tr>
<tr>
<td>Process 9</td>
<td>81%</td>
<td>2423 ms</td>
</tr>
<tr>
<td>Process 10</td>
<td>100%</td>
<td>118 ms</td>
</tr>
</tbody>
</table>

Table A.2: Time vs % of Same Labels

Figure [A.11] shows the results after introducing the examples and running them using our ccp partition refinement algorithm.
A.4. RESULTS AND EXAMPLES

119

Figure A.11: Time vs Percentage of Same Labels

As expected, the graph shows a decreasing line. This happens since, the highest the percentage of transitions with the same labels the least partitions the algorithm must need in order to refine the blocks. Thus, the time will decrease. Therefore, the execution time is inversely proportional to the percentage of transitions with the same labels.

A.4.3 Percentage of Configurations Satisfying the Same Barb

As in Section A.4.2, we study a property related to the automata generated by the ccp processes. This property is also a percentage, but in this case, the amount of configurations satisfying the same barb. As well as in the aforementioned section, we shall use just only one barb which can be repeated on the automata’s configurations, while the other barbs must be different and constant in number of occurrences. In this case the barb we have selected is $x < 55$.
Figure A.12: Example 1 % of Configurations Satisfying the Same Barb
Graphs and Analysis

Table A.3 presents the data obtained by the automata while studying the influence of the % of configurations satisfying the same barb on the ccp partition refinement algorithm.

Figure A.13: Example 2 % of Configurations Satisfying the Same Barb
Table A.3: Time vs % of Configurations Satisfying the Same Barb

<table>
<thead>
<tr>
<th>Processes</th>
<th>% of configurations satisfying the same barb</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>100%</td>
<td>752 ms</td>
</tr>
<tr>
<td>Process 2</td>
<td>96%</td>
<td>1694 ms</td>
</tr>
<tr>
<td>Process 3</td>
<td>86%</td>
<td>4084 ms</td>
</tr>
<tr>
<td>Process 4</td>
<td>72%</td>
<td>7998 ms</td>
</tr>
<tr>
<td>Process 5</td>
<td>64%</td>
<td>10736 ms</td>
</tr>
<tr>
<td>Process 6</td>
<td>60%</td>
<td>10743 ms</td>
</tr>
<tr>
<td>Process 7</td>
<td>56%</td>
<td>12206 ms</td>
</tr>
<tr>
<td>Process 8</td>
<td>52%</td>
<td>12324 ms</td>
</tr>
<tr>
<td>Process 9</td>
<td>36%</td>
<td>13184 ms</td>
</tr>
<tr>
<td>Process 10</td>
<td>20%</td>
<td>14266 ms</td>
</tr>
</tbody>
</table>

Now, we switch our attention to Figure A.14. This figure shows the results from Table A.3.
As in Section A.11, the line shown in the graph is decreasing. This is due to the time the algorithm takes to make the prerefinement, which can be regarded as the first item of the definition of bisimilarity (either strong or weak) (see Definitions 2.4.2 and 2.4.3 in Section 2.4). If the percentage of configurations satisfying the same barb is higher, then the prerefinement will not need to partition many amount of blocks. (See Algorithm A.3.2 for the strong case or Algorithm A.3.3 for the weak notion).

A.4.4 Percentage of Dominated Transitions

In Definition 3.2.3 in Section 3.2.5 we first present the notion of domination. Later on, in that section we show the importance of this dominated transitions or so called possible redundant transitions, in order for the algorithm to calculate the notion of irredundant bisimilarity (see Definition 3.2.7 in Section 3.2.6) which itself depends on the notion of redundant transitions (see Definition 3.2.4 in Section 3.2.5). This is important for the execution of the algorithm since dealing with redundancy takes a significant part of time in the execution of the algorithm.
Figure A.15: Example 1 % of Dominated Transitions

A.4. RESULTS AND EXAMPLES

Figure A.16: Example 2 \% of Dominated Transitions

Graphs and Analysis

We give the data taken by the execution of the previous examples. This information is used to show the influence of the \% of dominated transitions on the execution time of the algorithm. Thus, Table A.4 shows the collected data from the execution of the examples and Figure A.17 depicts the description of the result in the aforementioned table.
A.4. RESULTS AND EXAMPLES

<table>
<thead>
<tr>
<th>Processes</th>
<th>% of derived Transitions</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>0%</td>
<td>20993 ms</td>
</tr>
<tr>
<td>Process 2</td>
<td>5%</td>
<td>36781 ms</td>
</tr>
<tr>
<td>Process 3</td>
<td>9%</td>
<td>59620 ms</td>
</tr>
<tr>
<td>Process 4</td>
<td>14%</td>
<td>82748 ms</td>
</tr>
<tr>
<td>Process 5</td>
<td>18%</td>
<td>130387 ms</td>
</tr>
<tr>
<td>Process 6</td>
<td>23%</td>
<td>188745 ms</td>
</tr>
<tr>
<td>Process 7</td>
<td>25%</td>
<td>288459 ms</td>
</tr>
<tr>
<td>Process 8</td>
<td>27%</td>
<td>296968 ms</td>
</tr>
<tr>
<td>Process 9</td>
<td>30%</td>
<td>351186 ms</td>
</tr>
<tr>
<td>Process 10</td>
<td>32%</td>
<td>354227 ms</td>
</tr>
</tbody>
</table>

Table A.4: Time vs % of Dominated Transitions
Figure A.17: Time vs Percentage Dominated Transitions

Figure A.17 confirms that checking irredundancy is quite expensive and requires an important amount of time. For this reason, increasing the number of 'possible' redundant transitions might also increase the overall execution time.

A.4.5 Time vs Branches

The following two examples aim at studying the impact of the total number of branches in the execution time of the algorithm. We recall that we refer to branches because the automata we use as an input for our algorithm have always a form of a tree.
A.4. RESULTS AND EXAMPLES

Figure A.18: Saturated Example 1 Branches

Figure A.19: Saturated Example 2 Branches

Graphs and Analysis

Table A.5 shows the results of the execution of the above-mentioned examples. They show the time it takes for the strong and weak algorithm to check their respective notion of bisimilarity. It is important to notice that we compare both execution times (weak and strong) so we can understand how much the amount
of branches influence the saturation process, in particular the addition of paths of transitions as a single step transition (see Algorithm A.3.6 and rules R-Label and R-Add in Table 4.2 in Section 4.2.1).

<table>
<thead>
<tr>
<th>Processes</th>
<th>Branches</th>
<th>Time Strong Case</th>
<th>Time Weak Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process 1</td>
<td>2</td>
<td>8 ms</td>
<td>65 ms</td>
</tr>
<tr>
<td>Process 2</td>
<td>4</td>
<td>24 ms</td>
<td>295 ms</td>
</tr>
<tr>
<td>Process 3</td>
<td>6</td>
<td>69 ms</td>
<td>874 ms</td>
</tr>
<tr>
<td>Process 4</td>
<td>8</td>
<td>97 ms</td>
<td>1827 ms</td>
</tr>
<tr>
<td>Process 5</td>
<td>10</td>
<td>172 ms</td>
<td>3901 ms</td>
</tr>
</tbody>
</table>

Table A.5: Time vs Branches

Now we intend to interpret the results in a graphical way.

Figure A.20: Time vs Branches
A.5. SUMMARY OF CONTRIBUTIONS AND RELATED WORK

After analyzing Figure A.20, it can be observed that if we have more branches per automata then the execution time of the algorithm with the weak approach increases considerably with respect to the strong one. We can find an interesting and feasible answer by taking into account the notion of saturation, i.e., the method used by us to reduce the weak bisimilarity into the strong notion. Since we have more branches, there is the need of adding new transitions (those which represent a long path of transitions as a single step transition). Recall that we must assume that the branches must have 3 consecutive nodes because if they have less nodes, then the saturation method will not add more transitions at all.

A.5 Summary of Contributions and Related Work

In this Chapter we presented the main aspects of the implementation of the algorithm for verifying (strong and weak) bisimilarity for ccp. We presented the C++ programming language and its object orientation as the main tool for implementing the partition refinement algorithm for ccp. We briefly described the main benefits from this language to be able to implement the partition refinement algorithm for ccp. We gave some examples and analyze by means of graphs how the algorithm behaves according to several properties we have considered central for the execution time of the algorithm. We must stress the fact that even if our worst running case is exponential, the line graphs A.7 and A.8 show us that the execution time of the algorithm has a linear growth with respect to the amount of transitions and nodes. We realized that while using a lesser amount of nodes or transitions the line graph would resemble an exponential line, but while using a much bigger sample of nodes or transitions, in reality, the graph had a linear growth.

We believe that our work represents a very first step to resemble The Concurrency Workbench [CPS93], that is, creating a robust and friendly tool for those who want to automatically check different properties about ccp programs.

As future work, we plan a much more robust implementation of the ccp partition refinement algorithm in order to increase its power, efficiency, performance and scalability. As a short and medium term goal, we intend to include several modifications into the code so the execution time of the algorithm could be de-
creased. Therefore, one of the most important modifications shall be related with the data structures we must use. Lists are the most used classes to access the data from the constraint system, the labeled transition system and other information needed for the algorithm to work. Therefore we shall take into account their implementation in order to increment the efficiency of the algorithm. Thus, rather than using the lists included by default in C++, we must choose a better implementation or a more efficient class to access the needed data. We shall propose two options, implement a doubly linked list or make use of hash tables. Another alternative for implementing the LTS in a way that the information included in it could be accessed faster, is to represent it as a directed graph implemented as an indexed set of adjacency lists and for each vertex having an inverse adjacency list [JKOK98]. An interesting approach to reduce the complexity of our algorithm is to, instead of modifying the partition refinement algorithm in [KS83], use a better algorithm of the same sort, regarding its complexity, that is, the one in [PT87]. Although we have already said that our worst running case is exponential, we can take ideas of [JKOK98] in order to cope with a growing amount of data. As in the latter cited paper, we can reduce the cost of the algorithm by means of a better implementation, in this case by using a parallel algorithm based on multiway splitting.

As longer term aim we plan to implement a user interface, a parser and a converter so we can create a real tool which could be easily used. We intend to analyze other programming languages that can be more useful than the one we have used, in terms of portability, user friendliness and particularly, execution time. Also we may want to take into account different and more elaborated types of Constraints systems by using libraries such as Gecode [Gec06], choco [cho08], etc.
Bibliography

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Data Type</td>
<td>96</td>
</tr>
<tr>
<td>Algebraic Lattice</td>
<td>13</td>
</tr>
<tr>
<td>Barbed Bisimilarity</td>
<td>24</td>
</tr>
<tr>
<td>Barbed Equivalences</td>
<td>23</td>
</tr>
<tr>
<td>Barbs</td>
<td>24</td>
</tr>
<tr>
<td>Bisimilarity</td>
<td>2</td>
</tr>
<tr>
<td>C++</td>
<td>95</td>
</tr>
<tr>
<td>CCP Configuration</td>
<td>19</td>
</tr>
<tr>
<td>CCP Syntax</td>
<td>17</td>
</tr>
<tr>
<td>Complete Lattice</td>
<td>13</td>
</tr>
<tr>
<td>Completeness</td>
<td>33</td>
</tr>
<tr>
<td>Concurrency</td>
<td>24</td>
</tr>
<tr>
<td>Concurrent Constraint Programming</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Congruence</td>
<td>24</td>
</tr>
<tr>
<td>Constraint System</td>
<td>13</td>
</tr>
<tr>
<td>Constraint Systems</td>
<td>13</td>
</tr>
<tr>
<td>Cylindric Constraint System</td>
<td>14</td>
</tr>
<tr>
<td>Derivation</td>
<td>50</td>
</tr>
<tr>
<td>Domination</td>
<td>53</td>
</tr>
<tr>
<td>Fairness</td>
<td>22</td>
</tr>
<tr>
<td>Finite Element</td>
<td>13</td>
</tr>
<tr>
<td>Finite Processes</td>
<td>18</td>
</tr>
<tr>
<td>Infinite Processes</td>
<td>18</td>
</tr>
<tr>
<td>Irredundancy</td>
<td>96</td>
</tr>
<tr>
<td>Irredundant Bisimilarity</td>
<td>56</td>
</tr>
<tr>
<td>Irredundant Bisimilarity over (\Rightarrow)</td>
<td>78</td>
</tr>
<tr>
<td>Labeled Transitions</td>
<td>28</td>
</tr>
<tr>
<td>Observational Equivalence</td>
<td>26</td>
</tr>
<tr>
<td>Partition Refinement</td>
<td>45</td>
</tr>
<tr>
<td>Partition Refinement for CCP</td>
<td>65</td>
</tr>
<tr>
<td>Reduction Semantics for CCP</td>
<td>19</td>
</tr>
<tr>
<td>Reduction Semantics for CCP</td>
<td>20</td>
</tr>
<tr>
<td>Redundant Transition</td>
<td>52</td>
</tr>
<tr>
<td>Saturated Barbed Bisimilarity</td>
<td>25</td>
</tr>
<tr>
<td>Saturated Bisimilarity</td>
<td>23</td>
</tr>
<tr>
<td>Saturation</td>
<td>75</td>
</tr>
<tr>
<td>Soundness</td>
<td>33</td>
</tr>
<tr>
<td>Soundness</td>
<td>48</td>
</tr>
<tr>
<td>Strong Bisimilarity</td>
<td>36</td>
</tr>
<tr>
<td>Strong Prerefinement</td>
<td>97</td>
</tr>
<tr>
<td>Symbolic Bisimilarity</td>
<td>56</td>
</tr>
<tr>
<td>Symbolic Bisimilarity over (\Rightarrow)</td>
<td>77</td>
</tr>
<tr>
<td>Syntactic Bisimilarity</td>
<td>35</td>
</tr>
<tr>
<td>Syntactic Bisimilarity</td>
<td>49</td>
</tr>
<tr>
<td>Syntax for non-deterministic ccp</td>
<td>46</td>
</tr>
<tr>
<td>Weak Bisimilarity</td>
<td>37</td>
</tr>
<tr>
<td>Weak Partition Refinement for CCP</td>
<td>90</td>
</tr>
<tr>
<td>Weak Prerefinement</td>
<td>99</td>
</tr>
<tr>
<td>Weak Saturated Barbed Bisimilarity</td>
<td>25</td>
</tr>
</tbody>
</table>