Periodic planar straight-frame graph drawings with
 polynomial resolution

Latin 2014, Montevideo

(Torres García, Inverted map of America, 1936)

Luca Castelli Aleardi

(joint work with Eric Fusy and Anatolii Kostrygin) (work supported by the french ANR Egos)

Periodic planar straight-frame graph drawings with
 polynomial resolution

Latin 2014, Montevideo

Luca Castelli Aleardi

(joint work with Eric Fusy and Anatolii Kostrygin)
(work supported by the french ANR Egos)

Let's start from planar graphs

Some facts about planar graphs

Thm (Schnyder, Trotter, Felsner) G planar if and only if $\operatorname{dim}(G) \leq 3$

Thm (Koebe-Andreev-Thurston)
Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Thm (Kuratowski, excluded minors)
G planar if and only if G contains neither K_{5} nor $K_{3,3}$ as minors

Thm (Y. Colin de Verdière)

G planar if and only if $\mu(G) \leq 3$
($\mu(G)=$ multiplicity of λ_{2} of a generalized laplacian)
$L_{G}=\left[\begin{array}{rrrrr}4 & -1 & \ldots & \ldots & 0 \\ -1 & 5 & \ldots & & \\ \ldots & & \ldots & & \\ \cdots & & & & \ldots \\ 0 & \cdots & & & 3\end{array}\right] \quad L_{G}[i, k]=\left\{\begin{array}{c}\operatorname{deg}\left(v_{i}\right) \\ -A_{G}[i, j]\end{array}\right.$

Planar straight-line drawings (of planar graphs)

Planar straight-line drawings

[Wagner'36]
[Fary'48]

Planar straight-line drawings

[Wagner'36]
[Fary'48]
[Stein'51]

Classical algorithms:

[Tutte'63]
spring-embedding

[De Fraysseix, Pach, Pollack 89] incremental (Shift-algorithm)

[Schnyder' 00]
face-counting principle

Periodic straight-line drawings

(statement of the problem)

Drawing graphs on surfaces

$$
g=0
$$

Drawing graphs on surfaces $g \geq 2$

(Palais de la Découverte,Fête de la Science, October 2013)

periodic drawing out of circle packing

Drawing toroidal graphs

For the torus you can get periodic drawings

Straight-line toroidal drawings

(existing works) On the torus

straight-line drawing
x-periodic and
y-periodic drawing
[Castelli-Aleardi Devillers Fusy, GD'12]
$O\left(n \times n^{\frac{3}{2}}\right)$ grid
[Goncalves Lévêque, DCG'14] $O\left(n^{2} \times n^{2}\right)$ grid

straight-line frame not x-periodic not y-periodic
$O\left(n \times n^{2}\right)$ grid
[Duncan, Goodrich, Kobourov, GD'09]
[Chambers, Eppstein, Goodrich, Löffler, GD'10]

some useful previous results

(key ingredients for our work)

Incremental shift algorithm

[de Fraysseix, Pollack, Pach'89]

1. Δ

Grid size of $G_{k}: 2 k \times k$
$3 . \Delta$
4.

5.

use the canonical ordering

7.

Straight-frame drawing

1) k-scheme triangulation is a quasi-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.

A straight-frame drawing of G is

- a planar straight-line drawing of G ;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G .

Theorem [Duncan et al., GD09]

Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O\left(n^{2} \times n\right)$.

Straight-frame drawing

1) k-scheme triangulation is a quasi-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.

A straight-frame drawing of G is

- a planar straight-line drawing of G ;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G .

Theorem [Duncan et al., GD09]

Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O\left(n^{2} \times n\right)$.

Straight-frame drawing

1) k-scheme triangulation is a quasi-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.

A straight-frame drawing of G is

- a planar straight-line drawing of G ;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G .

Theorem [Duncan et al., GD09]

Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O\left(n^{2} \times n\right)$.

Our main result

(statement and the key idea)

Straight-frame periodic drawing

1) Denote the paths between consecutive corners by S_{1}, \ldots, S_{k}. Then a 4-scheme triangulation satisfying $\left|S_{1}\right|=\left|S_{3}\right|$ and $\left|S_{2}\right|=\left|S_{4}\right|$ is called balanced.

2) Its straight-frame drawing is periodic if

- the abscissas of vertices of the same rank along S_{1} and S_{3} coincide;
- the ordinates of vertices of the same rank along S_{2} and S_{4} coincide.

Theorem (Castelli Aleardi, Fusy, Kostrygin)

Each balanced 4-scheme-triangulation admits a periodic straight- frame drawing on a (regular) grid of size $O\left(n^{4} \times n^{4}\right)$.

Main idea: key picture

Before drawing a balanced 4-scheme triangulation ...

Key picture: first cut

Before drawing a balanced 4-scheme triangulation ... compute a special partition of its internal faces

Key picture: then draw and stretch

 draw each piece according to its type stretch each piece identifying coordinates on opposite sides

Key picture: finally glue all pieces

stretch each piece identifying coordinates on opposite sides

Why does it work
(overview of the proof)

Step 1: decomposition phase

- Suppose that there is no "vertical" cord.
- Then there exists a closest to the upper-side cordless path.
- Each vertex of the path is on the dist. 1 from the upper-side.
- Let's cut the graph along this path.

Step 2: compute a river

- for identification: we need to take care only about left and right sides.
- Upper side is not required to be straight.
- Find a river from upper to bottom side.
- Let's cut along this river.

Bottom-left Bottom-right

Step 3: draw left bottom piece

- Turn by 90 degrees (to help intuition).
- Find a canonical order.

Step 3: draw left bottom piece

- Turn by 90 .
- Find a canonical order.
- Draw with incremental algorithm.

11

Step 3: draw left bottom piece

- Turn by 90 .
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the distanced between vertices on the bottom side.

11

Step 3b: modified shift algorithm

- Remember the distanced between vertices on the bottom side (shift vector).
- use the shift vector to perform a second drawing pass

first pass

 [Duncan et al., GD09]

second pass

(initial positions are given by the shift vector)

Step 4a: draw both bottom corners

- Repeat previous step 3 for right bottom piece.
- Turn the two pieces by 90 degrees
- re-draw and adjust sizes (using stored shift vectors)

$O(n)$

Step 4b: align and add the river

- Repeat previous step 3 for right bottom piece.
- Turn the two pieces by 90 degrees
- re-draw and adjust sizes (using stored shift vectors)
- add the river
- align opposite vertices (modified shift algorithm)

$O(n)$

Step 5: decompose the upper graph

- Cut upper corners (along largest upper chords)

Step 5: decompose the upper graph

- Cut upper corners (along largest upper chords)
- Find the edge adjacent to the river
- Decompose the rest into 3 parts

Step 6: draw upper corners

Step 7: align upper corners

C

Step 8: draw remaining pieces

 refinement factor for the upper piece $O(n \cdot \max (n, K))$where $K=O\left(n^{2}\right)$ is the grid width

Final step: glue all pieces together

Drawing in the naïve way $\longrightarrow O\left(K^{2} n \times K^{2} n\right)=O\left(n^{5} \times n^{5}\right)$ area
where $K=O\left(n^{2}\right)$ is the grid width

Final step: glue all pieces together

Drawing in a clever way $\longrightarrow O\left(n^{4} \times n^{4}\right)$ area (recall on the torus there are non contractible cycles of length $O(\sqrt{n})$) ${ }^{\text {Hutctrinson, Alert ' } 78]}$

applications and extensions

(geodesic spherical drawing)

Geodesic spherical drawing

Draw arbitrary polygons

- Suppose we can draw an arbitrary quadrangle, let $P(n)$ be its grid size
- Using divide and conquer strategy we can draw any k-gon
- Grid size will be proportional to $O\left(P(n)^{\log k}\right)$.

