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Let’s start from planar graphs



G planar if and only if G contains
neither K5 nor K3,3 as minors

Thm (Schnyder, Trotter, Felsner)

Every planar graph with n vertices is isomorphic to the
intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

Some facts about planar graphs

Thm (Kuratowski, excluded minors)
G planar if and only if dim(G) ≤ 3

Thm (Y. Colin de Verdière)

G planar if and only if µ(G) ≤ 3
(µ(G) = multiplicity of λ2 of a generalized laplacian)
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Planar straight-line drawings
(of planar graphs)



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Classical algorithms:

[Tutte’63] [De Fraysseix, Pach, Pollack 89] [Schnyder’90]

spring-embedding incremental (Shift-algorithm) face-counting principle

existence of straight-line drawing

[Stein’51]



Periodic straight-line drawings
(statement of the problem)



Drawing graphs on surfaces

vNS2vNM

vNG

g = 0



Drawing graphs on surfaces
Wikipedia picture

Universal cover

g ≥ 2
Polygonal scheme

[Mohar’99]

periodic drawing out of circle packing

(Palais de la Découverte,Fête de la Science, October 2013)



Drawing toroidal graphs

For the torus you can get periodic drawings

m

g = 1



Straight-line toroidal drawings
On the torus

m
⇒

x-periodic and

y-periodic drawing

drawing on the flat torus

not x-periodic

not y-periodic

straight-line drawing

straight-line frame

[Castelli-Aleardi Devillers Fusy, GD’12]

[Goncalves Lévêque, DCG’14]

O(n× n2) grid

O(n2 × n2) grid

O(n× n3
2) grid

( existing works)

[Duncan, Goodrich, Kobourov, GD’09]

[Chambers, Eppstein, Goodrich, Löffler, GD’10]



some useful previous results

(key ingredients for our work)



Incremental shift algorithm
[de Fraysseix, Pollack, Pach’89]
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Grid size of Gk: 2k × k

use the canonical
ordering



Straight-frame drawing

k-scheme triangulation is a quasi-triangulation
s.t.
• k marked outer vertices are called corners;
• each path of the outer face contour between

two consecutive corners is chordless.
G is a 4-scheme triangulation.
A straight-frame drawing of G is
• a planar straight-line drawing of G;
• the outer face is an axis-aligned rectangle;
• its corners are the corners of G.

1)

2)

Theorem [Duncan et al., GD09]
Each 4-scheme triangulation with n
vertices admits a straight-frame drawing
on a grid of size O(n2 × n).
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Our main result

(statement and the key idea)



Straight-frame periodic drawing

Denote the paths between consecutive corners by
S1, . . . , Sk. Then a 4-scheme triangulation satisfying
|S1| = |S3| and |S2| = |S4| is called balanced.

Theorem (Castelli Aleardi, Fusy, Kostrygin)
Each balanced 4-scheme-triangulation admits a periodic
straight- frame drawing on a (regular) grid of size
O(n4 × n4).

1)

2) Its straight-frame drawing is periodic if
• the abscissas of vertices of the same rank along S1 and

S3 coincide;
• the ordinates of vertices of the same rank along S2 and

S4 coincide.



Main idea: key picture
Before drawing a balanced 4-scheme triangulation . . .



Key picture: first cut
Before drawing a balanced 4-scheme triangulation . . .

compute a special partition of its internal faces



Key picture: then draw and stretch

draw each piece according to its type

stretch each piece identifying coordinates on opposite sides



Key picture: finally glue all pieces

stretch each piece identifying coordinates on opposite sides



Why does it work

(overview of the proof)



Step 1: decomposition phase

• Suppose that there is no ”vertical” cord.
• Then there exists a closest to the upper-side cordless path.
• Each vertex of the path is on the dist. 1 from the upper-side.
• Let’s cut the graph along this path.



Step 2: compute a river
• for identification: we need to take care only about left and right sides.
• Upper side is not required to be straight.

Bottom-left Bottom-right

• Find a river from upper to bottom side.
• Let’s cut along this river.



Step 3: draw left bottom piece

• Turn by 90 degrees (to help intuition).
• Find a canonical order.

Bottom-left

1
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14



Step 3: draw left bottom piece
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• Turn by 90.
• Find a canonical order.
• Draw with incremental algorithm.



Step 3: draw left bottom piece

1
2 3

4

5
6

7

8

9

10

11

12 13
14

1 2 3 1 2 3

4

1 2 3

4

5

1 2 3

4

5

6

6

8

1 2 3

4

5

10

7

9
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• Turn by 90.
• Find a canonical order.
• Draw with incremental algorithm.
• Remember the distanced between vertices on the bottom side.



Step 3b: modified shift algorithm
• Remember the distanced between vertices on the bottom side (shift vector).
• use the shift vector to perform a second drawing pass

5 6

7 8

9 10

w = 24

S = (6, 4, 8)

|S1 ∪ S2 ∪ S4| = 7

n− |S1 ∪ S2 ∪ S4| = 3

0 8 14 24

S1 G5 G6

G7
G8

G9 G10

I = (2, 2, 2)

first pass
[Duncan et al., GD09]

second pass

(initial positions are
given by the shift
vector)



Step 4a: draw both bottom corners

• Repeat previous step 3 for right bottom piece.
• Turn the two pieces by 90 degrees
• re-draw and adjust sizes (using stored shift vectors)

O(n2) O(n2)

O(n) O(n)



Step 4b: align and add the river

• Repeat previous step 3 for right bottom piece.
• Turn the two pieces by 90 degrees
• re-draw and adjust sizes (using stored shift vectors)
• add the river
• align opposite vertices (modified shift algorithm)

O(n2)

O(n)



Step 5: decompose the upper graph

• Cut upper corners (along largest upper chords)



Step 5: decompose the upper graph

• Cut upper corners (along largest upper chords)
• Find the edge adjacent to the river
• Decompose the rest into 3 parts



Step 6: draw upper corners



Step 7: align upper corners

C

C



Step 8: draw remaining pieces

O(n2)

O(n)

K

K+1

K

K+1

slopes in [− 1
2 ,

1
2 ]

O(n ·max(n,K))

refinement factor for the upper piece

where K = O(n2) is the grid width



Final step: glue all pieces together

O(n5)

O(n5)

Drawing in the näıve way O(K2n×K2n) = O(n5 × n5) area

where K = O(n2) is the grid width



Final step: glue all pieces together

Drawing in a clever way O(n4 × n4) area
(recall on the torus there are non contractible cycles of length O(

√
n))

O(n
√
n)

O(n)

[Hutchinson, Albert ’78]



applications and extensions

(geodesic spherical drawing)



Geodesic spherical drawing

Algorithm:

• partition the faces of the initial graph;

• dessiner draw every rectangle according their lateral sides;

• construct a pyramid from the rectangles;

• place a small copy in the center of sphere;

• project its edges on the sphere.

vN S2vN

vN
G

M



Draw arbitrary polygons
• Suppose we can draw an arbitrary quadrangle, let P (n) be its

grid size
• Using divide and conquer strategy we can draw any k-gon
• Grid size will be proportional to O(P (n)log k).


