Periodic planar straight-frame graph drawings with polynomial resolution

(Luca Castelli Aleardi)

(joint work with Eric Fusy and Anatolii Kostrygin)

(work supported by the french ANR Egos)
Periodic planar straight-frame graph drawings with polynomial resolution

Latin 2014, Montevideo

Luca Castelli Aleardi
(joint work with Eric Fusy and Anatolii Kostrygin)

(work supported by the french ANR Egos)
Let’s start from planar graphs
Some facts about planar graphs

Thm (Schnyder, Trotter, Felsner)
G planar if and only if $\dim(G) \leq 3$

Thm (Koebe-Andreev-Thurston)
Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Thm (Kuratowski, excluded minors)
G planar if and only if G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Y. Colin de Verdière)
G planar if and only if $\mu(G) \leq 3$ ($\mu(G) =$ multiplicity of λ_2 of a generalized laplacian)

$$L_G = \begin{bmatrix} 4 & -1 & \ldots & \ldots & 0 \\ -1 & 5 & \ldots \\ \vdots & \vdots \\ 0 & \ldots & \ldots & \ldots & 3 \end{bmatrix} \quad L_G[i, k] = \begin{cases} \deg(v_i) \\ -A_G[i, j] \end{cases}$$
Planar straight-line drawings
(of planar graphs)
Planar straight-line drawings

[Wagner’36]
[Fary’48]
Planar straight-line drawings

Classical algorithms:

- spring-embedding
- incremental (Shift-algorithm)
- face-counting principle

existence of straight-line drawing

[Wagner’36]
[Fary’48]
[Stein’51]
[Tutte’63]
[De Fraysseix, Pach, Pollack 89]
[Schnyder’90]
Periodic straight-line drawings
(statement of the problem)
Drawing graphs on surfaces

\[g = 0 \]
Drawing graphs on surfaces \(g \geq 2 \)

Universal cover

Polygonal scheme

Periodic drawing out of circle packing

\([\text{Mohar'99}] \)

(Palais de la Découverte, Fête de la Science, October 2013)
Drawing toroidal graphs

For the torus you can get periodic drawings

\[g = 1 \]
Straight-line toroidal drawings

On the torus

- x-periodic and y-periodic drawing
- Drawing on the flat torus

O\((n \times n^3)\) grid

- [Castelli-Aleardi Devillers Fusy, GD'12]
- [Goncalves Lévêque, DCG'14]

O\((n^2 \times n^2)\) grid

- [Duncan, Goodrich, Kobourov, GD'09]
- [Chambers, Eppstein, Goodrich, Löffler, GD'10]
some useful previous results
(key ingredients for our work)
Incremental shift algorithm
[de Fraysseix, Pollack, Pach’89]

1. Grid size of G_k: $2k \times k$

2. use the canonical ordering
1) k-scheme triangulation is a quasi-triangulation s.t.
- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.
A straight-frame drawing of G is
- a planar straight-line drawing of G;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G.

Theorem [Duncan et al., GD09]
Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O(n^2 \times n)$.
1) k-scheme triangulation is a quasi-triangulation s.t.
 - k marked outer vertices are called corners;
 - each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.
 A straight-frame drawing of G is
 - a planar straight-line drawing of G;
 - the outer face is an axis-aligned rectangle;
 - its corners are the corners of G.

Theorem [Duncan et al., GD09]
Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O(n^2 \times n)$.
1) **k-scheme triangulation** is a quasi-triangulation s.t.
 - k marked outer vertices are called **corners**;
 - each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.
 A **straight-frame drawing** of G is
 - a planar straight-line drawing of G;
 - the outer face is an axis-aligned rectangle;
 - its corners are the corners of G.

Theorem [Duncan et al., GD09]
Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O(n^2 \times n)$.
Our main result

(statement and the key idea)
Straight-frame periodic drawing

1) Denote the paths between consecutive corners by S_1, \ldots, S_k. Then a 4-scheme triangulation satisfying $|S_1| = |S_3|$ and $|S_2| = |S_4|$ is called balanced.

2) Its straight-frame drawing is periodic if
- the abscissas of vertices of the same rank along S_1 and S_3 coincide;
- the ordinates of vertices of the same rank along S_2 and S_4 coincide.

Theorem (Castelli Aleardi, Fusy, Kostrygin)
Each balanced 4-scheme-triangulation admits a periodic straight-frame drawing on a (regular) grid of size $O(n^4 \times n^4)$.
Main idea: key picture

Before drawing a balanced 4-scheme triangulation . . .
Key picture: first cut

Before drawing a balanced 4-scheme triangulation . . .

compute a special partition of its internal faces
Key picture: then draw and stretch

draw each piece according to its type
stretch each piece identifying coordinates on opposite sides
Key picture: finally glue all pieces

stretch each piece identifying coordinates on opposite sides
Why does it work
(overview of the proof)
Step 1: decomposition phase

- Suppose that there is no "vertical" cord.
- Then there exists a closest to the upper-side cordless path.
- Each vertex of the path is on the dist. 1 from the upper-side.
- Let’s cut the graph along this path.
Step 2: compute a river

- for identification: we need to take care only about left and right sides.
- Upper side is not required to be straight.

- Find a river from upper to bottom side.
- Let’s cut along this river.
Step 3: draw left bottom piece

- Turn by 90 degrees (to help intuition).
- Find a canonical order.
Step 3: draw left bottom piece

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
Step 3: draw left bottom piece

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the distance between vertices on the bottom side.
Step 3b: modified shift algorithm

- Remember the distance between vertices on the bottom side (shift vector).
- Use the shift vector to perform a second drawing pass.

First pass

[First pass diagram]

Second pass

(initial positions are given by the shift vector)
Step 4a: draw both bottom corners

- Repeat previous step 3 for right bottom piece.
- Turn the two pieces by 90 degrees
- re-draw and adjust sizes (using stored shift vectors)
Step 4b: align and add the river

- Repeat previous step 3 for right bottom piece.
- Turn the two pieces by 90 degrees
- re-draw and adjust sizes (using stored shift vectors)
- add the river
- align opposite vertices (modified shift algorithm)
Step 5: decompose the upper graph

- Cut upper corners (along largest upper chords)
Step 5: decompose the upper graph

- Cut upper corners (along largest upper chords)
- Find the edge adjacent to the river
- Decompose the rest into 3 parts
Step 6: draw upper corners
Step 7: align upper corners
Step 8: draw remaining pieces

refinement factor for the upper piece

\[O(n \cdot \max(n, K)) \]

where \(K = O(n^2) \) is the grid width
Final step: glue all pieces together

Drawing in the naïve way $O(K^2n \times K^2n) = O(n^5 \times n^5)$ area

where $K = O(n^2)$ is the grid width
Final step: glue all pieces together

Drawing in a clever way $\implies O(n^4 \times n^4)$ area

(recall on the torus there are non contractible cycles of length $O(\sqrt{n})$) [Hutchinson, Albert '78]
applications and extensions
(geodesic spherical drawing)
Algorithm:
- partition the faces of the initial graph;
- dessiner draw every rectangle according to their lateral sides;
- construct a pyramid from the rectangles;
- place a small copy in the center of the sphere;
- project its edges on the sphere.
Draw arbitrary polygons

- Suppose we can draw an arbitrary quadrangle, let $P(n)$ be its grid size.
- Using divide and conquer strategy we can draw any k-gon.
- Grid size will be proportional to $O(P(n)^{\log k})$.

![Diagram showing the process of drawing arbitrary polygons using divide and conquer strategy.](image-url)