Schnyder woods for higher genus surfaces: from graph encoding to graph drawing

JCB 2014, Labri
Luca Castelli Aleardi

(joint works with O. Devillers, E. Fusy, A. Kostrygin, T. Lewiner)

4
EGOS

Some facts about planar graphs
 ("As I have known them")

Some facts about planar graphs

Thm (Schnyder, Trotter, Felsner) G planar if and only if $\operatorname{dim}(G) \leq 3$

Thm (Koebe-Andreev-Thurston)
Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Thm (Kuratowski, excluded minors)
G planar if and only if G contains neither K_{5} nor $K_{3,3}$ as minors

Thm (Y. Colin de Verdière)

G planar if and only if $\mu(G) \leq 3$
($\mu(G)=$ multiplicity of λ_{2} of a generalized laplacian)
$L_{G}=\left[\begin{array}{rrrrr}4 & -1 & \ldots & \ldots & 0 \\ -1 & 5 & \ldots & & \\ \ldots & & \ldots & & \\ \cdots & & & & \ldots \\ 0 & \cdots & & & 3\end{array}\right] \quad L_{G}[i, k]=\left\{\begin{array}{c}\operatorname{deg}\left(v_{i}\right) \\ -A_{G}[i, j]\end{array}\right.$

Planar triangulations

$$
e=3 n-6
$$

$$
n-e+f=2
$$

$$
\begin{aligned}
& \phi=(1,2,3,4)(17,23,18,22)(5,10,8,12)(21,19,24,15) \ldots \\
& \alpha=(2,18)(4,7)(12,13)(9,15)(14,16)(10,23) \ldots
\end{aligned}
$$

Schnyder woods and canonical orderings: overview of applications

(graph drawing, graph encoding, succinct representations, compact data structures, exhaustive graph enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing, untangling of planar graphs, Steinitz representations of polyhedra, ...)

Some (classical) applications

(Chuang, Garg, He, Kao, Lu, Icalp'98)
(He, Kao, Lu, 1999)
Graph encoding

$S(([][])(](](]\{[[))(\}])(\}]\{[[[[))(\}])(\}](]))(\}\}])(\}\}\}]))$
(Poulalhon-Schaeffer, Icalp 03)
bijective counting, random generation

\Rightarrow optimal encoding ≈ 3.24 bits/vertex

Thm (Schnyder '90)
planar straight-line grid drawing (on a $O(n \times n)$ grid)

More ("recent") applications

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces and Half- Θ_{6}-graphs
[Bonichon et al., WG'10, Icalp '10, ...]

Figure 2: A coplanar orthogonal surface with its geodesic embedding.

Figure 3: (a) TD-Voronoi diagram. (b) $\lambda_{1}<\lambda_{2}<\lambda_{3}$ stand for three triangular distances. Set $\{u, v\}$ is an ambiguous point set, however $\{u, v, w\}$ is non-ambiguous.

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08) (conjectured by Papadimitriou and Ratajczak for 3-connected planar graphs)

Schnyder woods

(the definition)

Schnyder woods: (planar) definition

A Schnyder wood of a (rooted) planar triangulation is partition of all inner edges into three sets T_{0}, T_{1} and T_{2} such that
i) edge are colored and oriented in such a way that each inner nodes has exaclty one outgoing edge of each color

ii) colors and orientations around each inner node must respect the local Schnyder condition

Schnyder woods: equivalent formulation

3-connected graphs [Felsner]

Schnyder woods: spanning property

[Schnyder '90]

Theorem

The three sets T_{0}, T_{1}, T_{2} are spanning
 trees of the inner vertices of \mathcal{T} (each rooted at vertex v_{i})

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]

The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.
perform a vertex conquest at each step

G_{k}

\Downarrow

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.
perform a vertex conquest at each step
G_{k}

\Downarrow

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

perform a vertex conquest at each step

G_{k}

\Downarrow

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]

The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.
perform a vertex conquest at each step

G_{k}

\Downarrow

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Schnyder woods: existence (algorithm I)

[incremental vertex shelling, Brehm's thesis]
The traversal starts from the root face

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Canonical orderings
 (the definition)

Canonical orderings: definition

[de Fraysseix Pach Pollack]

Planar straight-line drawings (of planar graphs)

Planar straight-line drawings

[Wagner'36]
[Fary'48]

Planar straight-line drawings

[Wagner'36]
[Fary'48]
[Stein'51]

Classical algorithms:

[Tutte'63]
spring-embedding

[De Fraysseix, Pach, Pollack 89] incremental (Shift-algorithm)

[Schnyder'00]
face-counting principle

Planar straight-line drawings

[Wagner'36]
[Fary'48]

Planar straight-line grid drawings

Input of the problem set of triangle faces

[Wagner'36]
[Fary'48]
$(a, b, c)(d, e, g)(i, g, b)$
$(\mathrm{a}, \mathrm{c}, \mathrm{d})(\mathrm{e}, \mathrm{b}, \mathrm{g})(\mathrm{i}, \mathrm{b}, \mathrm{a})$
(d, c, e) (a, f, h)
(c, b, e) (a, h, i)
(a, d, f) (i, h, f)
(f, d, g) (i, f, g)

Output

geometric coordinates of vertices

Face counting algorithm
 (Schnyder algorithm, 1990)

Face counting algorithm

Geometric interpretation

$$
v=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}
$$

where α_{i} is the normalized area

$$
v=\frac{\left|R_{1}(v)\right|}{|T|} x_{1}+\frac{\left|R_{2}(v)\right|}{|T|} x_{2}+\frac{\left|R_{3}(v)\right|}{|T|} x_{3}
$$

where $\left|R_{i}(v)\right|$ is the number of triangles
Theorem (Schnyder, Soda '90)
For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2 n-5) \times(2 n-5)$, by setting $x_{1}=(2 n-5,0), x_{2}=(0,0)$ and $x_{3}=(0,2 n-5)$.

Face counting algorithm

Input: \mathcal{T}

\mathcal{T} endowed with a Schnyder wood

$$
\mathrm{a} \rightarrow(0,0) \quad \mathrm{b} \rightarrow(0,1) \quad \mathrm{i} \rightarrow(1,0)
$$

$$
\mathbf{C} \rightarrow\left(\frac{9}{13}, \frac{1}{13}\right) \quad \mathbf{d} \rightarrow\left(\frac{\mathbf{5}}{\mathbf{1 3}}, \frac{\mathbf{6}}{\mathbf{1 3}}\right)
$$

$$
\mathrm{e} \rightarrow\left(\frac{7}{13}, \frac{4}{13}\right) \mathrm{f} \rightarrow\left(\frac{3}{13}, \frac{3}{13}\right)
$$

$$
\mathrm{g} \rightarrow\left(\frac{4}{13}, \frac{8}{13}\right) \mathrm{h} \rightarrow\left(\frac{1}{13}, \frac{4}{13}\right)
$$

Face counting algorithm: proof (sketch)

Input: \mathcal{T}

\uparrow

\mathcal{T} endowed with a Schnyder wood

$$
\begin{aligned}
& \mathrm{a} \rightarrow(13,0,0) \\
& \mathrm{b} \rightarrow(0,13,0) \\
& \mathrm{c} \rightarrow(9,3,1) \\
& \mathrm{d} \rightarrow(5,6,2) \\
& \mathrm{e} \rightarrow(2,7,4) \\
& \mathrm{f} \rightarrow(7,3,3) \\
& \mathrm{g} \rightarrow(1,4,8) \\
& \mathrm{h} \rightarrow(8,1,4) \\
& \mathrm{i} \rightarrow(0,0,13)
\end{aligned}
$$

Face counting algorithm: proof (sketch)

\mathcal{T} endowed with a Schnyder wood

Face counting algorithm: proof (sketch)

\mathcal{T} endowed with a Schnyder wood

$$
\begin{aligned}
\mathrm{a} & \rightarrow(13,0,0) \\
\mathrm{b} & \rightarrow(0,13,0) \\
\mathrm{c} & \rightarrow(9,3,1) \\
\mathbf{d} & \rightarrow(5,6,2) \\
\mathrm{e} & \rightarrow(2,7,4) \\
\mathbf{f} & \rightarrow(7,3,3) \\
\mathbf{g} & \rightarrow(1,4,8) \\
\mathrm{h} & \rightarrow(8,1,4) \\
\mathrm{i} & \rightarrow(0,0,13)
\end{aligned}
$$

Graph encoding

(practical) motivation

Geometric v.s combinatorial information

Geometry

vertex coordinates
between 30 et 96 bits/vertex

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons 32 Giga bytes (without compression)

No existing algorithm nor data structure for dealing with the entire model
"Connectivity": the underlying triangulation

adjacency relations between triangles, vertices
vertex $\quad 1$ reference to a triangle
triangle $\quad 3$ references to vertices
3 references to triangles
$13 n \log n$ or $416 n$ bits
$\#\{$ triangulations $\}=\frac{2(4 n+1)!}{(3 n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2 \pi}} n^{-5 / 2}\left(\frac{256}{27}\right)^{n}$

$$
\Rightarrow \quad \text { entropy }=\log _{2} \frac{256}{27} \approx 3.24 \mathrm{bpv}
$$

A simple encoding scheme

Turan encoding of planar map (1984)
$12 n$ bits encoding scheme

$S(G) \quad([[1)(](0[[D)))(]][) \ldots$
parenthesis word of size $2 n$
parenthesis word of size $2 n$ $\left(2 \log _{2} 4\right) e=4 e=12 n$ bits

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

T_{1} is redundant: reconstruct from T_{0}, T_{2}
T_{2} can be reconstructed from T_{0} and the number of ingoing edges (for each node)

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99) $4 n$ bits (for triangulations)

$2(n-1)$ symbols $=2(n-1)$ bits
$\bar{T}_{2} 00000101010100110111$
$(n-1)+(n-3)=2 n-4$ bits

Compact (practical) mesh data structures

Compact (practical) mesh data structures

Graphs on surfaces

Graphs on surfaces

$$
e=3 n-6
$$

$\phi=(1,2,3,4)(17,23,18,22)(5,10,8,12)(21,19,24,15) \ldots$
$\alpha=(2,18)(4,7)(12,13)(9,15)(14,16)(10,23) \ldots$

what can we to extend to higher genus?

$$
e=3 n-6
$$

[Goncalves Lévêque, DCG'14] $g=1 \quad e=3 n$

what can we to extend to higher genus?

$$
e=3 n-6
$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

[Goncalves Lévêque, DCG'14]

$$
g=1 \quad e=3 n
$$

Schnyder woods and higher genus surfaces

(several possible generalizations)

(pioneeristic) toroidal tree decomposition

[Bonichon Gavoille Labourel, 2005]

the "tambourine" solution

Compute a pair of adjacent non contractible cycles

Tambourine

Result:

Inconvenients:

- valid only for toroidal triangulations (genus 1)
- potentially large number of vertices (on C_{1} and C_{2}) not satisfying the local condition
- shortest non trivial cycles are "hard" to compute

Definition I: genus g Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Def: partition of all "inner" edges into four sets

$$
T_{0}, T_{1}, T_{2} \text { and } \mathcal{E}
$$

such that
almost all vertices have outgoing degree 3
all edges in T_{0}, T_{1} and T_{2} have one color/orientation
at most $4 g$ special vertices (outdegree >3)
the set \mathcal{E} contains at most $2 g$ edges (multiple edges)
new local conditions around special vertices

Definition I: genus g Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

local condition for multiple vertices

all vertices have outgoing degree at most 3

Def: partition of all "inner" edges into four sets
such that
almost all vertices have outgoing degree 3
all edges in T_{0}, T_{1} and T_{2} have one color/orientation
at most $4 g$ special vertices (outdegree >3)
the set \mathcal{E} contains at most $2 g$ edges (multiple edges) new local conditions around special vertices

Genus g Schnyder woods: spanning property

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Theorem

The three sets of edges T_{0} and T_{1} (red and blue edges), as well as the set $T_{2} \cup \mathcal{E}$ (black edges and special edges) are maps of genus g satisfying:

- T_{0}, T_{1} are maps with at most $1+2 g$ faces;
- $T_{2} \cup \mathcal{E}$ is a 1 face map (a g-tree)

Genus g Schnyder woods: application

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Encode map $T_{2} \cup \mathcal{E}$: a tree plus $2 g$ edges: $2 n+O(g \log n)$ bits

Corollary

A triangulation of genu g having n vertices can be encoded with $4 n+O(g \log n)$ bits

Mark special vertices: $O(g \log n)$ bits
Store outgoing edges incident to special edges: $O(g \log n)$ bits

For each node in $T_{2} \cup \mathcal{E}$ store the number of ingoing edges of color 0 : $2 n+O(g \log n)$ bits

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

Perform a vertex conquest (as far as you can)
G_{k}

$\Downarrow \operatorname{conquer}(w)$

conquer (w)

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

Perform a vertex conquest (as far as you can)
Θk

$\Downarrow \operatorname{conquer}(w)$

conquer (w)

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

Perform a vertex conquest (as far as you can)

$\Downarrow \operatorname{conquer}(w)$

conquer (w)

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

Perform a vertex conquest (as far as you can)

$\Downarrow \operatorname{conquer}(w)$

conquer (w)

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck
$\mathcal{S}^{i n}$ is a topological disk

chordal edge (u, w)

No more free vertices

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

$\mathcal{S}^{i n}$ is a topological disk

Incremental algorithm

 when you get stuck perform edge splitPerform a vertex conquest (as far as you can)

chordal edge (u, w)

Now there are free vertices

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck perform edge split
Perform a vertex conquest (as far as you can)
$\mathcal{S}^{i n}$ is a topological disk

Genus g Schnyder woods: existence

$$
\mathcal{E}=\{(u, w),(v, w)\}
$$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck
perform edge split
Perform a vertex conquest (as far as you can) merge (u, w) perform edge split
$\mathcal{S}^{i n}$ is a topological disk

Execution ends performing a sequence of conquer operations

Periodic straight-line drawings

(of higher genus graphs)

Drawing higher genus graphs

$g=0$

$g \geq 2$
Wikipedia picture
Polygonal scheme

drawing in polynomial area [Duncan, Goodrich, Kobourov, GD'09] [Chambers, Eppstein, Goodrich, Löffler, GD'10]

Drawing toroidal graphs

On the torus

(Palais de la Découverte, Fête de la Science, October 2013)

Periodic straight-line drawings

On the torus

straight-line drawing x-periodic and y-periodic drawing
[Castelli Devillers Fusy, GD'12]
$O\left(n \times n^{\frac{3}{2}}\right)$ grid
[Goncalves Lévêque, DCG] $O\left(n^{2} \times n^{2}\right)$ grid drawing on the flat torus

straight-line frame not x-periodic not y-periodic
[Chambers et al., GD'10]
[Duncan et al., GD'09]
$O\left(n \times n^{2}\right)$ grid

straight-line frame x-periodic and y-periodic drawing
[Castelli Fusy Kostrygin, Latin'14]

Periodic straight-line drawings

On the torus

straight-line drawing x-periodic and y-periodic drawing
[Castelli Devillers Fusy, GD'12]
$O\left(n \times n^{\frac{3}{2}}\right)$ grid
[Goncalves Lévêque, DCG] $O\left(n^{2} \times n^{2}\right)$ grid
drawing on the flat torus

straight-line frame
x-periodic and y-periodic drawing
[Castelli Fusy Kostrygin, Latin'14] $O\left(n^{4} \times n^{4}\right)$ grid

A shift-algorithm for the torus

1. Recall algorithm of [De Fraysseix et al'89] Plane

\Downarrow

Grid $2 n-4 \times n-2$
2. Extend to the cylinder
3. Get toroidal drawings
[Castelli Aleardi Fusy Devillers 2012] Cylinder

Torus

\Downarrow

Grid $\leq 2 n \times n(2 d+1)$

Grid $\leq 2 n \times(1+n(2 c+1))$

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

1. \triangle

2.

Grid size of $G_{k}: 2 k \times k$

Reformulation of the shift-step

At each step:
G_{k-1}
insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step:
G_{k-1}
insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step:
G_{k-1}
insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step:
G_{k-1}
insert two vertical strips of width 1 using the dual tree

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1

- insert the next vertex as in the planar case

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Extension to the cylinder: drawing algorithm

Width $=2 n$
Height $\leq n(n-3) / 2$
Can also deal with chordal edges incident to outermost cycle

Extension to the cylinder: drawing algorithm

Each edge has vertical extension at most w

$$
\Rightarrow h \leq n(2 d+1)
$$

with d the graph-distance between the two boundaries

Getting toroidal drawings

Every toroidal triangulation admits a "tambourine" [Bonichon, Gavoille, Labourel'06]

Torus

Cylinder

Getting toroidal drawings

Torus

 in tambourine
drawing algo/
Cylinder on cylinder

Let $c=$ length shortest non-contractible cycle, $c \leq \sqrt{2 n}$ [Hutchinson,
Let $c=$ length shortest non-contractible cycle, $c \leq \sqrt{2 n}$ Albert'78]
Can choose tambourine so that $d<c \Rightarrow h=O\left(n^{3 / 2}\right)$

Schnyder woods for toroidal graphs

Toroidal Schnyder woods: definition

[Goncalves Lévêque, DCG'14]

$$
g=1 \quad e=3 n
$$

Planar Schnyder woods [Felsner 2001]

- Schnyder local rule (for half-edges)
- no monochromatic cycles

Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

- Schnyder local rule (for half-edges)
- every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods: existence

[Goncalves Lévêque, DCG'14]

$$
g=1 \quad e=3 n
$$

no pair of intersecting monochromatic cycles

Toroidal Schnyder woods: existence

Thm[Fijavz]

A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise dis- joint otherwise.

Toroidal Schnyder woods: drawing

Thm[Goncalves Lévêque]

(planar simple triangulations)
A simple toroidal triangulation admits a straight-line periodic drawing on a grid of size $O\left(n^{2} \times n^{2}\right)$

