Schnyder woods for higher genus surfaces: from graph encoding to graph drawing

JCB 2014, Labri

Luca Castelli Aleardi

(joint works with O. Devillers, E. Fusy, A. Kostrygin, T. Lewiner)

Embedded Graphs and their Oriented Structures ANR Project 2012-2015

Some facts about planar graphs ("As I have known them")

Some facts about planar graphs

Thm (Schnyder, Trotter, Felsner)

G planar if and only if $dim(G) \leq 3$

Thm (Koebe-Andreev-Thurston)

Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Thm (Kuratowski, excluded minors) G planar if and only if G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Y. Colin de Verdière)

G planar if and only if $\mu(G) \leq 3$ ($\mu(G)$ = multiplicity of λ_2 of a generalized laplacian)

Planar triangulations

$$n - e + f = 2$$

e = 3n - 6

 $\phi = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12)(21, 19, 24, 15) \dots$ $\alpha = (2, 18)(4, 7)(12, 13)(9, 15)(14, 16)(10, 23) \dots$

Schnyder woods and canonical orderings: overview of applications

(graph drawing, graph encoding, succinct representations, compact data structures, exhaustive graph enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing, untangling of planar graphs, Steinitz representations of polyhedra, ...)

Some (classical) applications

(Chuang, Garg, He, Kao, Lu, Icalp'98)

(He, Kao, Lu, 1999) Graph encoding

 $S \ \left(\left(\left[\left[\left[\right] \right] \left(\right] \left(\right] \left\{ \left[\left[\right] \right] \left\{ \right] \left(\right] \left\{ \right] \left\{ \right] \left(\right] \left\{ \left[\left[\right] \left\{ \right] \left(\right] \left\{ \right\} \left\{ \right\}$

(Poulalhon-Schaeffer, Icalp 03)

bijective counting, random generation

 \Rightarrow optimal encoding ≈ 3.24 bits/vertex

Thm (Schnyder '90)

planar straight-line grid drawing (on a $O(n \times n)$ grid)

More ("recent") applications

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

(conjectured by Papadimitriou and Ratajczak for 3-connected planar graphs)

Schnyder woods (the definition)

Schnyder woods: (planar) definition

rooted triangulation on n nodes

[Schnyder '90]

A Schnyder wood of a (rooted) planar triangulation is partition of all inner edges into three sets T_0 , T_1 and T_2 such that

i) edge are colored and oriented in such a way that each inner nodes has exaclty one outgoing edge of each color

ii) colors and orientations around each inner node must respect the local Schnyder condition

Schnyder woods: equivalent formulation

Schnyder woods: spanning property

[Schnyder '90]

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

 U_{n-1}

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

> perform a vertex conquest at each step

 v_1

 G_{k-1}

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

> perform a vertex conquest at each step

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

> perform a vertex conquest at each step

 G_{k-1}

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

> perform a vertex conquest at each step

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Canonical orderings (the definition)

Canonical orderings: definition

Planar straight-line drawings (of planar graphs)

Planar straight-line drawings

 \Rightarrow

[Wagner'36]

[Fary'48]

Planar straight-line drawings

Classical algorithms:

spring-embedding

incremental (Shift-algorithm)

face-counting principle

Planar straight-line drawings

 \Rightarrow

[Wagner'36]

[Fary'48]

Planar straight-line grid drawings

[Wagner'36] [Fary'48]

Input of the problem set of triangle faces

Output geometric coordinates of vertices

Face counting algorithm

(Schnyder algorithm, 1990)

Face counting algorithm

 $v = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3$ where α_i is the normalized area

$$v = \frac{|R_1(v)|}{|T|} x_1 + \frac{|R_2(v)|}{|T|} x_2 + \frac{|R_3(v)|}{|T|} x_3$$

where $|R_i(v)|$ is the number of triangles

Theorem (Schnyder, Soda '90)

For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2n-5) \times (2n-5)$, by setting $x_1 = (2n-5, 0)$, $x_2 = (0, 0)$ and $x_3 = (0, 2n-5)$.

Face counting algorithm

Input: \mathcal{T}

 ${\mathcal T}$ endowed with a Schnyder wood

Face counting algorithm: proof (sketch)

 $\ensuremath{\mathcal{T}}$ endowed with a Schnyder wood

 $a \rightarrow (13, 0, 0)$ $b \rightarrow (0, 13, 0)$ $c \rightarrow (9, 3, 1)$ $d \rightarrow (5, 6, 2)$ $e \rightarrow (2, 7, 4)$ $f \rightarrow (7, 3, 3)$ $g \rightarrow (1, 4, 8)$ $h \rightarrow (8, 1, 4)$ $i \rightarrow (0, 0, 13)$

Face counting algorithm: proof (sketch)

 ${\mathcal T}$ endowed with a Schnyder wood

$$a \rightarrow (13, 0, 0)$$

$$b \rightarrow (0, 13, 0)$$

$$c \rightarrow (9, 3, 1)$$

$$d \rightarrow (5, 6, 2)$$

$$e \rightarrow (2, 7, 4)$$

$$f \rightarrow (7, 3, 3)$$

$$g \rightarrow (1, 4, 8)$$

$$h \rightarrow (8, 1, 4)$$

$$i \rightarrow (0, 0, 13)$$

Face counting algorithm: proof (sketch)

 $\ensuremath{\mathcal{T}}$ endowed with a Schnyder wood

Graph encoding

(practical) motivation

Geometric v.s combinatorial information

Geometry

vertex coordinates

between 30 et 96 bits/vertex

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons 32 Giga bytes (without compression)

No existing algorithm nor data structure for dealing with the entire model "Connectivity": the underlying triangulation

adjacency relations between triangles, vertices

- vertex 1 reference to a triangle
- triangle 3 references to vertices 3 references to triangles

 $13n\log n$ or 416n bits

$$\#\{\text{triangulations}\} = \frac{2(4n+1)!}{(3n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2\pi}} n^{-5/2} \left(\frac{256}{27}\right)^n$$

$$\Rightarrow \quad \mathsf{entropy} = \log_2 \frac{256}{27} \approx 3.24 \, \mathsf{bpv}.$$

A simple encoding scheme

Turan encoding of planar map (1984) 12n b

12n bits encoding scheme

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

 T_1 is redundant: reconstruct from T_0 , T_2

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

 T_1 is redundant: reconstruct from T_0 , T_2

 T_2 can be reconstructed from T_0 and the number of ingoing edges (for each node)

Canonical orderings - Schnyder woods (He, Kao, Lu '99) 4n bits (for triangulations)

 \overline{T}_2 00000101010100110111

(n-1) + (n-3) = 2n - 4 bits

Compact (practical) mesh data structures

	Data Structure	size	navigation time	vertex access	dynamic
(non compact) data structures	Half-edge/Winged-edge/Quad-edge	18n + n	O(1)	O(1)	yes
	Triangle based DS / Corner Table	12n+n	O(1)	<i>O</i> (1)	yes
compact data structures	Directed edge (Campagna et al. '99) 2D Catalogs (Castelli Aleardi et al., '06)	$\begin{array}{c} 12n+n\\ 7.67n \end{array}$	O(1) O(1)	O(1) O(1)	yes yes
	Star vertices (Kallmann et al. '02) TRIPOD (Snoeyink, Speckmann, '99) SOT (Gurung et al. 2010)	7n 6n 6n	O(d) O(1) O(1)	$O(1) \\ O(d) \\ O(d)$	no no no
Half-edge $opposite(\mathbf{e})$	SQUAD (Gurung et al. 2011) ε between 0.09 and 0.3	$(4+\varepsilon)n$	O(1)	O(d)	no
e	ESQ (Castelli Aleardi, Devillers, Rossignac'12) Castelli Aleardi and Devillers (2011)	4.8n $4n$ (or $6n$)	$O(1) \\ O(1)$	O(d) O(d) (or $O(1)$)	yes no
$prev(\mathbf{e})$ $source(\mathbf{e})$	LR (Gurung et al. 2011) δ about 0.8 and 0.3	$(2+\delta)n$	O(1)	O(d)	no
	Half-edge, Winged-edge, Quad-edge				
$w \underbrace{LeftFront(e)}_{Fleft} \operatorname{Target(e)}_{Fleft} \operatorname{Target(e)}_{Fright}$ $e \\ F_{right} \\ RightBack(e) \\ Source(e) \\ Winged-edge$ $Triangle-base$	ed (13n) $(7n)$	dge Castelli Devillers (Isaac 2011), (4n)			
	Star-Vertices				

Compact (practical) mesh data structures

	Data Structure	size	navigation time I	vertex access	dynamic
(non compact) data structures	Half-edge/Winged-edge/Quad-edge Triangle based DS / Corner Table	$ \begin{array}{c} 18n+n\\ 12n+n \end{array} $	O(1) O(1)	$O(1) \\ O(1)$	yes yes
compact data structures	Directed edge (Campagna et al. '99) 2D Catalogs (Castelli Aleardi et al., '06) Star vertices (Kallmann et al. '02) TRIPOD (Snoeyink, Speckmann, '99)	12n + n 7.67n 7n 6n	$O(1) \\ O(1) \\ O(d) \\ O(1)$	$O(1) \\ O(1) \\ O(1) \\ O(1) \\ O(d)$	yes yes no no
Half-edge opposite(e)	SOT (Gurung et al. 2010) SQUAD (Gurung et al. 2011) ε between 0.09 and 0.3 ESQ (Castelli Aleardi, Devillers, Rossignac'12) Castelli Aleardi and Devillers (2011) LR (Gurung et al. 2011)	$ \begin{array}{c} 6n \\ (4+\varepsilon)n \\ 4.8n \\ 4n (\text{or } 6n) \\ (2+\delta)n \end{array} $	$O(1) \\ O(1) \\ O(1) \\ O(1) \\ O(1) \\ O(1)$	O(d) $O(d)$ $O(d)$ $O(d)$ $O(d)$ $O(d)$	no no yes no no
$w = \frac{\text{LeftFront}(e)}{F_{left}} = \frac{\text{Target}(e)}{F_{left}}$ $w = \frac{\text{LeftFront}(e)}{F_{left}} = \frac{\text{Target}(e)}{F_{right}}$ $w = \frac{F_{right}}{F_{right}}$	Half-edge, Winged-edge, Quad-edge (19n) Triangle DS, Corner Table, Directed e (13n) 2D Catalogs (7.67n) SOT ESQ, (6n) (4.8n) (7n) Star-Vertices	dge Castelli Devillers (Isaac 2011), (4n)	(timings are vertex degree 150 100 50 0 1.9 times s (experim	expressed in nanosecond e (only topological navig Winge slower than Winge ental evaluation)	ls/vertex) (ation) 4n ad-edge 19n

Graphs on surfaces

Graphs on surfaces

$$n - e + f = 2 - 2g$$

$$g = 1$$
 $e = 3n$

 $\phi = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12)(21, 19, 24, 15) \dots$ $\alpha = (2, 18)(4, 7)(12, 13)(9, 15)(14, 16)(10, 23) \dots$

what can we to extend to higher genus?

what can we to extend to higher genus?

Schnyder woods and higher genus surfaces (several possible generalizations)

(pioneeristic) toroidal tree decomposition [Bonichon Gavoille Labourel, 2005]

the "tambourine" solution

Compute a pair of adjacent non contractible cycles

Result:

Inconvenients:

- valid only for toroidal triangulations (genus 1)
- potentially large number of vertices (on C_1 and C_2) not satisfying the local condition
- shortest non trivial cycles are "hard" to compute

Definition I: genus g **Schnyder woods** [Castelli-Aleardi Fusy Lewiner, SoCG'08]

Def: partition of all "inner" edges into four sets T_0 , T_1 , T_2 and \mathcal{E} such that

almost all vertices have outgoing degree 3 all edges in T_0, T_1 and T_2 have one color/orientation

```
at most 4g special vertices (outdegree > 3)
the set \mathcal{E} contains at most 2g edges (multiple edges)
new local conditions around special vertices
```

Definition I: genus g **Schnyder woods** [Castelli-Aleardi Fusy Lewiner, SoCG'08]

degree at most 3

Def: partition of all "inner" edges into four sets T_0 , T_1 , T_2 and \mathcal{E}

such that

almost all vertices have outgoing degree 3 all edges in T_0, T_1 and T_2 have one color/orientation

```
at most 4g special vertices (outdegree > 3)
the set \mathcal{E} contains at most 2g edges (multiple edges)
new local conditions around special vertices
```

Genus g Schnyder woods: spanning property

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Theorem

The three sets of edges T_0 and T_1 (red and blue edges), as well as the set $T_2 \cup \mathcal{E}$ (black edges and special edges) are maps of genus g satisfying:

• T_0, T_1 are maps with at most 1 + 2g faces;

•
$$T_2 \cup \mathcal{E}$$
 is a 1 face map (a g-tree)

Genus g Schnyder woods: application

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

$\mathcal{E} = \{(u, w), (v, w)\}$ local condition for multiple vertices

Encode map $T_2 \cup \mathcal{E}$: a tree plus 2g edges: $2n + O(g \log n)$ bits

Mark special vertices: $O(g \log n)$ bits

Store outgoing edges incident to special edges: $O(g \log n)$ bits

For each node in $T_2 \cup \mathcal{E}$ store the number of ingoing edges of color 0: $2n + O(g \log n)$ bits

Corollary

A triangulation of genu g having n vertices can be encoded with $4n + O(g\log n)$ bits

 $\mathcal{E} = \{(u, w), (v, w)\}$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

 $\mathcal{E} = \{(u, w), (v, w)\}$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

 $\mathcal{E} = \{(u, w), (v, w)\}$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

 $\mathcal{E} = \{(u, w), (v, w)\}$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck

 \mathcal{S}^{in} is a topological disk

chordal edge (u, w)

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

No more free vertices

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck perform edge split

 \mathcal{S}^{in} is a topological disk

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Now there are free vertices

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck perform edge split Perform a vertex conquest (as far as you can)

 \mathcal{S}^{in} is a topological disk

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck perform edge split Perform a vertex conquest (as far as you can) merge(u, w)perform edge split

 \mathcal{S}^{in} is a topological disk

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Execution ends performing a sequence of conquer operations

Periodic straight-line drawings (of higher genus graphs)

Drawing higher genus graphs

Drawing toroidal graphs

(Palais de la Découverte, Fête de la Science, October 2013)

Periodic straight-line drawings On the torus

straight-line drawing x-periodic and y-periodic drawing

 $\begin{matrix} \text{[Castelli Devillers Fusy, GD'12]} \\ O(n \times n^{\frac{3}{2}}) \ \textbf{grid} \end{matrix}$

 $\begin{matrix} [\text{Goncalves Lévêque, DCG}] \\ O(n^2 \times n^2) \text{ grid} \end{matrix}$

straight-line frame not x-periodic not y-periodic [Chambers et al., GD'10]

[Duncan et al., GD'09] $O(n imes n^2)$ grid

straight-line frame x-periodic and y-periodic drawing

[Castelli Fusy Kostrygin, Latin'14]

Periodic straight-line drawings On the torus

straight-line drawing x-periodic and y-periodic drawing

 $\begin{matrix} \text{[Castelli Devillers Fusy, GD'12]} \\ O(n \times n^{\frac{3}{2}}) \ \textbf{grid} \end{matrix}$

 $\begin{matrix} [\text{Goncalves Lévêque, DCG}] \\ O(n^2 \times n^2) \text{ grid} \end{matrix}$

straight-line frame not x-periodic not y-periodic [Chambers et al., GD'10]

[Duncan et al., GD'09] $O(n imes n^2)$ grid

straight-line frame x-periodic and y-periodic drawing

[Castelli Fusy Kostrygin, Latin'14] $O(n^4 imes n^4)$ grid

A shift-algorithm for the torus 2. Extend to the cylinder 3. Get toroidal

1. Recall algorithm of

3. Get toroidal drawings

Torus

[De Fraysseix et al'89] **Plane**

Grid $2n-4 \times n-2$

 $\mathsf{Grid} \leq 2n \times n(2d+1)$

 $\operatorname{Grid} \leq 2n \times (1+n(2c+1))$

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

 $\label{eq:Width} {\sf Width} = 2n \qquad {\sf Height} \le n(n-3)/2$ Can also deal with chordal edges incident to outermost cycle

with d the graph-distance between the two boundaries

Getting toroidal drawings

Every toroidal triangulation admits a "tambourine" [Bonichon, Gavoille, Labourel'06]

Getting toroidal drawings

Schnyder woods for toroidal graphs

Toroidal Schnyder woods: definition

[Goncalves Lévêque, DCG'14]

$$g = 1$$
 $e = 3n$

Planar Schnyder woods [Felsner 2001]

- Schnyder local rule (for half-edges)
- no monochromatic cycles

Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

- Schnyder local rule (for half-edges)
- every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods: existence

 $T_0 \mathbf{q}$

[Goncalves Lévêque, DCG'14]

$$g = 1$$
 $e = 3n$

no pair of intersecting monochromatic cycles

Toroidal Schnyder woods: existence

Thm[Fijavz]

(planar simple triangulations)

A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise dis- joint otherwise.

Toroidal Schnyder woods: drawing

Thm[Goncalves Lévêque]

(planar simple triangulations)

A simple toroidal triangulation admits a straight-line periodic drawing on a grid of size ${\cal O}(n^2 \times n^2)$

