
Luca Castelli Aleardi

ISAAC,Yokohama, 6-8 december 2011

Array-based compact data structures
for triangle meshes

Olivier Devillers

Geometrica - INRIA Sophia

v0
v1

v2

v3

v4

v5

v2





Geometric object
x
y
z


between 30 et 96 bits/vertex

Compact Data Structures: motivation and goal

vertex
triangle

1 reference to a triangle

3 references to vertices

3 references to triangles

log n or 32 bits

Connectivity information

connectivity
13n log n416n bits

St. Matthew (Stanford’s Digital Michelan-
gelo Project, 2000)

186 millions vertices
6 Giga bytes (for storing on disk)

David statue (Stanford’s Digital Michelan-
gelo Project, 2000)

2 billions polygons

32 Giga bytes (with-

out compression)



Today we deal with triangulations

genus 0 triangle mesh 2D Delaunay triangulation(random) planar triangulation

triangulations

with boundaries

higher genus

triangulations



(planar) Triangle meshes

v0 v1

v2

v3

v4

v5

v2

Schnyder drawing of a planar
triangulation

Surface triangle mesh
endowed with a
Schnyder wood

g-Schnyder woods, for
genus g triangulations

(Castelli-Fusy-Lewiner, SoCG08)

Schnyder woods for triangulations with
multiple boundaries of arbitrary size

(Castelli-Fusy-Lewiner,CCCG2010)

Delaunay triangulation of random
points (endowed with a Schnyder wood)

Tutte drawing of a random
planar triangulation



Schnyder woods: applications

graph counting, random generation
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T0 T1

T2

(Chuang-Garg-He-Kao-Lu Icalp ’98)

(Barbay-Castelli Aleardi-He-Munro Isaac’07)

(Yamanaka-Nakano ’08)

(Chiang et al. Soda’01)grid drawing
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v
a

b

Every planar triangulation admits a greedy
drawing (Dhandapani, Soda08)

Conjectured by Papadimitriou and
Ratajczak for 3-connected planar
graphs

(Castelli Aleardi-Fusy-Lewiner SoCG08)
(Castelli Aleardi-Fusy-Lewiner CCCG’10)

Greedy routing

(He-Kao-Lu ’99)

Untangling geometric graphs
Bose, Dujmovic, Hurtado, Langerman,
Morin, Wood (DCG 2009)

fix(G) ≥ (n
3 )

1
4

(Poulalhon-Schaeffer, Icalp 03)

Graph encoding

(and related properties)
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v0

v1

v2

(a) (b)
(c)

i) edge are colored and oriented in such a

way that each inner node has exactly one

outgoing edge of each color

ii) colors and orientations around

each inner node must respect the

local Schnyder condition

Schnyder woods: the definition
v0

v1

v2 outer face

Theorem
The three set T0, T1, T2 are spanning trees of
(the inner nodes of) T :

Theorem
Every planar triangulation admits a
Schnyder wood, which can be com-
puted in linear time.

v0 v1

v2

cw oriented

triangle



v0

v1

v2

(a) (b)
(c)

i) edge are colored and oriented in such a

way that each inner node has exactly one

outgoing edge of each color

ii) colors and orientations around

each inner node must respect the

local Schnyder condition

minimal Schnyder woods: the definition (no ccw triangles)
v0

v1

v2 outer face

ccw oriented triangle



Several kinds of encodings: plane trees (with n nodes)
compression schemes

Succinct representations

(Explicit) data structures

11101000101101001110100010110100

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn−

3
2

log2‖Bn‖ = 2n + O(lg n)

2n bits
/ / / /

/ / / /

/

lg n lg n

we need 2n references, or Θ(n lg n) bits
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2n+ o(n) bits

+
O(1) time navigation

(Jacobson Focs89, Munro and Raman Focs97)

Word-RAM model

Explicit (pointer based) implementation
(array based)



Several kinds of encodings: triangle meshes

Optimal compression scheme

Succinct representations

(Explicit) Geometric data structures

i

...

βn + O(1) references (pointers)

3.2451n+O(nn log log n
log n ) = 3.2451n+ o(n) bits

1

n
log2 Ψn ≈ log2(

256

27
) ≈ 3.2451 bits/vertex

(Poulalhon Schaeffer, Icalp03)

Ψn =
2(4n+ 1)!

(3n+ 2)!(n+ 1)!
≈ 16

27

√
3

2π
n−5/2(

256

27
)n

(Castelli Aleardi- Devillers-Schaeffer, WADS05, SoCG06)

2× n× 6× log n

n× 1× log n

13n

+

references
or 13n log n

bits

log n bits

log n bits

lg lg n bits

(n vertices)



Popular (explicit) data structures for surface meshes

Half-edge Triangle-based

(non compact) popular
data structures

existing compact data
structures

Our results

e

opposite(e)

prev(e)

next(e)

source(e)

target(e)

Winged-edge

Data Structure size
navigation
time

vertex
access

dynamic

Edge-based data structures

Triangle based DS / Corner Table

Directed edge (Campagna et al. ’99)
2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)
TRIPOD (Snoeyink, Speckmann, ’99)
SOT (Gurung et al. 2010)

Our Thm 2 (with no vertex permutation)
Our Thm 3 (with vertex permutation)

Our Cor 3 (with vertex permutation)

18n+ n

12n+ n

12n+ n
7.67n

7n
6n
6n

5n
4n
6n

O(1)

O(1)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)
O(1)

O(1)

O(1)

O(1)
O(1)

O(d)
O(d)
O(d)

O(d)
O(d)
O(1)

yes

yes

yes
yes

no
no
no

no
no
no



Popular (explicit) data structures for surface meshes

Half-edge Triangle-based

(non compact) popular
data structures

existing compact data
structures

Our results

e

opposite(e)

prev(e)

next(e)

source(e)

target(e)

Winged-edge

Data Structure size
navigation
time

vertex
access

dynamic

Edge-based data structures

Triangle based DS / Corner Table

Directed edge (Campagna et al. ’99)
2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)
TRIPOD (Snoeyink, Speckmann, ’99)
SOT (Gurung et al. 2010)

Our Thm 2 (with no vertex permutation)
Our Thm 3 (with vertex permutation)

Our Cor 3 (with vertex permutation)

18n+ n

12n+ n

12n+ n
7.67n

7n
6n
6n

5n
4n
6n

O(1)

O(1)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)
O(1)

O(1)

O(1)

O(1)
O(1)

O(d)
O(d)
O(d)

O(d)
O(d)
O(1)

yes

yes

yes
yes

no
no
no

no
no
no

SQUAD (Gurung et al. 2011) (4 + ε)n O(1) O(d) no

LR (Gurung et al. 2011) (2 + ε)n O(1) O(d) no

ε between 0.09 and 0.3

ε about 0.8 and 0.3



e

opposite(e)

next(e)

Half-edge

class Halfedge{

Halfedge next, opposite;

Vertex source;

}
class Vertex{

Halfedge e;

Point p;

}

connectivity

geometry

target(e)

Popular mesh data structures: space requirements
Half-edge, Winged-edge, Quad-edge
(19n)

connectivity

geometric coordinates

class Point{

float x;

float y;

float z;

}

3× 2e + n = 18n + n
Size (number of references) Winged-edge

(4 + 2)× e + n = 18n + n



class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}

class Point{

float x;

float y;

float z;

}class Vertex{

Triangle root;

Point p;

}

Triangle-based

Popular mesh data structures: space requirements
Half-edge, Winged-edge, Quad-edge
(19n+ 3n)

connectivity

geometric coordinates

Triangle DS, Corner Table, Directed
edge (13n)

(3 + 3)× f + n = 6× 2n + n = 13n

Size (number of references)



Non compact vs. compact mesh data structures
Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge

7n

7.67n

6n

≈ 4.15
6n

5n
4n

13n

Our results

SQUAD
(no theoretical guarantees)

SOT data structure (Gurung et al. 2010)

TRIPOD data structure (Snoeyink and Speckmann, 1999)

(Gurung et al. 2011)

use Schnyder woods (store 3 edges per vertex)

perform face reordering
perform face reordering



Experimental comparison

Winged edge

vertex degree (only topological navigation)

vertex normals
(navigation + geometric computations)

Our Compact DS

Tested on 3D models and

random planar triangulations

1.2 - 1.9

times slower

1.19 - 1.35

times slower

Winged edge vs. Our Compact DS

(timings are expressed in nanoseconds/vertex)

5n

5n

6n

6n

19n



First simple Compact DS (size 6n) e := (u, v)

u

v

w z

T

0 ≤ v ≤ n− 1

0 ≤ e ≤ 3n
array based implementation of

(J. Snoeyink and B. Speckmann, 1999)

a variation of TRIPOD

n lines

3 columns

2 references per edge

+ reordering of edges according to
the (original) vertex numbering



u

v

w z

u

v

w z

1

2 3

u

v

w z

u

v

w z

u := source(e) = e/3

(w,v):=T[2e]

e := (u, v){ (e + 1)%3

T [T [e]]

(T [e] + 2)%3

u

v

w

Def.

z
(z, v) := T [2e + 1]

0 ≤ v ≤ n− 1

0 ≤ e ≤ 3n
First simple Compact DS (size 6n)

case 1

case 2

case 3

(w, u) :=

color(e) = e%3

retrieve

retrieving (z, u) is similar



More compact DS (size 5n): use minimal Schnyder woods
(less redundant and ”slightly more difficult to implement”)

u

v

w z

u

v

w z

u

v

z
w

forbidden configuration

ccw

only 1 reference for

black edgesu

w z

v



u

v

w z
u

v

w z

u

v

w z
u

v

w z

1a 1b 2a 2b

u

v

w z
u

v

w z

3a 3b

u

v

w z
u

v

w z

3c 3d

u

v

w z
u

v

w z

4a 4b

u

v

w z
u

v

w z

4c 4d

implementation:

case analysis for black edges
(similar case analysis for the other two colors)

More compact DS (size 5n): use minimal Schnyder woods
(less redundant and ”slightly more difficult to implement”)

many cases to distinguish{ T [T [5u]− 3]

T [T [T [5u]]]

case 1a

case 1b

. . .

(w, u) :=

retrieve

. . .



use the DFUDS (Depth First Unary Degree Sequence) order on T 0

1
2

3
4

5

6

7

8 9

10

Most compact DS (4n references)
(still more compact using vertex reordering)

T 0

u

v

w z

1a

u

v

w z

1b

u

v

w z

1c

u

v

w z

1d

u

v

w z

2

u

v

w z

3a

u

v

w z

3b

u

v

w z

4a

u

v

w z

4b

q q

only 1 reference for

black and red edgescase analysis for red edges



u

v w

Es = {(u,w), (v, w)}

G Gs v′′

w′′

w′

w′′′

u′

u′′

v′

Compact DS for higher genus meshes (5n references)
combine previous ideas with the use of genus g Schnyder woods

(Castelli Aleardi, Fusy, Lewiner SoCG’08)

almost all vertices have outgoing degree 3

toroidal triangulation endowed with a g-Schnyder wood

split multiple vertices

u

v

w z

u

v

w z

1a 1b

u

z

2a
zu0

u1

u2 um−1

um

2b

w

u′ u′′

all vertices have outgoing
degree at most 3

more cases to
consider

n+ 4g
vertices

2n+ 2g
faces

combine previous ideas with the use of genus g Schnyder woods



v3v0

v1 v2

v3

Conclusion

v2

• possible extension to more general surface meshes (pla-

nar quadrangulations and 3-connected planar maps)

• is it possible to further reduce the space requirements:

from 4n to 3n or less?

v0 v1


