
Luca Castelli Aleardi

ESQ: editable SQuad representation for
triangle meshes

Jarek Rossignac
Geometrica - INRIA Sophia

Olivier Devillers

(Ecole Polytechnique, France)

(Georgia Institute of Technology)

(Triangle) mesh encoding:
compression and compact data structures

Among data structures for geometric data, I pick meshes...
Before we start... Geometric data: (triangle) meshes

Geographic information
systems

Surface recontruction
from sampling

Surface modelling

(commonly used in Computational geometry and Geometry processing)

Among data structures for geometric data, I pick meshes...
Before we start... Geometric data: (triangle) meshes

Geographic information
systems

Surface recontruction
from sampling

Surface modelling

triangles meshes al-
ready used in early
19th century

(Delambre et Mchain)

Before we start... ∃ very large geometric data

St. Matthew (Stanford’s Digital
Michelangelo Project, 2000)

186 millions vertices
6 Giga bytes (for storing on disk)

several minutes for loading the model
from disk

David statue (Stanford’s Digital
Michelangelo Project, 2000)

2 billions polygons
32 Giga bytes (without compression)

No existing algorithm nor data structure
for dealing with the entire model

Geometry

between 30 et 96 bits/vertex

Geometric information

vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

Combinatorial informationvs

vertex
coordinates

adjacency
relations between
triangles, vertices

or

Connectivity is by far the most expensive information

1 reference: pointer or integer value (32 bits)

Before we start... What we are aiming at
Mesh compression Geometric data structures

disk storage

Transmission

Before we start... What we are aiming at
Mesh compression

Compact representations of geometric data structures

Geometric data structures

i
...

disk storage

Transmission

MERGE INTO:
(space-efficient data structures)

⇒ 2n bits for encoding an ordered tree with n edges

ordered tree with n edges

balanced parenthesis word of length 2n

1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 01 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0

Compare to the standard
explicit represention:

3n pointers ≈ 96 bits

Starter: the encoding of plane trees

‖Bn‖ = 1
n+1

(
2n
n

)
≈ 22nn− 3

2

This is an optimal encoding!

(((()))

1100000001000010000100

22 9 16 21

B

T

) ()) ((()) () ()) (2n bits

19

low weight bit vectors

m log n bits

select/rank queries

O(n) extra bits

(Jacobson, Focs89)
(Munro and Raman, Focs97)

1
2
3

...

. . .

. . .

Dictionnary space is o(n) if C small enough.

Level 1:
• Θ(n

log2 n
) regions of size Θ(log2 n),

represented by pointers to level 2

Level 2:
in each of the n

log2 n
regions

• Θ(logn) regions of size C logn,
represented by pointers to level 3

A hierarchical approach, with a dictionary at bottom.

Level 3: exhaustive catalog of all different
regions of size i < C logn:

• complete explicit representation.

• global pointers of size logn

• local pointers of size log logn

space O(n
log2 n

· logn) = o(n)

space O(n
logn

· log logn) = o(n)

The dominant term is given by the sum of references to the dictionary

∑
j
2.175kj = 2.175m bits

r

k triangles

Dominant term?

2.175bpt is entropy
of triangulations
with a boundary

A hierarchical approach, with a dictionary at bottom.

references on objects of Tk have size log2 Tk ∼ 2.175k if k →∞

larger than previous
1
2
· 3.24bpt

we should take all k s.t.
1
12

logn < k < 1
2

logn

Adaptative to ”reasonable”
entropy reduction

Teacher Listen to me, If you cannot deeply understand these principles, these
arithmetic archetypes, you will never perform correctly a ”polytechnicien”
job... you will never obtain a teaching position at ”Ecole Polytechnique”.
For example, what is 3.755.918.261 multiplied by 5.162.303.508?

Student (very quickly) the result is 193891900145...

Teacher (very astonished) yes ... the product is really... But, how have you
computed it, if you do not know the principles of arithmetic reasoning?

(La leçon, Eugène Ionesco, 1951)

During a private lesson, a very young student, preparing herself for the
total doctorate, talks about arithmetics with her teacher

General idea (literary digression)

Student: it is simple: I have learned by heart all possible results of all
possible different multiplications.

(the young student cannot understand how to subtract integers)

one-act theatre play

(La leçon, Eugène Ionesco, 1951)
General idea (literary digression) one-act theatre play

at the ”Theatre de la Huchette” (8pm)

”La leçon” is played every night (since 1957) in Paris

Data structures: navigation queries and dynamic updates
Geometric data structures

√
3-subdivision (L. Kobbelt)

vertex insertions
+ edge flips

Mesh compression/Graph encoding Compact data structures

Jacobson (Focs89)

Munro Raman (Focs97)

Chiang et al. (Soda01)

Castelli-Aleardi Devillers Schaeffer
(Wads05, CCCG05, SoCG06)

Barbay Castelli-Aleardi He Munro (Isaac07)

Nakano et al. (2008)

Poulalhon Schaeffer (Icalp03)

Fusy Poulalhon Schaeffer (Soda05)

Blandford Blelloch (Soda03)

Castelli-Aleardi Fusy Lewiner (SoCG08)

Turan (’84)

Keeler Westbrook (’95)

Mesh compression Graph theory / combinatorics

He et al. (’99)

V alence (degree)

Rossignac (’99)

Touma and Gotsman (’98)
Alliez and Debrun

Cut-border machine

Isenburg
Khodakovsky

Gumhold et al. (Siggraph ’98)

Gumhold (Soda ’05)

Lopes et al. (’03)
Lewiner et al. (’04)
. (many many others)

. (many others)

Chuang et al. (Icalp98)

Practical compact data structures

Succinct representations (theoretical results)

Castelli Aleardi Devillers (Isaac 2011)

Castelli Aleardi Devillers Rossignac (Sibgrapi 2012)

(with efficient implementations)

Castelli Aleardi Devillers Mebarki (CCCG06)

Directed Edges (Campagna et al. (1999))

SOT (Gurung Rossignac (SPM 2009))

SQUAD (Gurung Laney Lindstrom Rossignac, EG’11)

LR (Gurung et al. (Siggraph’11))

Star Vertices (Kalmann et al. (2002))

Optimal encodings

planar triangle meshes

planar polygonal meshes

genus g meshes, with boundaries
triangular and quadrangular meshes

Blelloch Farzan (CPM 2010)

Farzan Munro (ESA 2008)

Fusy (GD05)

4-connected triangulations

Blandford et al. (Alenex’04, IMR’03)

Castelli-Aleardi Fusy Lewiner (CCCG10)

Spanning tree-based schemesTaubin et al. (’98)

C CC

R

C

C
R

C
C

R
S
C
RR
EL

C
RE

Edgebreaker

Existing works and our new results

class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}

class Point{

float x;

float y;

float z;

}

class Vertex{

Triangle root;

Point p;

}

Triangle-based data structure (CGAL)

Popular mesh data structures

(3 + 3)× f + n = 6× 2n + n = 13n

Size (number of references)

e

opposite(e)

next(e)

target(e)
Half-edge

class Halfedge{

Halfedge next, opposite;

Vertex source;

}
class Vertex{

Halfedge e;

Point p;

}

connectivity

class Point{

float x;

float y;

float z;

}

3× 2e + n = 18n + n

space requirements

connectivity

Half-edge, Winged-edge, Quad-edge
(19n + 3n)

Triangle DS, Corner Table, Directed edge
(13n + 3n)

connectivity information

geometry information

Compact representations: existing solutions
space requirements

Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge
(13n)

2D Catalogs
(7.67n)

(7n)
Star-Vertices

SOT
(6n) Sorted TRIPOD

(4n), SQuad

perform face re-ordering
(as in SOT, SQuad, LR and Sorted TRIPOD)

1
2

3
4

5

6

7

8 9

10T 0

use Combinatorial properties

(as in TRIPOD and Sorted TRIPOD)

such as Schnyder woods

perform regrouping of neighboring
triangles into quads, pentagons , . . .

(as in 2D Catalogs, SQuad)

Data Structure size
navigation
time

vertex
access

dynamic

Edge-based data structures

Triangle based DS / Corner Table
Directed edge (Campagna et al. ’99)

2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)
TRIPOD (Snoeyink, Speckmann, ’99)
SOT (Gurung et al. 2010)

Castelli-Aleardi and Devillers (2011)

18n + n

12n + n
12n + n

7.67n

7n
6n
6n

4n

O(1)

O(1)
O(1)

O(1)

O(1)
O(1)
O(1)

O(1)

O(1)

O(1)
O(1)

O(1)

O(d)
O(d)
O(d)

O(d)

yes

yes

yes

yes

no
no
no

no

SQUAD (Gurung et al. 2011) ≈ (4 + ε)n O(1) O(d) no
LR (Gurung et al. 2011) ≈ (2 + δ)n O(1) O(d) no

ε ≈ 0.09
δ ≈ 0.08

no theoretical guarantees
(experimental benchmark)

memory
Mesh data structures: existing works

(Half-edge, Quad-edge, Winged-edge)
Traversable and modifiable
(not space-efficient)

Compact and traversable
(not modifiable)

Compact, traversable and
modifiable

memory requirements: we count the
number of references per vertex

Data Structure size
navigation
time

vertex
access

dynamic

Edge-based data structures

Triangle based DS / Corner Table
Directed edge (Campagna et al. ’99)

2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)
TRIPOD (Snoeyink, Speckmann, ’99)
SOT (Gurung et al. 2010)

Castelli-Aleardi and Devillers (2011)

18n + n

12n + n
12n + n

7.67n

7n
6n
6n

4n

O(1)

O(1)
O(1)

O(1)

O(1)
O(1)
O(1)

O(1)

O(1)

O(1)
O(1)

O(1)

O(d)
O(d)
O(d)

O(d)

yes

yes

yes

yes

no
no
no

no

SQUAD (Gurung et al. 2011) ≈ (4 + ε)n O(1) O(d) no
LR (Gurung et al. 2011) ≈ (2 + δ)n O(1) O(d) no

ε ≈ 0.09
δ ≈ 0.08

no theoretical guarantees
(experimental benchmark)

memory
Mesh data structures: our new results

(Half-edge, Quad-edge, Winged-edge)
Traversable and modifiable
(not space-efficient)

Compact and traversable
(not modifiable)

Compact, traversable and
modifiable

Castelli-Aleardi Devillers
Rossignac (Sibgrapi 2012)

4.8n O(1) O(d) Y ES
Compact, traversable and
modifiable

We have tested our implementations on 3D models

we are only about 1.6 times slower than non compact data structures

Our results are provided with theoretical guarantees
and experimental evaluation

Let’s start by revising a popular data structure
for triangle meshes

class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}

class Point{

float x;

float y;

float z;

} class Vertex{

Triangle root;

Point p;

}

Triangle based DS (used in CGAL): description

(3 + 3)× f + n = 6× 2n + n = 13n
Size (number of references)

connectivity

for each triangle, store:

t0

t1

t2

t3

t4

tf

T
v0

v1

v2

v3

. . .

. . .

V

v0

v3

v2
v1

t2

t2

. . .

. . .

. . .

vn−1

(x0, y0, z0)
(x1, y1, z1)

.

.

. . .

. . .

• 3 references to neighboring faces
• 3 references to incident vertices

t1
t0

t2

t5

.

t5

.

.

v1 . . .v3

.

v2 v3 . . .
t2t5 t0 v3 v1 v2

for each vertex, store:
• 1 reference to an incident face

class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}

class Point{

float x;

float y;

float z;

} class Vertex{

Triangle root;

Point p;

}

Triangle based DS (used in CGAL): mesh traversal

connectivity

the data structure supports the following operators

q

p

v

4

i

i+1 i+2

g1 = neighbor(4, ccw(i))

g0

g1g2

g2 = neighbor(4, cw(i))

g0 = neighbor(4, i)

4 = face(v)

z

z = vertex(g2, faceIndex(g2,4))

v = vertex(4, i)

int degree(int v) {
int d = 1;

int f = face(v);
int g = neighbor(f, cw(vertexIndex(v, f)));
while (g ! = f) {

i = vertexIndex(v,4)

int cw(int i) {return (i + 2)%3; }
int ccw(int i) {return (i + 1)%3; }

int next = neighbor(g, cw(faceIndex(f, g)));
int i = faceIndex(g, next);
g = next;
d + +;
}
return d;

}

we can turn around a
vertex, by combining
the operators above

we can locate a point, by perform-
ing a walk in the triangulation

class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}

class Point{

float x;

float y;

float z;

} class Vertex{

Triangle root;

Point p;

}

Triangle based DS (used in CGAL): mesh traversal

connectivity

the data structure supports the following operators

g2

splitFace(f)

removeVertex(v)

edgeFlip(e)

g1 g1

g2
edgeFlip(e)

e

g0 splitFace(f)

removeVertex(v)

v

all these operators can be performed in O(1) time

the data structure is modifiable

Construction and description of the ESQ data structure

ESQ construction (preprocessing phase)
define a patch catalog

partition triangle faces into patches

U S

Catalog C1

v

compute partition

U

S

Catalog C1: the smallest catalog

v

one triangle, with no
matched vertex

one triangle, with
one matched vertex

only 2 patches

ESQ construction (preprocessing phase)
define a patch catalog

partition triangle faces into patches

U S

Catalog C1

v

3 7
0

11

6
5

10

1

9

8

24compute partition match patches
and vertices

compute a matching triangles/vertices

ESQ construction (preprocessing phase)
define a patch catalog
partition triangle faces into patches
compute a matching triangles/vertices

U S

Catalog C1

v

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

compute partition match triangles
and vertices

re-order triangles according to the matching

patches (and thus triangles) are re-ordered
according to the matched vertex number

ESQ construction (preprocessing phase)
choosing a different catalog provides

different trade-offs between time cost

and space requirements

U S

Catalog C1

v

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

26

24

5

3

1

9

0

u3
d1

s0
u5

d0

s2

s1

u4

u0

u1 u2

s5

d2

2

s6

s4

27

25

28

29

s3

s7

U S

Catalog C2

v

D
w

v

add a new patch

a triangle with two
matching vertices

Matching phase: perform a DFS traversal

0

11

6
5

10

1

9

8

seed
24

start the traversal choosing
a seed (green) face
a gate edge (red)

3 7

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

0

11

6
5

10

1

9

8

seed
24

SU
3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

0

11

6
5

10

1

9

seed
24

S

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

0

11

6

10

1

9

seed
24

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

11

6

10

1

9

seed
24

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

S
0

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

11

6
9

seed

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

S
0

2

10

1

4

S

S

S
S

S

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

6
9

seed

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

S
0

2

10

1

4

S

S

S
S

S
11

S

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

6
9

seed

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

S
0

2

10

1

4

S

S

S
S

S
11

S
S

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched

set the triangle as patch of type S

6
9

seed

3 7

match the vertex and the visited triangle
otherwise

set the triangle as patch of type U

S

8 5

S

S

S
0

2

10

1

4

S

S

S
S

S
11

S
S

U

Matching phase: perform a DFS traversal

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

at the end, after 2n− 4 steps we have
all triangles are visited, all vertices are matched

there are n patches of type S

there are n− 4 patches of type U

recall that in a genus 0 trian-
gulation with n vertices there
are 2n− 4 triangles

Description of the data structure

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

U S

Catalog C1

v

for each triangle, store
3 references to neigh-
boring faces

Description of the data structure: ESQ (catalog C1)

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

Description of the data structure: ESQ (catalog C1)

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

sn−1

TS
u0

u1

u2

u3

s4 s2 s3

s5 s2 u2

s3 s5 u1

s4s12

s0 s7 s10

s3 s14 s11

s6 s8
. s0

s10s7 s8 u0

.u2

PS

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

s7s1 s13

s8 s0 . . .
s14 u1 . . .

TU

U S

Catalog C1

v

for each triangle, store
3 references to neigh-
boring faces

Store connectivity 2 tables

table TS has size 3× n

table PS has size n

table TU has size 3×(f−n)

Use one more table for coordinates

3 7
0

11

6
5

10

1

9

8

s3
s7

s8
s5

s0

s2
s10

s1

s4

u0

u1 u2

s11

s6

24

u3

s12s13

s14

ESQ (catalog C1): space requirements

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

sn−1

TS
u0

u1

u2

u3

s4 s2 s3

s5 s2 u2

s3 s5 u1

s4s12

s0 s7 s10

s3 s14 s11

s6 s8
. s0

s10s7 s8 u0

.u2

PS

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

s7s1 s13

s8 s0 . . .
s14 u1 . . .

TU

U S

Catalog C1

v

for each triangle, store
3 references to neigh-
boring faces

Connectivity cost

3× f = 3 · (2n− 4)

6 rpv (references per vertex)

v
r

ESQ (catalog C1): traversing the mesh

U S

Catalog C1

v

vertex operator is slightly slower: to retrieve
the vertex incident to a given face r, we turn
around until we find the type S patch match-
ing the vertex

int vertex(int r, int i) {

if (patchType(r) == S && i == 0)

}

return patchIndex(r);
int f = neighbor(r, cw(i));
int j = faceIndex(r, f);
while (f ! = r) {

if (j == 1&& patchType(f) == S)

return patchIndex(f);

int next = neighbor(f, ccw(j));
j = faceIndex(f, next);
f = next;

}

int neighbor(int r, int i) {
if (patchType(r) == S)

}

return tableS[patchIndex(r) ∗ 3+ i];
else

return tableU[patchIndex(r) ∗ 3+ i];

i

f
jnext

cw(i)

it takes O(d) time, as in
previous compact rep-
resentations

Drawback, as for previous compact represen-
tations (SOT, SQUAD, LR, Sorted Tripod)

ESQ (catalog C1): performing updates

U S

Catalog C1

v

edgeFlip and faceSplit can be performed in O(1) time

Edge-flip

Triangle split

a
sa
v a vsa

sv

u
u
v vu

sv
u′

u
u′ u′

u
i j i

j

u
u

i 1 i
2

a

sa

a

sa 12

a ab b
1

21

2

1
2

1
2

b

a a

b
1

2

1

2
12

1

2

(only a constant nummber of references must to be updated)

ESQ (catalog C1): performing updates

U S

Catalog C1

v

deleteVertex can be performed in O(d) time

4 easy cases: O(1) time

(we have to turn around a vertex)

b

c

at least one violet triangle has no mark

a

b
v

a

c

a vsa

u
v

u

saa

a

b
v

a

b

a

b
v

a

b

We spend O(d) time to find the free patch (unmatched)

All 3 adjacent triangles are matched (type S):
this case is more involved

ESQ (catalog C2): more efficient data structure
3 types of patches

s0

s1

s2

s3

s4

s5

s6

s7

TS
u0

u1

u2

u3

PS

u3 u5 u1

d0 d1 s3

s7

. . .

. . .
(x0, y0, z0) d0

d1

d2

TD PD

s2

.

(x , y , z)

. . .

(x1, y1, z1)u4

s2 s7

.

.

.

u0 d2 . . .
u0s6 . . .

u4 s5 . . .
s3 s1 . . .

(x2, y2, z2)

. . .

. . .

. . .

. . .

. . .

.

u5 u2

u4 s2 u3

. . . s4 u1

24 24 24
(x , y , z)

25 25 25

(x , y , z)
26 26 26

(x , y , z)
27 27 27

(x , y , z)
28 28 28

(x , y , z)
29 29 29

.

.

.

.

u3 s4 s5

s0 . . . d2

d0
d1 s0 u0

u4

u5

s1 d1 s6

d0 . . . s0

.

.

.

TU

26
24

5

3

1

9

0

u3
d1

s0
u5

d0

s2

s1
u4

u0

u1 u2

s5

d2

2

s6

s4

27

25

28

29

s3

s7

U S

Catalog C2

v

D
w

v

with at most 2
matched vertices

two more tables TD and PD

ESQ (catalog C2): all updates in O(1) time
deleteVertex can now be performed in O(1) time

U S

Catalog C2

v

D
w

v

Edge-flip

Degree 3 vertex deletion

Triangle split

a

b

c

v

a

b

c

a

b

c

v

a

b

c

a

b

c

v

a

b

c

d

d

d

d

ESQ (catalog C3, with quads): more compact scheme

regroup pairs of neighboring
triangles into quads

Catalog C3

U

S

Q0 Q1a Q1b

Q2a Q2b Q2c Q2d

use a larger catalog: with quads

Triangle split

vertex removalEdge-flip

Two triangles merge

4.8n× 32 bits Connectivity cost
At least 3

5
quads

At most 4
5

triangles

(counting argument using Euler’s relation)

Experimental evaluation: our ESQ vs. Triangle based DS
6n× 32bits 13n× 32 bits

computation of vertex degree
ESQ is slightly faster than TDS

Navigation time
(nanoseconds per operation)

Half-edge, Winged-edge, Quad-edge
(19n)

13n
Triangle based DS / Corner Table

2D Catalogs
(7.67n) SOT

(6n)

4n

6n
ESQ

Experimental evaluation: our ESQ vs. Triangle based DS
6n× 32bits 13n× 32 bits

computation of edge flip
TDS is faster than ESQ

Update time
(nanoseconds per operation)

computation of face split
ESQ is slightly faster than TDS

Concluding remarks: extensions and future work

extension to polygonal meshes

Dealing with boundaries

Could our technique apply to higher
dimensional complexes?
(3D triangulations)

Thanks

