ESQ: editable SQuad representation for triangle meshes

Luca Castelli Aleardi (Ecole Polytechnique, France)
 ÉCOLE POLYTECHNIQUE

Olivier Devillers
Geometrica - INRIA Sophia
INRIA

Jarek Rossignac

(Georgia Institute of Technology)

Georgialnstitute ©fTech
(Triangle) mesh encoding: compression and compact data structures

Before we start... Geometric data: (triangle) meshes

 Among data structures for geometric data, I pick meshes... (commonly used in Computational geometry and Geometry processing)

Surface recontruction from sampling

Geographic information systems

Surface modelling

Before we start... Geometric data: (triangle) meshes Among data structures for geometric data, I pick meshes...

Surface recontruction from sampling

Geographic information systems

triangles meshes already used in early 19th century
(Delambre et Mchain)

Before we start... \exists very large geometric data

St. Matthew (Stanford's Digital Michelangelo Project, 2000) 186 millions vertices 6 Giga bytes (for storing on disk) several minutes for loading the model from disk

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons
32 Giga bytes (without compression)
No existing algorithm nor data structure for dealing with the entire model

Geometric information vs Combinatorial information

 Connectivity is by far the most expensive informationGeometry

between 30 et 96 bits/vertex
"Connectivity": the underlying triangulation

adjacency relations between triangles, vertices triangle 3 references to vertices 3 references to triangles

$$
13 n \log n \text { or } 416 n \text { bits }
$$

1 reference: pointer or integer value (32 bits)

Before we start... What we are aiming at

Mesh compression

Transmission

Geometric data structures

Before we start... What we are aiming at

Mesh compression
Geometric data structures

Transmission

disk storage

MERGE INTO: Compact representations of geometric data structures (space-efficient data structures)

Starter: the encoding of plane trees

ordered tree with n edges

$$
\begin{array}{llllllllllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

$\Rightarrow 2 n$ bits for encoding an ordered tree with n edges

$$
\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}}
$$

This is an optimal encoding!

Compare to the standard explicit represention:

$3 n$ pointers ≈ 96 bits

$2 n$ bits
$B 11000 \mid 00001000010000100$
low weight bit vectors
select/rank queries

| 22 | 9 | 19 | 16 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $m \log n$ | | | | |
| n | | | | |

A hierarchical approach, with a dictionary at bottom.

Level 1:

- $\Theta\left(\frac{n}{\log ^{2} n}\right)$ regions of size $\Theta\left(\log ^{2} n\right)$, represented by pointers to level 2
- global pointers of size $\log n$ space $O\left(\frac{n}{\log ^{2} n} \cdot \log n\right)=o(n)$
Level 2:
in each of the $\frac{n}{\log ^{2} n}$ regions
- $\Theta(\log n)$ regions of size $C \log n$, represented by pointers to level 3
- local pointers of size $\log \log n \longrightarrow$

1	\cdots
2	\cdots
3	

Level 3: exhaustive catalog of all different regions of size $i<C \log n$:

- complete explicit representation.

Dictionnary space is $o(n)$ if C small enough.

A hierarchical approach, with a dictionary at bottom.

Dominant term?

The dominant term is given by the sum of references to the dictionary references on objects of \mathcal{T}_{k} have size $\log _{2} \mathcal{T}_{k} \sim 2.175 k$ if $k \rightarrow \infty$

we should take all k s.t. $\frac{1}{12} \log n<k<\frac{1}{2} \log n$ Adaptative to "reasonable" entropy reduction
$\sum_{j} 2.175 k_{j}=2.175 m$ bits
2.175 bpt is entropy of triangulations with a boundary larger than previous

$$
\frac{1}{2} \cdot 3.24 \mathrm{bpt}
$$

General idea (literary digression) one-act theatre play (La leçon, Eugène lonesco, 1951)

During a private lesson, a very young student, preparing herself for the total doctorate, talks about arithmetics with her teacher
(the young student cannot understand how to subtract integers)
Teacher Listen to me, If you cannot deeply understand these principles, these arithmetic archetypes, you will never perform correctly a "polytechnicien" job... you will never obtain a teaching position at "Ecole Polytechnique". For example, what is 3.755 .918 .261 multiplied by 5.162 .303 .508 ?
Student (very quickly) the result is $193891900145 .$.
Teacher (very astonished) yes ... the product is really... But, how have you computed it, if you do not know the principles of arithmetic reasoning? Student: it is simple: I have learned by heart all possible results of all possible different multiplications.

General idea (literary digression) one-act theatre play (La leçon, Eugène lonesco, 1951)
"La leçon" is played every night (since 1957) in Paris at the "Theatre de la Huchette" (8pm)

THeNR $\in \mathrm{D} \in$ LA Huchelic

Data structures: navigation queries and dynamic updates
Geometric data structures

$\sqrt{3}$-subdivision (L. Kobbelt)
vertex insertions

+ edge flips

Compact data structures

Mesh compression
Taubin et al. ('98)
Rossignac ('99)
Lopes et al. ('03)
Lewiner et al. ('04)
. (many many others)

Valence (degree)
Touma and Gotsman ('98)
Alliez and Debrun
Isenburg
Khodakovsky
. (many others)

Cut-border machine
Gumhold et al. (Siggraph '98) Gumhold (Soda '05)

Graph theory / combinatorics
Spanning tree-based schemes
Turan ('84)
Keeler Westbrook ('95)
He et al. ('99)
Chuang et al. (Icalp98)

Optimal encodings
Poulalhon Schaeffer (Icalp03) planar triangle meshes
Fusy Poulalhon Schaeffer (Soda05) planar polygonal meshes
Fusy (GD05)
4-connected triangulations
Castelli-Aleardi Fusy Lewiner (SoCG08)
Castelli-Aleardi Fusy Lewiner (CCCG10)
genus g meshes, with boundaries triangular and quadrangular meshes

Succinct representations (theoretical results) Jacobson (Focs89)
Munro Raman (Focs97)
Chiang et al. (Soda01)
Blandford Blelloch (Soda03)
Blandford et al. (Alenex'04, IMR'03)
Nakano et al. (2008)
Farzan Munro (ESA 2008)
Blelloch Farzan (CPM 2010)
Castelli-Aleardi Devillers Schaeffer (Wads05, CCCG05, SoCG06)

Barbay Castelli-Aleardi He Munro (Isaac07)

Practical compact data structures (with efficient implementations)

Directed Edges (Campagna et al. (1999))
Star Vertices (Kalmann et al. (2002))
SOT (Gurung Rossignac (SPM 2009))
SQUAD (Gurung Laney Lindstrom Rossignac, EG'11)
$L R$ (Gurung et al. (Siggraph'11))
Castelli Aleardi Devillers Mebarki (CCCG06)
Castelli Aleardi Devillers (Isaac 2011)
Castelli Aleardi Devillers Rossignac (Sibgrapi 2012)

Existing works and our new results

Popular mesh data structures space requirements

Triangle-based data structure (CGAL)

$$
(3+3) \times f+n=6 \times 2 n+n=13 n
$$

```
class Triangle{
    Triangle t1, t2, t3;
    Vertex v1, v2, v3;
}
    class Vertex{
    Triangle root;
    Point p;
}
```

connectivity

Size (number of references)

```
class Point{
    float x;
    float y;
    float z;
}
```

Half-edge, Winged-edge, Quad-edge $(19 n+3 n)$

Half-edge
class Point\{
float $x ;$
float $y ;$
float $z ;$

$$
3 \times 2 e+n=18 n+n
$$

class Halfedge\{
Halfedge next, opposite;
Vertex source;
\}
class Vertex\{
Halfedge e;
Point p;
\}
connectivity
$\operatorname{target}(\mathbf{e}) \quad$ opposite (\mathbf{e})

Compact representations: existing solutions space requirements

perform face re-ordering (as in SOT, SQuad, LR and Sorted TRIPOD)

Half-edge, Winged-edge, Quad-edge (19n)

Star-Vertices
perform regrouping of neighboring triangles into quads, pentagons , (as in 2D Catalogs, SQuad)
use Combinatorial properties such as Schnyder woods (as in TRIPOD and Sorted TRIPOD)

Mesh data structures: existing works

memory requirements: we count the number of references per vertex

Mesh data structures:	our new results Data Structure	$\begin{gathered} \text { memory } \\ \text { size } \end{gathered}$	navigation time	vertex access	dynamic
Traversable and modifiable (not space-efficient)	Edge-based data structures (Half-edge, Quad-edge, Winged-edge)	$18 n+n$	$O(1)$	$O(1)$	yes
	Triangle based DS / Corner Table Directed edge (Campagna et al. '99)	$\begin{aligned} & 12 n+n \\ & 12 n+n \end{aligned}$	$O(1)$	$O(1)$	yes
Compact, traversable and modifiable	2D Catalogs (Castelli Aleardi et al., '06)	$7.67 n$	$O(1)$	$O(1)$	yes
	Star vertices (Kallmann et al. '02) TRIPOD (Snoeyink, Speckmann, '99) SOT (Gurung et al. 2010)	$\begin{aligned} & 7 n \\ & 6 n \end{aligned}$ $6 n$	$O(d)$ $O(1)$ $O(1)$	$\begin{aligned} & O(1) \\ & O(d) \\ & O(d) \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \\ & \text { no } \end{aligned}$
Compact and traversable (not modifiable)	Castelli-Aleardi and Devillers (2011)	$4 n$	$O(1)$	$O(d)$	no
	SQUAD (Gurung et al. 2011) LR (Gurung et al. 2011) no theoretical guarantees (experimental benchmark)	$\begin{aligned} & \approx(4+\varepsilon) n \\ & \approx(2+\delta) n \\ & \varepsilon \approx 0.09 \\ & \delta \approx 0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & O(1) \\ & O(1) \end{aligned}$	$\begin{aligned} & O(d) \\ & O(d) \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
Compact, traversable and modifiable	Castelli-Aleardi Devillers Rossignac (Sibgrapi 2012)	$4.8 n$	$O(1)$	$O(d)$	$Y E S$

Our results are provided with theoretical guarantees and experimental evaluation

We have tested our implementations on 3D models we are only about 1.6 times slower than non compact data structures

Let's start by revising a popular data structure for triangle meshes

Triangle based DS (used in CGAL): description

```
class Point{
    float x;
    float y;
    float z;
}
class Triangle\{ Triangle t1, t2, t3; Vertex v1, v2, v3; \}
class Vertex\{ Triangle root; Point p;
}
connectivity
```

connectivity

```


Size (number of references)
for each triangle, store:
- 3 references to neighboring faces
- 3 references to incident vertices for each vertex, store:
- 1 reference to an incident face


\section*{Triangle based DS (used in CGAL): mesh traversal}
class Point\{
float \(x\);
float y;
float \(z\);
\}
class Triangle\{ Triangle t1, t2, t3; Vertex v1, v2, v3;
\}
class Vertex\{
Triangle root;
Point p;
\}
connectivity
the data structure supports the following operators
int cw(int i) \{return (i+2)\%3; \}
```

v=\operatorname{vertex}(\triangle,i)

```
v=\operatorname{vertex}(\triangle,i)
\triangle face(v)
\triangle face(v)
i= vertexIndex (v,\triangle)
i= vertexIndex (v,\triangle)
go = neighbor( }\triangle,i
go = neighbor( }\triangle,i
g}=\mathrm{ neighbor ( }\triangle,ccw(i)
g}=\mathrm{ neighbor ( }\triangle,ccw(i)
g}=\mathrm{ neighbor ( }\triangle,cw(i)
g}=\mathrm{ neighbor ( }\triangle,cw(i)
z=vertex (g},\mp@code{faceIndex (g},\mp@code{, }\triangle)
```

z=vertex (g},\mp@code{faceIndex (g},\mp@code{, }\triangle)

```
int ccw(int i) \(\{\) return \((i+1) \% 3 ;\}\)
we can turn around a vertex, by combining the operators above
int ccw(int i) \(\{\) return ( \(i+1\) )\%3; \}

we can locate a point, by performing a walk in the triangulation
```

int degree(int v) {
int d = 1;
int f = face(v);
int g= neighbor(f, cw(vertexIndex(v,f)));
while (g! = f) {
int next = neighbor(g, cw(facelndex(f,g)))
int i = facelndex(g, next);
g = next;
d + +;
}
return d;
}

```

Triangle based DS (used in CGAL): mesh traversal
class Point\{
float x ;
float y;
float z;
\}
class Triangle\{ Triangle t1, t2, t3; Vertex v1, v2, v3;
\}
class Vertex\{
Triangle root; Point p;
\}
connectivity
the data structure supports the following operators removeVertex \((v)\) splitFace( \(f\) ) edgeFlip(e)

the data structure is modifiable
all these operators can be performed in \(O(1)\) time


Construction and description of the ESQ data structure

禀 \(\boldsymbol{y}\)

\section*{ESQ construction (preprocessing phase)}
define a patch catalog
partition triangle faces into patches


Catalog \(C_{1}\) : the smallest catalog only 2 patches

one triangle, with no matched vertex one triangle, with one matched vertex

\section*{ESQ construction (preprocessing phase)}
define a patch catalog
partition triangle faces into patches
compute a matching triangles/vertices

compute partition


\section*{ESQ construction (preprocessing phase)}
define a patch catalog
partition triangle faces into patches
compute a matching triangles/vertices
re-order triangles according to the matching

patches (and thus triangles) are re-ordered according to the matched vertex number

\section*{ESQ construction (preprocessing phase)}
choosing a different catalog provides different trade-offs between time cost and space requirements


Matching phase: perform a DFS traversal

start the traversal choosing
a seed (green) face
a gate edge (red)

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

Matching phase: perform a DFS traversal

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

\section*{Matching phase: perform a DFS traversal}

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

\section*{Matching phase: perform a DFS traversal}

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

\section*{Matching phase: perform a DFS traversal}

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise set the triangle as patch of type \(U\)

\section*{Matching phase: perform a DFS traversal}

traverse unvisited triangles, rightmost
if the opposite vertex in the visited triangle is un matched set the triangle as patch of type \(S\) match the vertex and the visited triangle otherwise
set the triangle as patch of type \(U\)

\section*{Matching phase: perform a DFS traversal}
recall that in a genus 0 triangulation with \(n\) vertices there are \(2 n-4\) triangles

at the end, after \(2 n-4\) steps we have
all triangles are visited, all vertices are matched there are \(n\) patches of type \(S\) there are \(n-4\) patches of type \(U\)

Description of the data structure

\section*{Description of the data structure: ESQ (catalog \(\mathcal{C}_{1}\) )}


for each triangle, store 3 references to neighboring faces

\section*{Description of the data structure: ESQ (catalog \(\mathcal{C}_{1}\) )}


Store connectivity 2 tables
table \(T_{S}\) has size \(3 \times n\) table \(T_{U}\) has size \(3 \times(f-n)\)

Use one more table for coordinates table \(P_{S}\) has size \(n\)

for each triangle, store 3 references to neighboring faces
\begin{tabular}{l|c|c|c|c|}
\multicolumn{4}{c}{\(T_{S}\)} & \multicolumn{3}{c|}{\(P_{S}\)} \\
\cline { 2 - 5 }\(s_{0}\) & \(s_{5}\) & \(s_{2}\) & \(u_{2}\) & \(\left(x_{0}, y_{0}, z_{0}\right)\) \\
\cline { 2 - 5 }\(s_{1}\) & \(s_{12}\) & \(s_{4}\) & \(\ldots\) & \(\left(x_{1}, y_{1}, z_{1}\right)\) \\
\(s_{2}\) & \(s_{0}\) & \(s_{7}\) & \(s_{10}\) & \(\left(x_{2}, y_{2}, z_{2}\right)\) \\
\(s_{3}\) & \(s_{7}\) & \(s_{8}\) & \(u_{0}\) & \(\ldots\) \\
\(s_{4}\) & \(s_{1}\) & \(s_{13}\) & \(s_{7}\) & \(\ldots\) \\
\(s_{5}\) & \(s_{8}\) & \(s_{0}\) & \(\ldots\) & \(\ldots\) \\
\(s_{6}\) & \(s_{14}\) & \(u_{1}\) & \(\ldots\) & \(\ldots\) \\
\(s_{7}\) & \(s_{4}\) & \(s_{2}\) & \(s_{3}\) & \(\ldots\) \\
\(s_{8}\) & \(s_{3}\) & \(s_{5}\) & \(u_{1}\) & \(\ldots\) \\
\(s_{9}\) & \(\ldots\) & \(u_{2}\) & \(\ldots\) & \(\ldots\) \\
\cline { 2 - 5 } & & & & \(\ldots\) \\
\(s_{n-1}\) & & & & \(\ldots\) \\
\cline { 2 - 5 } & & & & \(\ldots\) \\
\hline
\end{tabular}
\(T_{U}\)
\begin{tabular}{|c|c|c|}
\hline\(s_{3}\) & \(s_{14}\) & \(s_{11}\) \\
\hline\(s_{6}\) & \(s_{8}\) & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & \(s_{0}\) \\
\hline\(s_{10}\) & \(\ldots\) & \(\ldots\) \\
\hline & & \\
\hline
\end{tabular}

\section*{1品}

\section*{ESQ (catalog \(\mathcal{C}_{1}\) ): space requirements}


\section*{Connectivity cost}
\[
3 \times f=3 \cdot(2 n-4)
\]
\(6 \mathbf{r p v}\) (references per vertex)

\(T_{U}\)
\begin{tabular}{|c|c|c|}
\hline\(s_{3}\) & \(s_{14}\) & \(s_{11}\) \\
\hline\(s_{6}\) & \(s_{8}\) & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & \(s_{0}\) \\
\hline\(s_{10}\) & \(\ldots\) & \(\ldots\). \\
\hline & & \\
\hline
\end{tabular}

\section*{ESQ (catalog \(\left.\mathcal{C}_{1}\right):\) traversing the mesh}

Drawback, as for previous compact representations (SOT, SQUAD, LR, Sorted Tripod)

vertex operator is slightly slower: to retrieve the vertex incident to a given face \(r\), we turn around until we find the type \(S\) patch matching the vertex
it takes \(O(d)\) time, as in previous compact representations

```

int neighbor(int r, int i) {
if (patchType(r)== S)
return tableS[patchIndex(r)*3+i];
else
return tableU[patchIndex(r)*3+i];
}

```
```

int vertex(int r, int i) {
if (patchType(r)==S \&\& i == 0)
return patchIndex(r);
int f = neighbor(r, cw(i));
int j = facelndex(r, f);
while (f!=r) {
if (j==1\&\& patchType(f)== S)
return patchlndex(f);
int next = neighbor(f, ccw(j));
j = facelndex(f, next);
f = next;
}
}

```

1员
ESQ (catalog \(\mathcal{C}_{1}\) ): performing updates
edgeFlip and faceSplit can be performed in \(O(1)\) time
 (only a constant nummber of references must to be updated)


Triangle split


\section*{ESQ (catalog \(\mathcal{C}_{1}\) ): performing updates}
deleteVertex can be performed in \(O(d)\) time
 (we have to turn around a vertex)

4 easy cases: \(O(1)\) time


All 3 adjacent triangles are matched (type \(S\) ): this case is more involved

at least one violet triangle has no mark We spend \(O(d)\) time to find the free patch (unmatched)

ESQ (catalog \(\mathcal{C}_{2}\) ): more efficient data structure


3 types of patches
with at most 2 matched vertices
two more tables \(T_{D}\) and \(P_{D}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
T_{S}
\]} & \[
P_{S}
\] & \multicolumn{3}{|l|}{\[
T_{U}
\]} & \\
\hline \(s_{0}\) & \(u_{3}\) & \(u_{5}\) & \(u_{1}\) & \(\left(x_{0}, y_{0}, z_{0}\right)\) & \(u_{3}\) & \(S_{4}\) & \(S_{5}\) & \(u_{0}\) \\
\hline \(s_{1}\) & \(S_{7}\) & \(u_{4}\) & . . . & \(\left(x_{1}, y_{1}, z_{1}\right)\) & \(S_{0}\) & . & \(d_{2}\) & \(u_{1}\) \\
\hline \(s_{2}\) & \(d_{0}\) & \(d_{1}\) & \(S_{3}\) & \(\left(x_{2}, y_{2}, z_{2}\right)\) & \(d_{0}\) & . . & . & \(u_{2}\) \\
\hline \(s_{3}\) & \(S_{2}\) & \(S_{7}\) & . . . & . . . & \(d_{1}\) & \(s_{0}\) & \(u_{0}\) & \(u_{3}\) \\
\hline \(s_{4}\) & \(u_{0}\) & \(d_{2}\) & . . & . . . & \(S_{1}\) & \(d_{1}\) & \(S_{6}\) & \(u_{4}\) \\
\hline \(s_{5}\) & \(S_{6}\) & \(u_{0}\) & . . . & . . & \(d_{0}\) & . . . & \(S_{0}\) & \(u_{5}\) \\
\hline \(s_{6}\) & \(u_{4}\) & \(S_{5}\) & . . . & . . . & \(\cdots\) & . . & . . . & \\
\hline \(s_{7}\) & \(S_{3}\) & \(S_{1}\) & . . & . & . . . & . . & . & \\
\hline & & N & \(\cdots\) &  & \[
N
\] &  &  & \\
\hline & . . & . . & . & . . & . & . & \(\ldots\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
T_{D}
\]} & \multicolumn{2}{|l|}{\(P_{D}\)} \\
\hline \(d_{0}\) & \(S_{2}\) & \(u_{5}\) & \(u_{2}\) & ( \(\left.x_{24}, y_{24} z_{24}\right)\) & \(\left(x_{25}, y_{25} z_{25}\right.\) \\
\hline \(d_{1}\) & \(u_{4}\) & \(S_{2}\) & \(u_{3}\) & ( \(x_{26}, y_{26} z_{26}\) ) & \(\left(x_{27} y_{27} z_{27}\right)\) \\
\hline \(d_{2}\) & . . & \(S_{4}\) & \(u_{1}\) & \(\left(x_{28}, y_{28} z_{28}\right)\) & \(\left(x_{29} y_{2 g} z_{29}\right.\) \\
\hline & . & . . . & . . . & . . & . . . \\
\hline & . . \(\cdot\) & . . . & . . . & . . & . . \\
\hline & . & . . . & . . . & . . & . . \\
\hline \multicolumn{6}{|c|}{} \\
\hline & . . . & . . . & . . . & . . & \\
\hline
\end{tabular}

\section*{ESQ (catalog \(\mathcal{C}_{2}\) ): all updates in \(O(1)\) time}
deleteVertex can now be performed in \(O(1)\) time

Catalog \(C_{2}\)
    Cov

ESQ (catalog \(\mathcal{C}_{3}\), with quads): more compact scheme use a larger catalog: with quads regroup pairs of neighboring triangles into quads Two triangles merge


At least \(\frac{3}{5}\) quads

At most \(\frac{4}{5}\) triangles
(counting argument using Euler's relation)



\section*{Experimental evaluation: our ESQ vs. Triangle based DS \\ \(6 n \times 32 b i t s\) \\ \(13 n \times 32\) bits}
\begin{tabular}{|l|c|c|c|}
\hline & \multicolumn{3}{|c|}{ statistics } \\
\hline 3D model & vertices & faces & genus \\
\hline Bague & 2652 & 5.3 K & 1 \\
Aphrodite & 46096 & 92 K & 0 \\
Feline & 49864 & 99 K & 2 \\
Camille's hand & 195557 & 391 K & 0 \\
Eros & 476596 & 953 K & 0 \\
Pierre's hand & 773465 & 1.54 M & 0 \\
\hline
\end{tabular}

Navigation time
(nanoseconds per operation)

Half-edge, Winged-edge, Quad-edge (19n)

computation of vertex degree
\(E S Q\) is slightly faster than \(T D S\)


\section*{Experimental evaluation: our ESQ vs. Triangle based DS}
\begin{tabular}{|l|c|c|c|}
\hline & \multicolumn{3}{|c|}{ statistics } \\
\hline 3D model & vertices & faces & genus \\
\hline Bague & 2652 & 5.3 K & 1 \\
Aphrodite & 46096 & 92 K & 0 \\
Feline & 49864 & 99 K & 2 \\
Camille's hand & 195557 & 391 K & 0 \\
Eros & 476596 & 953 K & 0 \\
Pierre's hand & 773465 & 1.54 M & 0 \\
\hline
\end{tabular}
computation of face split
\(E S Q\) is slightly faster than \(T D S\)


\section*{Update time \\ (nanoseconds per operation)}
computation of edge flip
\(T D S\) is faster than \(E S Q\)


Concluding remarks: extensions and future work extension to polygonal meshes

Dealing with boundaries


Could our technique apply to higher dimensional complexes?
(3D triangulations)

Thanks```

