Array-based compact data structures for triangle meshes

 v_2

Encuentros de Geometría Computacional, EGC2011

Luca Castelli Aleardi

Olivier Devillers

Geometrica - INRIA Sophia

Point Cloud representation of Ferran

Buon Compleanno Ferran

Point Cloud representation of Ferran

Ferran segmented with MeanShift

Buon Compleanno Ferran

Compact Data Structures: motivation and goal

St. Matthew (Stanford's Digital Michelangelo Project, 2000)

6 Giga bytes (for storing on disk) 186 millions vertices

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons32 Giga bytes (without compression)

Surface triangle mesh endowed with a Schnyder wood

(planar) Triangle meshes v_2

 v_{0} v_{1} v_{1} v_{1} Schnyder drawing of a planar

triangulation

Delaunay triangulation of random points (endowed with a Schnyder wood)

> g-Schnyder woods, for genus g triangulations (Castelli-Fusy-Lewiner, SoCG08)

Tutte drawing of a random planar triangulation

Schnyder woods for triangulations with multiple boundaries of arbitrary size (Castelli-Fusy-Lewiner,CCCG2010)

Graph planarity characterizations

Schnyder woods (via dimension of partial orders)

• $dim(G) \leq 3$

Kuratowski theorem (excluded minors)

• G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Koebe-Andreev-Thurston) Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Colin de Verdiere invariant (multiplicity of λ_2 eigenvalue of a generalized laplacian)

• $\mu(G) \leq 3$

$\underbrace{Schnyder \ woods: \ applications}_{(and \ related \ properties)}$

grid drawing

graph counting, random generation (Poulalhon-Schaeffer, Icalp 03)

Greedy routing

Graph encoding

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

Conjectured by Papadimitriou and Ratajczak for 3-connected planar graphs

Untangling geometric graphs

Bose, Dujmovic, Hurtado, Langerman, Morin, Wood (DCG 2009)

 $fix(G) \ge \left(\frac{n}{3}\right)^{\frac{1}{4}}$

Schnyder woods: the definition $v_0 v_1 v_2$ outer face

i) edge are colored and oriented in such a way that each inner node has exactly one outgoing edge of each color

ii) colors and orientations around each inner node must respect the local Schnyder condition

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

Theorem

The three set T_0 , T_1 , T_2 are spanning trees of (the inner nodes of) T:

minimal Schnyder woods: the definition (no ccw triangles) $v_0 \ v_1 \ v_2$ outer face

Schnyder woods and (planar) **barycentric coordinates**

Geometric interpretation of barycentric coordinates

Combinatorial interpretation

$$v = \frac{R_0}{2n-5}v_0 + \frac{R_1}{2n-5}v_1 + \frac{R_2}{2n-5}v_2$$

 $R_i(v) :=$ number of triangles in region *i*

Theorem (Schnyder, Soda '90) For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2n-5) \times (2n-5)$, by setting $v_0 = (2n-5,0)$, $v_1 = (0,0)$ and $v_2 = (0,2n-5)$. Several kinds of encodings: plane trees compression schemes (Explicit) data structures

Several kinds of encodings: triangle meshes

Optimal compression scheme (Poulalhon Schaeffer, Icalp03)

(Explicit) Geometric data structures $\beta n + O(1)$ references (pointers)

 $3.2451n + O(n \frac{n \log \log n}{\log n}) = 3.2451n + o(n)$ bits

Succinct representations (Castelli Aleardi- Devillers-Schaeffer, WADS05, SoCG06)

Popular mesh data structures

$target(\mathbf{e})$	opposite	(\mathbf{e})
next (e)	e	
	$prev(\mathbf{e})$	
		$source(\mathbf{e})$
	\sim	

class Point{
 float x;

float y;

float z;

geometry

}

Data structure	references	navigation	vertex access	dynamic
Edge-based data structures $[17, 3, 4]$	18n + n	O(1)	O(1)	yes
triangle based [7]/Corner Table	12n + n	O(1)	O(1)	yes
Directed edge [9]	12n+n	O(1)	O(1)	yes
2D catalogs $[10]$	7.67n	O(1)	O(1)	yes
Star vertices [20]	7n	O(d)	O(1)	no
TRIPOD $[25]$ + reordering / Thm 1	6n	O(1)	O(d)	no
SOT data structure [19]	6n	O(1)	O(d)	no
SQUAD data structure [18]	(4+c)n	O(1)	O(d)	no
(no vertex reordering) Thm 2	5n	O(1)	O(d)	no
(with vertex reordering) Thm 3	4n	O(1)	O(d)	no
(with vertex reordering) Cor 3	6n	O(1)	O(1)	no

Half-edge

class Halfedge{
Halfedge prev, next, opposit
Vertex source, target;
Face f;
}
class Vertex{
Halfedge e;
Point p;
}
connectivity

э;

Triangle-based

class Triangle{
 Triangle t1, t2, t3;
 Vertex v1, v2, v3;
}
 class Vertex{
 Triangle root;
 Point p;
}

<pre>class Point{</pre>	
float x;	
float y;	
float z;	
}	

Popular mesh data structures: space requirements

25	Half-edge, Winged-edge	e, Quad-edge
	(19n+3n)	
20	Triangle 1	DS, Corner Table, Directed
	edge $(13n)$	+3n)
15		
10		connectivity
5		
		geometric coordinates
0	Quad-edge Triangle based Direct	ed edge
Win	iged-edge Half-edge Corner Table	

class Point{
 float x;
 float y;
 float z;
 }
geometry

Half-edge

class Halfedge{
Halfedge prev, next, opposite;
Vertex source, target;
Face f;
}
class Vertex{
Halfedge e;
Point p;
}
connectivity

Triangle-based

class Triangle{
 Triangle t1, t2, t3;
 Vertex v1, v2, v3;
}
 class Vertex{
 Triangle root;
 Point p;
}

class Point{
 float x;
 float y;
 float z;
}

Non compact vs. compact mesh data structures

Experimental comparison

25

15

Source(e)

Horse

Bunny

Iphigenia

Eros

(timings are expressed in nanoseconds/vertex) vertex degree (only topological navigation)

5n

6n

Compact 6n

Winged edge

5n

6n

Compact 6n Winged edge

Pierre's hand

Compact 5n Compact 6n

Pierre's hand

Thm2: More compact DS (5n references) more compact solution: less redundant and "more difficult to implement" v v

Thm2: More compact DS (5n references) more compact solution: less redundant and "more difficult to implement"

Thm3: our most compact DS (4n references) still more compact with vertex reordering use the *DFUDS* (Depth First Unary Degree Sequence) order on \overline{T}_0

