
Succinct representation of
triangulations with a boundary

WADS 2005 - Waterloo

Luca Castelli Aleardi

(joint work with Olivier Devillers and Gilles Schaeffer)

Projet Geometrica LIX

INRIA Sophia-Antipolis Ecole Polytechnique

Succinct representation of triangulations with a boundary – p.1/62

http://www.lix.polytechnique.fr/~amturing


Succinct and compact representations
Given a class Cm of objects of size m, the goal is to design a
space efficient data structure such that:

• queries on objects are answered in constant time;

• the encoding is succinct: the cost of an object R ∈ Cm

matches asymptotically the entropy of the class

size(R) = log2 ‖Cm‖(1 + o(1))

• or compact: we content of a cost

size(R) = O(‖Cm‖)

• for dynamic data structures: updates are supported in

O(lgc m) amortized time
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Compact representations: an example
Rooted trees with n vertices

enumeration of binary trees with n vertices:

‖Bn‖ =
1

n + 1

(

2n

n

)

≈ 22nn− 3

2 (1)
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Compact representations: an example
compact encoding for compression

• size: log
2
‖Bn‖ = 2n + O(lg n) bits

• no efficient navigation

explicit pointers-based representation

• size: 2n lg n bits

• constant time navigation

succinct representation (Jacobson 89, Munro et Raman 97)

• size: 2n + o(n) bits

• adjacency queries in constant time
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Motivation
Combinatorial information describing incidence relations

Which information?

Connectivity
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Motivation
Geometry information (vertex coordinates)

Which information?

Connectivity
Geometry
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Motivation
Usual mesh representation

v1

v2

v3v4

v1: 0.5389 0.7634 1.3456
v2: x2 y2 z2

v3: x3 y3 z3

v4: x4 y4 z4

. . .

. . .

VRML format file

t1: 1-2-3
t2: 1-3-4
t3: *-*-*

t4: *-*-*

t5: *-*-*

t6: *-*-*

. . .

3×32 bits / vertex

6×32 bits /vertex

288 bits /vertex

Succinct representation of triangulations with a boundary – p.7/62



Motivation
Mesh compression algorithms

Touma Gotsman
Edgebreaker [Rossignac]

Poulhalon Schaeffer
General underlying idea

Encoding strategies based on a local (global) conquest
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Motivation
Mesh compression algorithms

Mesh
com

pre
ssio

n

Compact representation

VRML, 288 or 114 bits/vertex

[Touma Gotsman] 2bits/vertex (near-optimal)

Pointer based representation: 208 bits/triangle

2.175 bits/triangle

[Poulalhon Schaeffer] 3.24bits/vertex (optimal)
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Previous and related works
• static trees on n nodes (Jacobson FOCS89): space

2n + o(n), navigation in O(lg n) time;

• planar graphs on n vertices and e edges (Munro Raman

FOCS97): space 8n + 2e, O(1) time navigation;

• 3-connected planar graphs on n vertices(Chuang et al.

ICALP98): space 2e + n, O(1) time navigation;

• separable graphs (Blandford et al. SODA03): space O(n),

navigation in O(1) time.

• dynamic binary trees (Munro et al. SODA01, Raman Rao
ICALP03): space 2n + o(n), navigation in O(1) updates in
poly-logarithmic amortized time;
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Tutte’s entropy (triangulations)
(information theory asymptotic lower bound)

enumeration of rooted planar triangulations on n vertices:

Ψn =
2(4n + 1)!

(3n + 2)!(n + 1)!
≈

16

27

√

3

2π
n−5/2(

256

27
)n

Tutte’s entropy (1962):

e =
1

n
log

2
Ψn ≈ log

2
(
256

27
) ≈ 3.2451 bits/vertex
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Planar Triangulations with a boundary

n + 1 internal vertices, m = 2n + k faces

f(n, k) =
2 · (2k − 3)! (2k + 4n − 1)!

(k − 1)! (k − 3)! (n + 1)! (2k + 3n)!

f ′(m, k) =
2 · (2k − 3)! (2m − 1)!

(k − 1)! (k − 3)! (m−k
2

+ 1)!

counting planar triangulations with m faces

F (m) = lg(
m

∑

k≥3

f ′(m, k)) ≈ 2.175m

3.24 bits/vertex = 1.62 bits/face < 2.17 bits/face
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Our contribution
Theorem. For planar triangulations with a boundary
having m faces, there exists an optimal succinct
representation supporting efficient navigation in O(1) time,
requiring

2.175m + O(m
lg lg m

lg m
) = 2.175m + o(m) bits

For triangulations of genus g surfaces (g = o( m

lg m
)) the

same representation requires

2.175m + 36(g − 1) lg m + O(m
lg lg m

lg m
+ g lg lg m) bits
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Comparison: space efficiency
Compact representations of triangulations with n vertices, e

edges, m faces (lower order term are omitted)

Encoding queries planar higher genus

Jacobson (FOCS 89) O(lg n) no

Munro Raman
(FOCS 97)

O(1) 8n + 2e or
7m

no

Chuang et al.
(ICALP 98)

O(1) 2e + n or
3.5m

no

Chiang et al. (SODA
01)

O(1) 2e + n or
3.5m

no

our encoding O(1) 2.175m 2.175m
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Basic ideas

• Multi-level hierarchical structure

• Exhaustive enumeration

• Optimal encoding

• Information sharing

Succinct representation of triangulations with a boundary – p.17/62



Literary digression
”The lesson”, a Eugène Ionesco’s play (1951)

During a private lesson, a very young student, preparing herself

for the total doctorate, talks about arithmetics with her teacher.

(teacher) If you cannot deeply understand these principles,

these arithmetic archetypes, you will never perform correctly a

”polytechnicien”job. For example, what is 3.755.918.261

multiplied by 5.162.303.508?

(student, very quickly) The result is 193891900145...

(teacher, very astonished): How have you computed it, if you

do not know the principles of arithmetic reasoning?

(student) Simple: I have learned by heart all possible results of

all possible multiplications.
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Decomposing T into sub-triangulations
• we compute tiny triangulations having between 1

12
lg m

and 1
4

lg m triangles;

• we regroup tiny triangulations to form small
triangulations containing Θ(lg m) tiny triangulations.
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Decomposition phase
We start with a triangulation having m triangles
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Decomposition phase
Computing tiny triangulations having Θ(lg m) triangles
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Decomposition phase
There are Θ( m

lg m
) tiny triangulations
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Decomposition phase
Only boundary edges are shared by tiny triangulations
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Decomposition phase
Graph G linking adjacent tiny triangulations
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Decomposition phase
A small triangulation contains Θ(lg2 m) triangles
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Decomposition phase
There are Θ( m

lg2
m

) small triangulations
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Decomposition phase
Graph F linking adjacent small triangulations
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Decomposition phase
Partitioning graph G: graphs Gi link tiny triangulations lying

in a same small triangulation
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Overview: representation of a small triangulation
• adjacency relations are described by map Gi;

• internal connectivity is implicitly represented (variable
size pointers)

• boundary neighboring relations are represented by
boundary coloring (variable length bit-vector)

pointer to tiny

triangulation

of size t

pointer to rank-select

of size b and weight s

t, b, s

split small

into tiny

first vertex

0
1

0

10
1

0

1 0

1

0

0

0
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Graph Gi linking adjacent tiny triangulations
• Gi has a node for each tiny triangulation and an arc for

each pair of adjacent tiny triangulations;

• Gi is a planar map, having faces of degree at least 3,
multiple edges and loops are allowed;
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i adjacency relations between tiny triangulations
• Because of Euler’s formula, the overall number of arcs in

maps Gi is:
∑

i

‖E(Gi)‖ = O(
m

lg m
)
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Decomposition
Initial small triangulation with a dual spanning tree
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Decomposition
The tree is decomposed into tiny trees of size Θ(lg m)
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Decomposition
We get tiny triangulations of size Θ(lg m)
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Decomposition
A small triangulations contains Θ(lg m) tiny triangulations
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Decomposition
A small triangulations contains Θ(lg m) tiny triangulations

Succinct representation of triangulations with a boundary – p.36/62



Memory organization

Graph of
small triangulationsF
node of F

degree

neighbor neighborneighborneighbor

<<true>> pointers
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Memory organization

Graph of
small triangulationsF
node of F

degree

neighbor neighborneighborneighbor

ni number of tiny triangulaitons in a small

local pointers
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Memory organization

Graph of
small triangulations

Θ
(

m

lg2
m

)

edges (planarity)

F
node of F

degree

neighbor neighborneighborneighbor

ni number of tiny triangulaitons in a small

lg m

lg m

lg m lg m lg m

lg mΘ
(

m

lg2
m

)

= Θ
(

m

lg m

)

bits
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

local pointer

neighbor neighborneighborneighbor

degré

voisin voisin voisinvoisin

ni

node of Findex
backward index

degré

voisin voisin voisinvoisin

ni

node of F

global pointer

# boundarydegree
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

neighbor neighborneighborneighbor

Description of the triangulation

# boundarydegree
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

neighbor neighborneighborneighbor

Description of the triangulation
Pointers to the catalog of the triangulations with t triangles

# boundarydegree# triangles
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

neighbor neighborneighborneighbor

Boundary coloring

# boundarydegree
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

neighbor neighborneighborneighbor

Boundary coloring

# boundarydegree

0 11

1 1

1 0000

0
0
00

00100010011010
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

neighbor neighborneighborneighbor
# boundarydegree

00100010011010

lg lg m
lg lg m

lg lg m
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Memory organization

# triangles

Graph of
tiny triangulations G
node of G

local pointer

neighbor neighborneighborneighbor

degré

voisin voisin voisinvoisin

ni

node of Findex
backward index

degré

voisin voisin voisinvoisin

ni

node of F

global pointer

# boundarydegree

2 lg lg m

Θ(lg lg m)

lg lg m

lg lg m
lg lg m

lg lg m
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Memory organization

Catalog of
tiny triangulations

t triangles

22.17t triangulations

using each t lg t bits

1
4 lg m
∑

t= 1
12 lg m

t lg t ≤ m
0.55
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Overall cost of graphs Gi

• list of neighbors, nodes degrees, size of nodes, ... (local
pointers of size O(lg lg m) - O( m

lg m
) nodes and arcs)

O(m
lg lg m

lg m
)

• pointers to table Ar (combinatorial information)

2.17m + O(lg m)

• pointers to ”Rank/Select” tables (boundary coloring)

∑

t

‖RS(t)‖ ≤
∑

t

lg

(

lg m

w(t)

)

≤ O(m
lg lg m

lg m
)
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Total space used
• Catalog of all different tiny triangulations

O(m
1

4
2.17 lg2 m lg lg m) = o(m)

• catalog of bit-vectors (with Rank/Select)

O(m
1

4
2.17 lg m lg lg m) = o(m)

• representation of graph F : O( m

lg2
m

lg m) = o(m)

• graphs Gi

2.17m + O(m
lg lg m

lg m
)
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Navigation

node of map F

00100010011010

a node in map G

triangle index
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Navigation

node of map F

00100010011010

a node in map G

triangle index
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Navigation

node of map F

00100010011010

1

2

5

4

3

6

7

8

10

11
12

13

14

18

22

269

a node in map G

triangle index
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Navigation

node of map F

00100010011010

1

2

5

4

3

6

7

8

10

11
12

13

14

18

22

26

retrieving side information

9

a node in map G

triangle index
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Navigation

node of map F

00100010011010

0

a node in map GNavigation in O(1) time

triangle index

another node in G
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Concluding remarks
• Reducing storage requirements

Restraining the catalog to a sub-class (e.g. triangulations with

bounded vertex degree) automatically reduces the entropy and

the pointers size, and hence the amount of space used.

• Other local navigation operations

We can enrich our representation to allow for efficient queries

on vertices (testing adjacency, vertex degree, turning around a

vertex)

• Geometry information

With some slight modifications we can associate geometric data

to faces and vertices
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Dynamic extension
presented at CCCG 2005

Theorem (Castelli Aleardi, Devillers and Schaeffer). For

triangulations with a boundary having m faces, it is possible

to maintain a succinct representation under vertex

insertion/deletion and edge flip, while supporting navigation

in O(1) time. The storage is

2.175m + O(m
lg lg m

lg m
) = 2.175m + o(m) bits

The cost for an update is:

• O(1) amortized time for degree 3 vertex insertion;

• O(lg2 m) amortized time for vertex deletion and edge

flip;
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A practical solution
(Abdelkrim Mebarki and Olivier Devillers)

C++ implementation based on CGAL library

Idea: gathering triangles in small groups
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Open problem
Optimal succinct encoding for planar triangulations, achieving
Tutte’s entropy: 1.62 bits/face.

Idea: canonical decomposition strategy based on optimal
encoding (Poulalhon et Schaeffer ICALP03)

e1

e2

e3
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Future work
Triangulations 3D

Any idea?
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