Succinct representation of triangulations with a boundary WADS 2005 - Waterloo

Luca Castelli Aleardi

(joint work with Olivier Devillers and Gilles Schaeffer)

Projet Geometrica
INRIA Sophia-Antipolis

隹INRIA

LIX
Ecole Polytechnique

\boldsymbol{L}_{X}

Succinct and compact representation

Given a class C_{m} of objects of size m, the goal is to design a space efficient data structure such that:

- queries on objects are answered in constant time;
- the encoding is succinct: the cost of an object $R \in C_{m}$ matches asymptotically the entropy of the class

$$
\operatorname{size}(R)=\log _{2}\left\|C_{m}\right\|(1+o(1))
$$

- or compact: we content of a cost

$$
\operatorname{size}(R)=O\left(\left\|C_{m}\right\|\right)
$$

- for dynamic data structures: updates are supported in

$$
O\left(\lg ^{c} m\right) \text { amortized time }
$$

Compact representations: an example

Rooted trees with n vertices

enumeration of binary trees with n vertices:

$$
\begin{equation*}
\left\|\mathcal{B}_{n}\right\|=\frac{1}{n+1}\binom{2 n}{n} \approx 2^{2 n} n^{-\frac{3}{2}} \tag{1}
\end{equation*}
$$

Compact representations: an example

compact encoding for compression

- size: $\log _{2}\left\|\mathcal{B}_{n}\right\|=2 n+O(\lg n)$ bits
- no efficient navigation explicit pointers-based representation
- size: $2 n \lg n$ bits
- constant time navigation
succinct representation (Jacobson 89, Munro et Raman 97)
- size: $2 n+o(n)$ bits
- adjacency queries in constant time

Motivation

Combinatorial information describing incidence relations
Which information?

Connectivity

Motivation

Geometry information (vertex coordinates)

Which information?

Connectivity Geometry

Motivation

Usual mesh representation

Motivation

Mesh compression algorithms

Previous and related works

- static trees on n nodes (Jacobson FOCS89): space $2 n+o(n)$, navigation in $O(\lg n)$ time;
- planar graphs on n vertices and e edges (Munro Raman FOCS97): space $8 n+2 e, O(1)$ time navigation;
- 3-connected planar graphs on n vertices(Chuang et al. ICALP98): space $2 e+n, O(1)$ time navigation;
- separable graphs (Blandford et al. SODA03): space $O(n)$, navigation in $O(1)$ time.
- dynamic binary trees (Munro et al. SODA01, Raman Rao ICALP03): space $2 n+o(n)$, navigation in $O(1)$ updates in poly-logarithmic amortized time;

Tutte's entropy (triangulations)

(information theory asymptotic lower bound)

enumeration of rooted planar triangulations on n vertices:

$$
\Psi_{n}=\frac{2(4 n+1)!}{(3 n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2 \pi}} n^{-5 / 2}\left(\frac{256}{27}\right)^{n}
$$

Tutte's entropy (1962):

$$
e=\frac{1}{n} \log _{2} \Psi_{n} \approx \log _{2}\left(\frac{256}{27}\right) \approx 3.2451 \text { bits/vertex }
$$

Planar Triangulations with a boundary

$n+1$ internal vertices, $m=2 n+k$ faces

$$
\begin{gathered}
f(n, k)=\frac{2 \cdot(2 k-3)!(2 k+4 n-1)!}{(k-1)!(k-3)!(n+1)!(2 k+3 n)!} \\
f^{\prime}(m, k)=\frac{2 \cdot(2 k-3)!(2 m-1)!}{(k-1)!(k-3)!\left(\frac{m-k}{2}+1\right)!}
\end{gathered}
$$

counting planar triangulations with m faces

$$
F(m)=\lg \left(\sum_{k \geq 3}^{m} f^{\prime}(m, k)\right) \approx 2.175 m
$$

3.24 bits/vertex $=1.62$ bits/face <2.17 bits $/$ face

Our contribution

Theorem. For planar triangulations with a boundary having m faces, there exists an optimal succinct representation supporting efficient navigation in $O(1)$ time, requiring

$$
2.175 m+O\left(m \frac{\lg \lg m}{\lg m}\right)=2.175 m+o(m) \text { bits }
$$

For triangulations of genus g surfaces $\left(g=o\left(\frac{m}{\lg m}\right)\right)$ the same representation requires

$$
2.175 m+36(g-1) \lg m+O\left(m \frac{\lg \lg m}{\lg m}+g \lg \lg m\right) \text { bits }
$$

Comparison: space efficiency

Compact representations of triangulations with n vertices, e edges, m faces (lower order term are omitted)

Encoding	queries	planar	higher genus
Jacobson (FOCS 89)	$O(\lg n)$		no
Munro Raman	$O(1)$	$8 n+2 e$ or	no
(FOCS 97)		$7 m$	
Chuang et al.	$O(1)$	$2 e+n$ or $3.5 m$	no
(ICALP 98)		$2 e+n$ or $3.5 m$	no
Chiang et al. (SODA	$O(1)$		
01)		$O(1)$	$2.175 m$
our encoding		$2.175 m$	

Basic ideas

- Multi-level hierarchical structure
- Exhaustive enumeration
- Optimal encoding
- Information sharing

Literary digression

"The lesson", a Eugène Ionesco's play (1951)
During a private lesson, a very young student, preparing herself for the total doctorate, talks about arithmetics with her teacher. (teacher) If you cannot deeply understand these principles, these arithmetic archetypes, you will never perform correctly a "polytechnicien" job. For example, what is 3.755.918.261 multiplied by 5.162 .303 .508 ?
(student, very quickly) The result is 193891900145 ... (teacher, very astonished): How have you computed it, if you do not know the principles of arithmetic reasoning?
(student) Simple: I have learned by heart all possible results of all possible multiplications.

Decomposing \mathcal{T} into sub-triangulation

- we compute tiny triangulations having between $\frac{1}{12} \lg m$ and $\frac{1}{4} \lg m$ triangles;
- we regroup tiny triangulations to form small triangulations containing $\Theta(\lg m)$ tiny triangulations.

Decomposition phase

We start with a triangulation having m triangles

Succinct representation of triangulations with a boundary - p.20/62

Decomposition phase

Computing tiny triangulations having $\Theta(\lg m)$ triangles

Succinct representation of triangulations with a boundary - p.21/62

Decomposition phase

There are $\Theta\left(\frac{m}{\lg m}\right)$ tiny triangulations

Succinct representation of triangulations with a boundary $-\mathrm{p} .22 / 62$

Decomposition phase

Only boundary edges are shared by tiny triangulations

Decomposition phase

Graph G linking adjacent tiny triangulations

Decomposition phase

A small triangulation contains $\Theta\left(\lg ^{2} m\right)$ triangles

Succinct representation of triangulations with a boundary $-\mathrm{p} .25 / 62$

Decomposition phase

There are $\Theta\left(\frac{m}{\lg ^{2} m}\right)$ small triangulations

Succinct representation of triangulations with a boundary - p.26/62

Decomposition phase

Graph F linking adjacent small triangulations

Decomposition phase

Partitioning graph G : graphs G_{i} link tiny triangulations lying in a same small triangulation

view: representation of a small triangı

- adjacency relations are described by map G_{i};
- internal connectivity is implicitly represented (variable size pointers)
- boundary neighboring relations are represented by boundary coloring (variable length bit-vector)

- G_{i} has a node for each tiny triangulation and an arc for each pair of adjacent tiny triangulations;
- G_{i} is a planar map, having faces of degree at least 3 , multiple edges and loops are allowed;

ljacency relations between tiny triangu

- Because of Euler's formula, the overall number of arcs in maps G_{i} is:

$$
\sum_{i}\left\|E\left(G_{i}\right)\right\|=O\left(\frac{m}{\lg m}\right)
$$

Decomposition

Initial small triangulation with a dual spanning tree

Decomposition

The tree is decomposed into tiny trees of size $\Theta(\lg m)$

Decomposition

We get tiny triangulations of size $\Theta(\lg m)$

Decomposition

A small triangulations contains $\Theta(\lg m)$ tiny triangulations

Decomposition

A small triangulations contains $\Theta(\lg m)$ tiny triangulations

Memory organization

Memory organization

Graph of small triangulations_ node of F

Memory organization

Graph of small triangulations nodeof $F \quad \lg m \theta\left(\frac{g^{\prime}}{g^{2} m}\right)=\Theta\left(\frac{m^{\prime}}{g_{m}^{m}}\right)$ bits

Memory organization

Memory organization

Graph of tiny triangulations
 node of G

degreef tringles \#bonnary
neighbor neighbor neighborneighbor

Memory organization

Graph of tiny triangulations

 neigh Ighbor neighborneighbor

Pointers to the catalog of the triangulations with t triangles

Memory organization

Graph of tiny triangulations
 node of G

degreet tiandes \# bonnary
neighbor neighbor neighborneighbor

Succinct representation of triangulations with a boundary $-\mathrm{p} .43 / 62$

Memory organization

Graph of tiny triangulations node of G

degreet tirangles \#bunnary
neighbor neighbor neighborneighbor

Memory organization

Graph of tiny triangulations
 node of G

neighbor neighbor neighborneighbor

Succinct representation of triangulations with a boundary $-\mathrm{p} .45 / 62$

Memory organization

Memory organization

Catalog of tiny triangulations
 t triangles

$$
\begin{aligned}
& 2^{2.17 t} \text { triangulations } \\
& \text { using each } t \lg t \text { bits } \\
& \sum_{1}^{\frac{1}{4} \lg m} t \lg t \leq m^{0.55}
\end{aligned}
$$

Overall cost of graphs G_{i}

- list of neighbors, nodes degrees, size of nodes, ... (local pointers of size $O(\lg \lg m)-O\left(\frac{m}{\lg m}\right)$ nodes and arcs)

$$
O\left(m \frac{\lg \lg m}{\lg m}\right)
$$

- pointers to table A_{r} (combinatorial information)

$$
2.17 m+O(\lg m)
$$

- pointers to "Rank/Select" tables (boundary coloring)

$$
\sum_{t}\|R S(t)\| \leq \sum_{t} \lg \binom{\lg m}{w(t)} \leq O\left(m \frac{\lg \lg m}{\lg m}\right)
$$

Total space used

- Catalog of all different tiny triangulations

$$
O\left(m^{\frac{1}{4} 2.17} \lg ^{2} m \lg \lg m\right)=o(m)
$$

- catalog of bit-vectors (with Rank/Select)

$$
O\left(m^{\frac{1}{4} 2.17} \lg m \lg \lg m\right)=o(m)
$$

- representation of graph $F: O\left(\frac{m}{\lg ^{2} m} \lg m\right)=o(m)$
- graphs G_{i}

$$
2.17 m+O\left(m \frac{\lg \lg m}{\lg m}\right)
$$

Navigation

Succinct representation of triangulations with a boundary - p.50/62

Navigation

Navigation

Succinct representation of triangulations with a boundary - p.52/62

Navigation

Navigation

Succinct representation of triangulations with a boundary - p.54/62

Navigation

Succinct representation of triangulations with a boundary - p.55/62

Navigation

Succinct representation of triangulations with a boundary - p.56/62

Navigation

Succinct representation of triangulations with a boundary $-\mathrm{p} .57 / 62$

Concluding remarks

- Reducing storage requirements

Restraining the catalog to a sub-class (e.g. triangulations with bounded vertex degree) automatically reduces the entropy and the pointers size, and hence the amount of space used.

- Other local navigation operations

We can enrich our representation to allow for efficient queries on vertices (testing adjacency, vertex degree, turning around a vertex)

- Geometry information

With some slight modifications we can associate geometric data to faces and vertices

Dynamic extension

presented at CCCG 2005

Theorem (Castelli Aleardi, Devillers and Schaeffer). For triangulations with a boundary having m faces, it is possible to maintain a succinct representation under vertex insertion/deletion and edge flip, while supporting navigation in $O(1)$ time. The storage is

$$
2.175 m+O\left(m \frac{\lg \lg m}{\lg m}\right)=2.175 m+o(m) \text { bits }
$$

The cost for an update is:

- $O(1)$ amortized time for degree 3 vertex insertion;
- $O\left(\lg ^{2} m\right)$ amortized time for vertex deletion and edge flip;

A practical solution

(Abdelkrim Mebarki and Olivier Devillers)

C++ implementation based on CGAL library

Idea: gathering triangles in small groups

Open problem

Optimal succinct encoding for planar triangulations, achieving Tutte's entropy: 1.62 bits/face.

Idea: canonical decomposition strategy based on optimal encoding (Poulalhon et Schaeffer ICALP03)

Future work

Triangulations 3D

Any idea?

