Succinct representation of triangulations with a boundary
WADS 2005 - Waterloo

Luca Castelli Aleardi
(joint work with Olivier Devillers and Gilles Schaeffer)

Projet Geometrica
INRIA Sophia-Antipolis

LIX
Ecole Polytechnique
Succinct and compact representations

Given a class C_m of objects of size m, the goal is to design a space efficient data structure such that:

- **queries** on objects are answered in constant time;
- the encoding is **succinct**: the cost of an object $R \in C_m$ matches asymptotically the entropy of the class

$$size(R) = \log_2 \|C_m\|(1 + o(1))$$

- or **compact**: the content of an object

$$size(R) = O(\|C_m\|)$$

- for dynamic data structures: **updates** are supported in

$$O(\lg^c m)$$ amortized time
Compact representations: an example

Rooted trees with n vertices

![Tree Diagrams]

enumeration of binary trees with n vertices:

$$\| B_n \| = \frac{1}{n+1} \binom{2n}{n} \approx 2^{2n} n^{-\frac{3}{2}}$$ (1)
Compact representations: an example

compact encoding for compression

• size: \(\log_2 \|B_n\| = 2n + O(\lg n) \) bits

• no efficient navigation

explicit pointers-based representation

• size: \(2n \lg n \) bits

• constant time navigation

succinct representation (Jacobson 89, Munro et Raman 97)

• size: \(2n + o(n) \) bits

• adjacency queries in constant time
Motivation

Combinatorial information describing incidence relations

Which information?

Connectivity
Motivation

Geometry information (vertex coordinates)

Which information?

Connectivity
Geometry
Motivation

Mesh compression algorithms

Edgebreaker [Rossignac]
Touma Gotsman
Poulhalon Schaeffer

General underlying idea
Encoding strategies based on a local (global) conquest
Motivation

Mesh compression algorithms

Edgebreaker [Rossignac]
Touma Gotsman
Poulhalon Schaeffer

General underlying idea
Encoding strategies based on a local (global) conquest

Succinct representation of triangulations with a boundary – p.8/61
Motivation

Mesh compression algorithms

Edgebreaker [Rossignac]
Touma Gotsman
Poulhalon Schaeffer

General underlying idea
Encoding strategies based on a local (global) conquest

Succinct representation of triangulations with a boundary – p.9/61
Motivation

Mesh compression algorithms

Mesh compression

VRML, 288 or 114 bits/vertex

[Touma Gotsman] 2 bits/vertex (near-optimal)
[Poulalhon Schaeffer] 3.24 bits/vertex (optimal)

Compact representation

Pointer based representation: 208 bits/triangle

2.175 bits/triangle

Succinct representation of triangulations with a boundary – p.10/61
Previous and related works

• static trees on n nodes (Jacobson FOCS89): space $2n + o(n)$, navigation in $O(\lg n)$ time;

• planar graphs on n vertices and e edges (Munro Raman FOCS97): space $8n + 2e$, $O(1)$ time navigation;

• 3-connected planar graphs on n vertices (Chuang et al. ICALP98): space $2e + n$, $O(1)$ time navigation;

• separable graphs (Blandford et al. SODA03): space $O(n)$, navigation in $O(1)$ time.

• dynamic binary trees (Munro et al. SODA01, Raman Rao ICALP03): space $2n + o(n)$, navigation in $O(1)$ updates in poly-logarithmic amortized time;
Tutte’s entropy (triangulations)

(information theory asymptotic lower bound)

Enumeration of rooted planar triangulations on n vertices:

$$\Psi_n = \frac{2(4n + 1)!}{(3n + 2)!(n + 1)!} \approx 16 \frac{\sqrt{3}}{27} n^{-5/2} \left(\frac{256}{27}\right)^n$$

Tutte’s entropy (1962):

$$e = \frac{1}{n} \log_2 \Psi_n \approx \log_2 \left(\frac{256}{27}\right) \approx 3.2451 \text{ bits/vertex}$$
Planar Triangulations with a boundary

$n + 1$ internal vertices, $m = 2n + k$ faces

\[f(n, k) = \frac{2 \cdot (2k - 3)! (2k + 4n - 1)!}{(k - 1)! (k - 3)! (n + 1)! (2k + 3n)!} \]

\[f'(m, k) = \frac{2 \cdot (2k - 3)! (2m - 1)!}{(k - 1)! (k - 3)! \left(\frac{m-k}{2} + 1 \right)!} \]

counting planar triangulations with m faces

\[F(m) = \lg \left(\sum_{k \geq 3} f'(m, k) \right) \approx 2.175m \]

3.24 bits/vertex = 1.62 bits/face $<$ 2.17 bits/face
Our contribution

Theorem. For planar triangulations with a boundary having m faces, there exists an optimal succinct representation supporting efficient navigation in $O(1)$ time, requiring

$$2.175m + O(m \frac{\lg \lg m}{\lg m}) = 2.175m + o(m) \text{ bits}$$

For triangulations of genus g surfaces ($g = o(\frac{m}{\lg m})$) the same representation requires

$$2.175m + 36(g - 1) \lg m + O(m \frac{\lg \lg m}{\lg m} + g \lg \lg m) \text{ bits}$$
Comparison: space efficiency

Compact representations of triangulations with \(n \) vertices, \(e \) edges, \(m \) faces (lower order term are omitted)

<table>
<thead>
<tr>
<th>Encoding</th>
<th>queries</th>
<th>planar</th>
<th>higher genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobson (FOCS 89)</td>
<td>(O(\lg n))</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Munro Raman (FOCS 97)</td>
<td>(O(1))</td>
<td>(8n + 2e) or (7m)</td>
<td>no</td>
</tr>
<tr>
<td>Chuang et al. (ICALP 98)</td>
<td>(O(1))</td>
<td>(2e + n) or (3.5m)</td>
<td>no</td>
</tr>
<tr>
<td>Chiang et al. (SODA 01)</td>
<td>(O(1))</td>
<td>(2e + n) or (3.5m)</td>
<td>no</td>
</tr>
<tr>
<td>our encoding</td>
<td>(O(1))</td>
<td>(2.175m)</td>
<td>(2.175m)</td>
</tr>
</tbody>
</table>
Basic ideas

• Multi-level hierarchical structure
• Exhaustive enumeration
• Optimal encoding
• Information sharing
Literary digression

"The lesson", a Eugène Ionesco’s play (1951)

During a private lesson, a very young student, preparing herself for the total doctorate, talks about arithmetics with her teacher. (teacher) If you cannot deeply understand these principles, these arithmetic archetypes, you will never perform correctly a "polytechnicien" job. For example, what is 3.755.918.261 multiplied by 5.162.303.508?

(student, very quickly) The result is 193891900145...

(teacher, very astonished): How have you computed it, if you do not know the principles of arithmetic reasoning?

(student) Simple: I have learned by heart all possible results of all possible multiplications.
Decomposing \mathcal{T} into sub-triangulations

- we compute small triangulations having between $\frac{1}{3} \lg^2 m$ and $\lg^2 m$ triangles;
- we decompose small triangulations into tiny triangulations containing between $\frac{1}{12} \lg m$ and $\frac{1}{4} \lg m$ triangles.
Decomposition phase

We start with a triangulation having m triangles
Decomposition phase

Computing tiny triangulations having $\Theta(\lg m)$ triangles
Decomposition phase

There are $\Theta\left(\frac{m}{\lg m}\right)$ tiny triangulations.
Decomposition phase

Only boundary edges are shared by tiny triangulations
Decomposition phase

Graph G linking adjacent tiny triangulations
Decomposition phase

A small triangulation contains $\Theta(\lg^2 m)$ triangles
Decomposition phase

There are $\Theta\left(\frac{m}{\lg^2 m}\right)$ small triangulations
Decomposition phase

Graph F linking adjacent small triangulations
Decomposition phase

Partitioning graph G: graphs G_i link tiny triangulations lying in a same small triangulation
Overview: representation of a small triangulation

- adjacency relations are described by map G_i;
- internal connectivity is implicitly represented (variable size pointers);
- boundary neighboring relations are represented by boundary coloring (variable length bit-vector).
Graph G_i linking adjacent tiny triangulations

- G_i has a node for each tiny triangulation and an arc for each pair of adjacent tiny triangulations;
- G_i is a planar map, having faces of degree at least 3, multiple edges and loops are allowed;
adjacency relations between tiny triangulations

- Because of Euler’s formula, the overall number of arcs in maps G_i is:

$$\sum_i \| E(G_i) \| = O\left(\frac{m}{\lg m}\right)$$
Decomposition

Initial small triangulation with a dual spanning tree
Decomposition

The tree is decomposed into tiny trees of size $\Theta(\lg m)$
Decomposition

We get tiny triangulations of size $\Theta(\lg m)$
Decomposition

A small triangulations contains $\Theta(\lg m)$ tiny triangulations
Decomposition

A small triangulation contains $\Theta(\lg m)$ tiny triangulations.
Memory organization

Graph of small triangulations F

node of F

degree

neighbor neighbor neighbor neighbor

$\ll true \gg$ pointers

Succinct representation of triangulations with a boundary – p.36/61
Memory organization

Graph of small triangulations F

node of F

- degree
- neighbor
- neighbor
- neighbor
- n_i
 - number of tiny triangulations in a small local pointers

Succinct representation of triangulations with a boundary – p.37/61
Graph of small triangulations F

Node of F:

$$\lg m \Theta \left(\frac{m}{\lg^2 m} \right) = \Theta \left(\frac{m}{\lg m} \right) \text{bits}$$

$$\Theta \left(\frac{m}{\lg^2 m} \right) \text{ edges (planarity)}$$

Degree:

Number of tiny triangulations in a small neighborhood n_i
Memory organization

Graph of tiny triangulations

node of G

node of F

degree

triangles

boundary

neighbor

neighbor

neighbor

neighbor

node of F

local pointer

global pointer

index

backward index
Succinct representation of triangulations with a boundary – p.40/61
Memory organization

Graph of tiny triangulations

node of G

degree, # triangles, # boundary
neighbor, neighbor, neighbor

Description of the triangulation

Pointers to the catalog of the triangulations with t triangles

Succinct representation of triangulations with a boundary – p.41/61
Memory organization

Graph of tiny triangulations

node of G

degree # triangles # boundary
neighbor neighbor neighbor neighbor

Boundary coloring

Succinct representation of triangulations with a boundary – p.42/61
Memory organization

Graph of tiny triangulations

node of G

<table>
<thead>
<tr>
<th>degree</th>
<th># triangles</th>
<th># boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

neighbor neighbor neighbor neighbor

Boundary coloring

0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Memory organization

Graph of tiny triangulations

node of G

neighbor neighbor neighbor

Succinct representation of triangulations with a boundary – p.44/61
Memory organization

Graph of tiny triangulations

node of G

node of F

index

backward index

$\lg \lg m$

$\Theta(\lg \lg m)$

local pointer

global pointer

$\Theta(\lg \lg m)$

$2\lg \lg m$

$\lg \lg m$

$\Theta(\lg \lg m)$

Succinct representation of triangulations with a boundary – p.45/61
Memory organization

Catalog of tiny triangulations

t triangles

$2^{2.17t}$ triangulations using each $t \lg t$ bits

$$\frac{1}{4} \lg m \sum_{t=\frac{1}{12} \lg m}^{t \lg t \leq m^{0.55}}$$
Overall cost of graphs G_i

- list of neighbors, nodes degrees, size of nodes, ... (local pointers of size $O(lg \lg m) - O(\frac{m}{lg m})$ nodes and arcs)

\[O(m \frac{lg \lg m}{lg m}) \]

- pointers to table A_r (combinatorial information)

\[2.17m + O(lg m) \]

- pointers to "Rank/Select" tables (boundary coloring)

\[\sum_{t} \|RS(t)\| \leq \sum_{t} lg \left(\frac{lg m}{w(t)} \right) \leq O(m \frac{lg \lg m}{lg m}) \]
Total space used

- Catalog of all different tiny triangulations
 \[O\left(\frac{m_4^{12.17}}{\lg^2 m \lg \lg m}\right) = o(m) \]

- Catalog of bit-vectors (with Rank/Select)
 \[O\left(\frac{m_4^{12.17}}{\lg m \lg \lg m}\right) = o(m) \]

- Representation of graph \(F \):
 \[O\left(\frac{m}{\lg^2 m \lg m}\right) = o(m) \]

- Graphs \(G_i \)
 \[2.17m + O\left(\frac{\lg \lg m}{\lg m}\right) \]
Navigation

Succinct representation of triangulations with a boundary – p.49/61
Navigation

retrieving side information

node of map F

a node in map G

triangle index

Succinct representation of triangulations with a boundary – p.52/61
Navigation

retrieving side information

node of map F

a node in map G

another node in G

triangle index

Succinct representation of triangulations with a boundary – p.53/61
Navigation

retrieving side information

node of map F

a node in map G

another node in G

triangle index

Succinct representation of triangulations with a boundary – p.54/61
Navigation

retrieving side information

node of map F

a node in map G

another node in G

triangle index

Succinct representation of triangulations with a boundary – p.55/61
Navigation in $O(1)$ time

node of map F

a node in map G

another node in G

triangle index

Succinct representation of triangulations with a boundary – p.56/61
Concluding remarks

• Reducing storage requirements

Restraining the catalog to a sub-class (e.g. triangulations with bounded vertex degree) automatically reduces the entropy and the pointers size, and hence the amount of space used.

• Other local navigation operations

We can enrich our representation to allow for efficient queries on vertices (testing adjacency, vertex degree, turning around a vertex)

• Geometry information

With some slight modifications we can associate geometric data to faces and vertices
Theorem (Castelli Aleardi, Devillers and Schaeffer). For triangulations with a boundary having m faces, it is possible to maintain a succinct representation under vertex insertion/deletion and edge flip, while supporting navigation in $O(1)$ time. The storage is

$$2.175m + O(m \frac{\lg \lg m}{\lg m}) = 2.175m + o(m) \text{ bits}$$

The cost for an update is:

- $O(1)$ amortized time for degree 3 vertex insertion;
- $O(\lg^2 m)$ amortized time for vertex deletion and edge flip;
A practical solution

(Abdelkrim Mebarki and Olivier Devillers)

C++ implementation based on CGAL library

Idea: gathering triangles in small groups
Open problem

Optimal succinct encoding for planar triangulations, achieving Tutte’s entropy: 1.62 bits/face.

Idea: canonical decomposition strategy based on optimal encoding (Poulalhon et Schaeffer ICALP03)
Future work

Triangulations 3D

Any idea?