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edge orientation and coloration for triangulations

Combinatorics of maps

• enumeration problems

Graph drawing

• draw a planar graph, with vertices having integer
coordinates (using as few as possible coordinates)

Compression and succinct encoding

• Reduce the amount of (memory) space used by the
connectivity of a graph.

• Supporting efficient navigation, using small space
Example: adjacency queries between vertices

Motivation and applications
Schnyder woods (or Schnyder trees or realizers)



(Schnyder ’90)

Edge orientations, tree decompositions and dimension of a graph

Theorem
A graph G is planar if and only if its dimension is at most 3

(Schnyder, Felsner, Trotter)

Theorem
A graph G is planar if and only if the dimension of its incidence poset
is at most 3

A nice characterization of planar graphs: Schnyder woods



The definition in the planar (triangulated) case



with n nodes

(Schnyder ’90)

A nice characterization of planar graphs

Let T be a triangulation having outer face {x0, x1, xn−1}.

x0 x1

xn−1



(Schnyder ’90)

A nice characterization of planar graphs

a partition T0, T1, T2 of the internal edges of T s.t. :

i) edge are colored and oriented in such
a way that each inner node has exactly
one outgoing edge of each color

x0 x1

xn−1

n nodes

A Schnyder wood of a triangulation is



(Schnyder ’90)

A nice characterization of planar graphs

A partition T0, T1, T2 of the internal edges of T s.t. :

i) edge are colored and oriented in such
a way that each inner nodes has exaclty
one outgoing edge of each color

ii) colors and orientations around
each inner node must respect the
local Schnyder condition

x0 x1

xn−1

n nodes



Important facts about Schnyder woods



(Schnyder ’90)

A first fundamental fact: 3 tree decomposition

T0, T1, T2 are spanning trees of (the inner nodes of) T :

x0 x1

xn−1

n nodes

x1

x0

T2

T1

xn−1 T0



Second fact: dimension of a graph

L0, L1, L2 are three orders on the vertices of T :

x0 x1

xn−1
n nodes T2

T1

T0
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L0 : v1 < v2 < v3 < v4 < v5 < v6

L2 : v2 < v3 < v6 < v1 < v3 < v2

L1 : v2 < v3 < v6 < v4 < v5 < v1
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The first motivation: barycentric drawing

x1

x3

x2

How to use Schnyder woods:
• Let Pi(v) be the path from v to xi in Ti.
• LetRi(v) be the region defined by Pi+1(v),
Pi+2(v) and (xi+1, xi+2).

R1(v)

v

R3(v)
R2(v)

The combinatorial equivalent of the area
is given by the number of triangles en-
closed in each region Ri:

vi =
|Ri(v)|
|T |

Combinatorial interpretation

Theorem
For a triangulation T having n vertices, we can draw it on a grid
of size (2n−5)×(2n−5), by setting x1 = (2n−5, 0), x2 = (0, 0)
and x3 = (0, 2n− 5).



Application: graph compression and succinct encoding

Optimal compression (Poulalhon-Schaeffer, Icalp ’03)
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Succinct encoding (Chuang-Garg-He-Kao-Lu Icalp ’98)

(Barbay-Castelli Aleardi-He-Munro Isaac’07)



Tree decompositions in higher genus



Related works: tree decompositions of toroidal graphs

(Bonichon, Gavoille, Labourel, ICGT ’05)

T0, T1, T2 vertex spanning trees

the ”tambourine” solution

Inconvenients:
• valid only for toroidal triangulation (genus 1)

• potentially large number of vertices not satisfying the local condition

Result:

Compute a pair of adjacent non contractible cycles
Main idea of this approach:

Graph G

C1 C2

Graph H

C1 C2

Tambourine
T

C
1

C
2



Our main contribution

a generalized higher genus definition



Schnyder Woods: the higher genus case

v0

v1

Given a rooted triangulated surface of genus g



Schnyder Woods: the higher genus case

Es = {e1, e2}

i) a small set Es of special edges,
doubly oriented and colored

e1
e2

e2

|Es| = 2g



Schnyder Woods: the higher genus case

e1
e2

u

v

v

w

w

u

Es = {e1, e2}
e1 e2

ii) a new local condition for
edges in a sector incident to
a multiple vertex

i) a small set Es of special edges,
doubly oriented and colored at most 2 · 2g multiple vertices

(incident to special edges)

(u, v, w)



Computing Schnyder Woods (in the plane)



v0 v1

vn−1

Incremental vertex conquest (Brehm’s approach)

In our example, the root face
coincides with the exterior
(infinite) face

The traversal starts from the
root face



v0 v1

vn−1

Incremental vertex conquest

conquer(vn−1)+

colororient(vn−1)



Incremental vertex conquest

conquer(vn−2)+

colororient(vn−2)

vn−2

vn−2 is a free vertex

no incident chordal edges

w

w is not free



Incremental vertex conquest

conquer(vn−3)+

colororient(vn−3)

vn−3



Incremental vertex conquest



Incremental vertex conquest



Incremental vertex conquest



Incremental vertex conquest



Incremental vertex conquest



Computing g-Schnyder Woods



New handle operators: split and merge

w

Sout
Sin

v0
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Cwr
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Sin

Sout
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Sin
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w

Sin

conquer(w)

split(u, w)

chordal edge (u, w)

Sout
Sin

w

Sin

merge(u, w)

v0
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Sin
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uSout

Sout

vk vk

vk

(u, w) defines a

non-trivial cycle

(u, w) chordal edge



New handle operators: split and merge

Sout

v0

v1

v2

Sin

u

w

Sin

split(u, w)

Sout
Sin

w

Sin

merge(u, w)

v0

v1

v2

Sin
Sin

uSout

Soutvk

defining a non-trivial cycle(u, w) chordal edge

(u, w) split edge

split a boundary into 2
boundary components

(u, w) merge edge

merge two differents
boundary components



Example of execution of our algorithm (toroidal case)

S

Starts the traversal from the root face (green edge)



Example of execution of our algorithm

conquer(w)+
colororient(w)

(toroidal case)

S



Example of execution of our algorithm

conquer(w)+
colororient(w)

(toroidal case)

S



Example of execution of our algorithm

conquer(w)+
colororient(w)

(toroidal case)

S



Example of execution of our algorithm (toroidal case)

S in

After a maximal sequence of vertex conquest operations . . .

Sin is a topological disk

Sout is a face con-
nected map with a
boundary component

no more free vertices... the (planar) traversal gets stuck



Example of execution of our algorithm (toroidal case)

Sout \ (u, w) is a
face connected map
of genus 1 with two
boundary components

es

u

w
Let us perform a split(u, w) operation



Example of execution of our algorithm (toroidal case)

Sout \ (u, w) is a face
connected map of with
two boundary compo-
nents

es

u

w
We can now perform a conquer(u) operation



Example of execution of our algorithm (toroidal case)

Sout \ (w, v) is a face
connected topological
disk

es

u

w
Let us perform a merge(w, v) operation

v
emmerge operations de-

crease of 1 the num-
ber of boundary com-
ponents



Example of execution of our algorithm (toroidal case)

Sout \ (w, v) is a face
connected topological
disk

es

u

w
Let us see in a better way...

v
em

w

Execution ends performing a sequence
of conquer operations

v w



Example of execution of our algorithm (toroidal case)

Sout \ (w, v) is a face
connected topological
disk

es

u

w
Let us see in a better way...

v
em

w

Execution ends performing a sequence
of conquer operations

v w



Example of execution of our algorithm (toroidal case)

Let us see in a better way...

es

u

v
em

w

v w



Example of execution of our algorithm (toroidal case)
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Example of execution of our algorithm (toroidal case)
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Example of execution of our algorithm (toroidal case)

es

u

v
em

w

v w



Example of execution of our algorithm (toroidal case)
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Example of execution of our algorithm (toroidal case)
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Example of execution of our algorithm (toroidal case)
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Example of execution of our algorithm (toroidal case)

v
em

w

v w



Correctness and termination

Existence of split and merge edges

SinSin

is a 1 face map contain-
ing 2g non-trivial cycles

T ∗

contains g split and
merge edges

T ∗

vertex spanning tree
of the primal graph,
containing the boundary
(blue) edges

T



A fundamental lemma about chordal edges

Correctness and termination

x1

x3x2

Theorem Each planar triangulation admits
a canonical ordering on the vertices

Lemma
There always exists at least one boundary
vertex, not incident to chordal edges

Proof: by induction on the size of the
boundary

(the planar case)



Properties of chordal edges in genus g

Correctness and termination (higher genus)

Sin

u′

w′

Sin

Case 1

z′

Sin

u′

w′

Sin

Case 2

z′
Sin

u′

w′

Sin

Case 3

z′′
Sin

u′

w′

Sin

impossible case

no loops, no multi-
ple edges allowed



Coloring invariants
Correctness and termination (higher genus)

Sout

Sin

u

w

Sin

Sout

Sout

Sin

u

w

Sin

Sout

split(u, w)

conquer(u)+
colorient(u)

Sout

Sin

u

w

Sin

Sout

conquer(w)+
colororient(w)

conquer(u)+
colororient(u)

Sout

Sin

u

w

Sin

Sout



Our main result
Theorem
Given a (simple) rooted triangulation T of genus g and size n, we can
compute in O(n) time a g-Schnyder wood of T .

(Castelli Aleardi, Fusy and Lewiner, 2008)

e1
e2

u

v

v

w

w

v0

v1

The local Schnyder condition is true almost everywhere in the graph
at the exception of multiple vertices



From plane trees to genus g maps



A new characterization in term of g-maps

v

v

w

w

v

v

w
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F1

F1

F1

F1

F1 F2
F3

u u

F1

F1

F1

F1

F1

F1

F2

T1T0

es

em

u

v

v

w

w

T2

F1

F1

F1

Theorem
The three sets of edges T0 and T1 (red and blue edges), as well as
the set T2 ∪ E (black edges and special edges) are maps of genus g
satisfying:

(Castelli Aleardi, Fusy and Lewiner, 2008)

• T0, T1 are maps with at most 1 + 2g faces;
• T2 ∪ E is a 1 face map



A new encoding application



Encoding g-maps via multiple parentheses words

( ) ( ) ( ( ( ( ) ) ( )

T g T g \ {e1, e2}

e1e1
e2

v0

v0

e2e1

) ( ) ) ( ) ( ) ) S

Corollary
A triangulation of genu g having n vertices can be encoded with
4n + O(g log n) bits



Futur works and open questions

optimal encoding in higher genus

lattice structure for the set of Schnyder woods

extension to the 3-connected case (polygonal meshes)



3-connected graph

v8

v0 v1

v8

G

Schnyder wood

Futur works

bijections between planar maps and trees

?

S

planar graphs higher genus

x1

x3
x2

R1(v)

v

R3(v)
R2(v)

graph drawing

??

?



Théorème. (Poulalhon–Schaeffer Icalp 03)
Il existe une bijection entre la classe des arbres de taille n ayant deux
bourgeons par noeud, et la classe des triangulations planaires enracinées
à n + 2 sommets.

Theorem. (Tutte 62) The number of planar triangulation with
n + 2 vertices is

2(4n−3)!
(3n−1)!n!

� ( 256
27

)n .

a new nice interpretation of Tutte’s formula:

|Tn| = 2
2n · |A(2)

n |.

Optimal coding and sampling (planar case)



Optimal coding (genus g)

?

S T g

triangulated graph of genus g one face map of genu g
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