Combinatorics and algorithmics of maps

Schnyder woods for higher genus triangulated surfaces

18th march 2008, EuroCG, Nancy

Luca Castelli Aleardi
CS Departement, ULB, Bruxelles

Eric Fusy
Simon Fraizer University, Vancouver

Thomas Lewiner
PUC University, Rio de Janeiro
Research topics

Planar triangulations

Edge orientations and colorings

Edge Labelings

higher genus graphs
Motivation and applications

Triangulations and maps

Combinatorics of maps
 • enumeration problems

Graph drawing
 • draw a planar graph, with vertices having integer coordinates (using as few as possible coordinates)

Compression and succinct encoding
 • Reduce the amount of (memory) space used by the connectivity of a graph.
 • Supporting efficient navigation, using small space
 Example: adjacency queries between vertices
A nice characterization of planar graphs: Schnyder woods

Edge orientations, tree decompositions and dimension of a graph

Theorem (Schnyder, Felsner, Trotter)
A graph G is planar if and only if its dimension is at most 3

Theorem (Schnyder ’90)
A graph G is planar if and only if the dimension of its incidence poset is at most 3
The definition in the planar (triangulated) case
A nice characterization of planar graphs

(Schnyder ’90)

Let T be a triangulation having outer face $\{x_0, x_1, x_{n-1}\}$. With n nodes
A nice characterization of planar graphs

(Schneider ’90)

A partition T_0, T_1, T_2 of the internal edges of T s.t.:

i) edge are colored and oriented in such a way that each inner node has exactly one outgoing edge of each color.
A nice characterization of planar graphs

(Schnyder '90)

A partition T_0, T_1, T_2 of the internal edges of T s.t.:

i) edge are colored and oriented in such a way that each inner nodes has exactly one outgoing edge of each color

ii) colors and orientations around each inner node must respect the local Schnyder condition
Important facts about Schnyder woods
A first fundamental fact: 3 tree decomposition

T_0, T_1, T_2 are spanning trees of (the inner nodes of) T:

(Schnyder '90)
Second fact: dimension of a graph

L_0, L_1, L_2 are three orders on the vertices of T:

$L_0: v_1 < v_2 < v_3 < v_4 < v_5 < v_6$

$L_1: v_2 < v_3 < v_6 < v_4 < v_5 < v_1$

$L_2: v_2 < v_3 < v_6 < v_1 < v_3 < v_2$
The first motivation: barycentric drawing

Combinatorial interpretation

How to use Schnyder woods:

• Let $P_i(v)$ be the path from v to x_i in T_i.
• Let $R_i(v)$ be the region defined by $P_{i+1}(v)$, $P_{i+2}(v)$ and (x_{i+1}, x_{i+2}).

The combinatorial equivalent of the area is given by the number of triangles enclosed in each region R_i:

$$v_i = \frac{|R_i(v)|}{|T|}$$

Theorem

For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2n-5) \times (2n-5)$, by setting $x_1 = (2n-5, 0)$, $x_2 = (0, 0)$ and $x_3 = (0, 2n - 5)$.
Application: graph compression and succinct encoding

Optimal compression (Poulalhon-Schaeffer, Icalp '03)

Succinct encoding (Chuang 'et al. 98, Chiang et al. '01, Barbay et al. '07)
Tree decompositions in higher genus
Related works: tree decompositions of toroidal graphs
the "tambourine" solution
(Bonichon, Gavoille, Labourel, ICGT '05)

Main idea of this approach:
Compute a pair of adjacent non contractible cycles

Result: T_0, T_1, T_2 vertex spanning trees

Inconvenients:
- valid only for toroidal triangulation (genus 1)
- potentially large number of vertices not satisfying the local condition
- shortest cycles are hard to compute
Our main contribution
a generalized higher genus definition
Schnyder Woods: the higher genus case

Given a rooted triangulated surface of genus g
Schnyder Woods: the higher genus case

i) a small set \mathcal{E}^s of *special* edges, doubly oriented and colored

\[|\mathcal{E}^s| = 2g \]
Schnyder Woods: the higher genus case

i) a small set \mathcal{E}^s of special edges, doubly oriented and colored at most $2 \cdot 2g$ multiple vertices (incident to special edges)

ii) a new local condition for edges in a sector incident to a multiple vertex

$\mathcal{E}^s = \{e_1, e_2\}$

(u, v, w)
Computing Schnyder Woods (in the plane)
Incremental vertex conquest (Brehm’s approach)

The traversal starts from the root face

In our example, the root face coincides with the exterior (infinite) face
Incremental vertex conquest

\[\text{conquer}(v_{n-1}) + \text{colororient}(v_{n-1}) \]
Incremental vertex conquest

\[
\text{conquer}(v_{n-2}) + \text{colororient}(v_{n-2})
\]

\[
v_{n-2} \text{ is a free vertex}
\]

\[
w \text{ is not free}
\]

\[
\text{no incident chordal edges}
\]
Incremental vertex conquest

\[\text{conquer}(v_{n-3}) + \text{colororient}(v_{n-3}) \]
Incremental vertex conquest
Computing g-Schnyder Woods
New handle operators: split and merge

\[
\text{conquer}(w) \quad \text{chordal edge } (u, w)
\]

\[(u, w) \text{ chordal edge}\]

\[(u, w) \text{ defines a non-trivial cycle}\]

\[
\text{split}(u, w) \quad \text{merge}(u, w)
\]
New handle operators: split and merge

(u, w) chordal edge defining a non-trivial cycle

(u, w) split edge

split a boundary into 2 boundary components

(u, w) merge edge

merge two different boundary components
Example of execution of our algorithm (toroidal case)

Starts the traversal from the root face (green edge)
Example of execution of our algorithm (toroidal case)

\[\text{conquer}(w) + \text{colororient}(w) \]

\[S \]
Example of execution of our algorithm (toroidal case)

conquer\((w)\) + colororient\((w)\)

\(S\)
Example of execution of our algorithm (toroidal case)

\[\text{conquer}(w) + \text{colororient}(w) \]

\(S \)
Example of execution of our algorithm (toroidal case)

After a maximal sequence of vertex conquest operations ... no more free vertices... the (planar) traversal gets stuck

S^{in} is a topological disk

S^{out} is a face connected map of genus 1, with a boundary component.
Example of execution of our algorithm (toroidal case)

Let us perform a \text{split}(u, w) operation

$S^{out} \setminus (u, w)$ is a face connected map of with two boundary components
Example of execution of our algorithm (toroidal case)

We can now perform a \texttt{conquer}(u) operation

$S^{out} \setminus (u, w)$ is a face connected map of with two boundary components
Example of execution of our algorithm (toroidal case)

Let us perform a merge\((w, v)\) operation

\(\mathcal{S}^{out} \setminus (w, v)\) is a face connected topological disk
Example of execution of our algorithm (toroidal case)

Let us see in a better way...

$S_{out} \setminus (w, v)$ is a face connected topological disk

Execution ends performing a sequence of conquer operations
Example of execution of our algorithm (toroidal case)

Let us see in a better way...

$S_{out} \setminus (w, v)$ is a face connected topological disk

Execution ends performing a sequence of conquer operations
Example of execution of our algorithm (toroidal case)

Let us see in a better way...
Example of execution of our algorithm (toroidal case)
Correctness and termination

Existence of split and merge edges

T vertex spanning tree of the primal graph, containing the boundary (blue) edges

T^* is a 1 face map containing $2g$ non-trivial cycles

T^* contains g split and merge edges
A fundamental lemma about chordal edges
(the planar case)

Lemma
There always exists at least one boundary vertex, not incident to chordal edges

Proof: by induction on the size of the boundary

Theorem Each planar triangulation admits a *canonical ordering* on the vertices
Correctness and termination (higher genus)

Properties of chordal edges in genus g

Theorem Each planar triangulation admits a *canonical ordering* on the vertices

Case 1

Case 2

Case 3

impossible case

no loops, no multiple edges allowed
Correctness and termination

Coloring invariants

\[
\text{split}(u, w) \quad \text{conquer}(w) + \text{colororient}(w)
\]

\[
\text{conquer}(u) + \text{colororient}(u) \quad \text{conquer}(u) + \text{colororient}(u)
\]
Our main result

Theorem (Castelli Aleardi, Fusy and Lewiner, 2008)
Given a (simple) rooted triangulation \mathcal{T} of genus g and size n, we can compute in $O(n)$ time a g-Schnyder wood of \mathcal{T}.

The local Schnyder condition is true almost everywhere in the graph at the exception of multiple vertices.
From plane trees to genus g maps
A new characterization in term of g-maps

Theorem (Castelli Aleardi, Fusy and Lewiner, 2008)
The three sets of edges T_0 and T_1 (red and blue edges), as well as
the set $T_2 \cup \mathcal{E}$ (black edges and special edges) are maps of genus g
satisfying:

- T_0, T_1 are maps with at most $1 + 2g$ faces;
- $T_2 \cup \mathcal{E}$ is a 1 face map
A new encoding application
Corollary
A triangulation of genu g having n vertices can be encoded with $4n + O(g \log n)$
Lattice structure
Futur works and open questions

optimal encoding in higher genus

lattice structure for the set of Schnyder woods

extension to the 3-connected case (polygonal meshes)
Theorem. (Tutte 62)
The number of planar triangulations with $n + 2$ vertices is
\[
\frac{2(4n-3)!}{(3n-1)!n!} \asymp \left(\frac{256}{27} \right)^n.
\]

Théorème. (Poulalhon–Schaeffer Icalp 03)
There exists a bijection between the class of trees of size n having two stems per node, and the class of rooted triangulations with $n + 2$ vertices.

a new interpretation of Tutte’s formula:
\[
|\mathcal{T}_n| = \frac{2}{2n} \cdot |\mathcal{A}_n^{(2)}|.
\]
Optimal coding and sampling (planar case)

Theorem. (Tutte 62)
The number of planar triangulations with \(n + 2 \) vertices is
\[
\frac{2(4n-3)!}{(3n-1)!n!} \asymp \left(\frac{256}{27} \right)^n .
\]

Théorème. (Poulalhon–Schaeffer Icalp 03)
There exists a bijection between the class of trees of size \(n \) having two stems per node, and the class of rooted triangulations with \(n + 2 \) vertices.

A new interpretation of Tutte's formula:
\[
|\mathcal{T}_n| = \frac{2}{2n} \cdot |\mathcal{A}_n^{(2)}| .
\]
Optimal coding and sampling (planar case)

Theorem. (Tutte 62)
The number of planar triangulations with $n + 2$ vertices is
\[
\frac{2(4n-3)!}{(3n-1)!n!} \approx \left(\frac{256}{27}\right)^n.
\]

Théorème. (Poulalhon–Schaeffer Icalp 03)
There exists a bijection between the class of trees of size n having two stems per node, and the class of rooted triangulations with $n + 2$ vertices.

A new interpretation of Tutte’s formula:
\[
|\mathcal{T}_n| = \frac{2}{2^n} \cdot |\mathcal{A}_{n}^{(2)}|.
\]
Optimal coding and sampling (genu g)