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Domain and motivations



Geometric data

Triangulations and graphs 3D meshes Tetrahedral Volume Meshes

Applications

Surface recontruction

o

GIS Technology




Very large geometric data

St. Matthew (Stanford’s Digital Michelan-
gelo Project, 2000)

186 millions vertices
6 Giga bytes (for storing on disk)

tens of minutes (for loading the model from
disk)

David statue (Stanford’s Digital Michelan-
gelo Project, 2000)

2 billions polygons
32 Giga bytes (without compression)

No existing algorithm nor data
structure for dealing with the entire
model




Mesh compression

Transmission

B disk storage

leon

Research topics

Geometric data structures

i >




Unlabeled vs. labeled structures

Labeled graphs
meshes with properties




Efficiently representing labeled structures

Goal: efficient dealing with additional attributes asso-
ciated to elementary cells of the mesh
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Example: vertex coordinates, face colors and
normals, additional tags, ...




Efficiently representing labeled structures

Labeled based navigation operators

v
lab_degree(a, v)

lab_select(a,v, 1)

lab_rank(a, v, w)

lab degree(cy, V) = 2
lab degree(c,, v) = 1

Problem: find adjacent cells with a given label

using o(lg o) bits per label in almost O(1) time




Compact representations




An example: (unlabeled) plane trees

ordered tree with n edges

balanced parenthesis word
1110100010110100

= 2n bits for encoding a tree with n edges

Enumeration of plane trees with n edges

n+1

n

1Bull = 2 () ~ 27m




An example: (unlabeled) plane trees

ordered tree with n edges

balanced parenthesis word
1110100010110100

= 2n bits for encoding a tree with n edges

Asymptotic optimal encoding

e the cost of an object matches asymptotically the en-
tropy

loga|| B, || = 2n + O(lgn)




An example: (unlabeled) plane trees

ordered tree with n edges

balanced parenthesis word
1110100010110100

= 2n bits for encoding a tree with n edges

No efficient implementation of local adjacency queries




An example: (unlabeled) plane trees

Explicit pointers based representation

adjacency queries between vertices in O(1) time

not optimal encoding: we need ©O(nlgn) bits




Could we do better?

a compact encoding (asymptotically optimal)

testing adjacency queries efficiently (in O(1) time)



An example: binary and ordered trees

(Jacobson, Focs89, Munro et Raman Focs97)
For trees and parenthesis words the anser is... YES

bl bz b3 b4 b5

it is possible to test adjacency between vertices in O(1) time
with the guarantee the the encoding is still asymptotically optimal

2n 4 o(n) bits are sufficient




And for labeled trees?



| abeled ordinal trees (Barbay et al. '06)

lab_degree(a, v)
lab_child(a, v, i)

lab_rank(a, v, w)

lab_child(d,7,1) = 9
lab degree(h ,1) =2




Labeled ordinal trees (Barbay et al. '06)
Prefix order

Descendants are listed consecutively  Children are listed consecutively

>  DFUDS order

T




| abeled ordinal trees

(Barbay et al. '06)

Succinct encodings of strings (Golynski et al. '06)

string access(4) = Db

S :
afcfa]blblojelcld]? string rank(b,9) = 3
Space cost: n(lgo + o(lgo)) string select(a,c,2) =7
Time complexity: O(lglg o)
| in O(1) time
Prefix order - >  DFUDS order




L abeled ordinal trees  (Barbay et al. '06)
Navigation

Prefix order

string rank(...)
lab_child(d,7,1) =9 <—— .
string select(...)




Geometric data
Which information?

Geometry and connectivity

Geometric object Combinatorial objet




Geometric information

Geometric object

[
y
\ ¢/

Connectivity information

vertex 1 reference to a triangle

3 references to vertices

triangle 3 references to triangles

Combinatorial object

X N
N

logn ou 32 bits

between 30 et 96 bits/vertex

2Xn X6 Xlogn
n X1 X logn

416m bits
13nlogn connectivity




3D triangle meshes

Q\% |[Edgebreaker]||3.67bits/vertex|(guaranteed upper bound)

A\
[Poulalhon Schaeffer||3.24bits/vertex|(optimal)
[Touma Gotsman] (heuristic)
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Succinct encodings of unlabeled graphs: existing works

planar graphs: book embeddings and canonical orderings

Wl R R

O(C 0)C O O)

0N (0NC0)

Codage 3-conn. | triang.
Jacobson 64n 64n
Munro Raman | 8n + 2e m
Chuang et al. 2e+2n | 3.0m
Chiang et al. 2e 4+ 2n dm
Blandford et al. | O(n) O(m)
Castelli et al. 2e 1.62m
YO ()OO 1.62m

Optimal bound




Unlabeled case

Existing works

Mesh compression algorithms

Edgebreaker| 1.84bits/face
Poulalhon Schaeffer| 1.62bits/face

[Touma Gotsman| ~1bits/face

Labeled case

[Facefixer] Isenburg and Snoeyink

Unlabeled case

Compact and succinct representations

Codage 3-conn. | triang.
Jacobson 04n 04n
Munro Raman | 8n + 2e m
Chuang et al. 2e+2n | 3.0m
Chiang et al. 2e + 2n dm
Blandford et al. | O(n) O(m)
Castelli et al. 2€ 1.62m

Labeled case




Our solution for succinctly representing graphs




Our scheme

Overview of the hierarchical structure

Level 1:
o O(—2—) regions of size O(log? n),

log? n
represented by pointers to level 2

Level 2:

in each of the —%

log? n

e O(logn) regions of size C'logn,
represented by pointers to level 3

regions

w PN

Level 3: exhaustive catalog of all different

% region of size 1 < C'log n:

e complete explicit representation.




Our solution for representing labeled graphs



A nice characterization of planar graphs

Realizer of a planar triangulation (Schnyder '90)

Let T" be a triangulation having outer face {xo, 1, Tn_1}.
with n nodes
Ln—1




A nice characterization of planar graphs

Realizer of a planar triangulation (Schnyder '90)
A partition 1y, 17, I5 of the internal edges of T’ s.t. :

1) edge are colored and oriented in such
a way that each inner nodes has exaclty
1 nodes one outgoing edge of each color

Ln—1




A nice characterization of planar graphs

Realizer of a planar triangulation (Schnyder '90)
A partition 1y, 17, I5 of the internal edges of T’ s.t. :

1) edge are colored and oriented in such
a way that each inner nodes has exaclty
1 nodes one outgoing edge of each color

Ln—1

ii) colors and orientations must re-
spect the local Schnyder condition
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A nice characterization of planar graphs

Realizer of a planar triangulation (Schnyder '90)

Ty, T, T5 are vertex spanning trees of 7T

Ln—1

n nodes

15

Ln—1

-~ N




Succinct labeled triangulations

Main idea: find good orders on the vertices of a graph



Our solution: general overview

Main idea: find good orders on the vertices of a graph

Solution

Combinatorial properties of
planar graphs

rank /select on
strings




Encoding the triangulation

Multiple parenthesis string

S (UIDCCRIDVGOGRITDO GO G‘DD(}}]D(?H )

01 1234 435 6 89 10 1




Encoding the triangulation
Constructing the parenthesis representation

11

ccw preorder traveral of 1§




Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§




Encoding the triangulation
Constructing the parenthesis representation




Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§




Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§




Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§
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Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§

S (UIDCCRIDVGI

01 1234 435 6




Encoding the triangulation
Constructing the parenthesis representation

ccw preorder traveral of 1§

S (UIDCCRIDVGOGRITTDVC

01 1234 435 6 I




Encoding the triangulation
Constructing the parenthesis representation

S (UDCCRIDVGOGRITDVGOG G‘DD(}}]D(?H )

01 1234 435 6 r 89 10




L ast step

Defining 3 orders on the vertices of the graph
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A succinct representation of (vertex) labeled graphs

Theorem (Barbay, Castelli Aleardi, He and Munro)
For labeled planar triangulations with e edges and n vertices , with o

labels associated with vertices, there exists a succinct representation
which requires

(2log, 6 4+ )e + o(e) Hn - o(lg o) bits

while supporting labeled based navigation in
O((lglglgo)?lglg o) time

For large o

(2logy 6)e = 3(2log, 6)n << n-lgo




Another result

(for edge labeled graphs)




Book embedding and planar graphs

One page graph (outerplanar graph)

T N

() Cooue HC ) )

Planar graphs admit a 4-pages book embedding




Book embedding and planar graphs

>, ={a,b,c}

n=2~a

One page (edge) labeled graph

1000 1000 10 10 1000000 100 100 100

aaa bb a cab C
a b aba b ca ca




future work




Future work

e Extension to poygonal meshes

O ©

3-connected planar graph quadrangulation

e Improving the dominant term

?
(2log, 6)e + o(e) + no(lg o) —1.08¢e H o(e) + no(lg o)

(optimal) entropy bound

e new (more interesting) label navigation operations




