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At the frontier of several domains (where graphs play an important role)

(from computational geometry to geometric processing, combinatorics, graph algorithms, ...)

Yo

eometric processing

Computer graphics




3D surface meshes, graphs on surfaces

What is a surface mesh?
informally: a set of vertices, edges and faces (polygons)
defining a polyhedral surface embedded in 3D (discrete
approximation of a shape) <] incidence relations between
NG triangles, vertices

for us this is equivalent to

f A\

combinatorial map: a graph + a combinatorial embedding planar map

genus 0 polyhedral mesh

+ (on a surface)

geometric realization in 2D or 3D

a Cellular graph embedding is Combinatorial map
a 1-to-1 continuous map of GG into S” s.t: 2 permutations on the set H of the 2m darts

edges are represented as paths (curves) with (i) « involution without fixed point;
no crossings (their Interiors are disjoints) (ii) ¢ gives the cyclic ordering of the darts (edges) around each face
faces are homemorphic to topological disks

~
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15

two cellular embeddings defining the same planar graph

¢ =(1,2,3,4)(17,23,18,22)(5, 10,8, 12) . ..
o = (2,18)(3,5)(4,7)(12,13)(9,15) . ..




Some facts about planar graphs

h
(" As | have known them") (genus 0 meshes)




Major results on planar graphs

Kuratowski theorem (1930) (cfr Wagner's theorem, 1937)
e (G contains neither K5 nor K33 as minors (or no
subdivisions of K5 nor K3 3)

2 & B

K is a minor of the Petersen graph
subdivision of K33

Thm (Tutte barycentric method, 1963)
Every 3-connected planar graph G admits a convex
representation in R>.

& @

Thm (Colin de Verdiere, 1990) Colin de Verdiere invariant
(multiplicity of A\, eigenvalue of a generalized laplacian)
o u(G) <3

Schnyder woods ('89)

e planarity criterion via dimension of partial orders:
dim(G) <3

e linear-time grid drawing, with O(n) x O(n) resolution

Thm (Koebe-Andreev-Thurston)

Every planar graph with n vertices is
isomorphic to the intersection graph of n
disks in the plane.




Planar straight-line drawings

(of planar graphs)




Straight-line planar drawings of planar graphs

Problem definition (Planarity testing, Embedding a planar graph)

Input: a planar graph
Output: the planar map (cellularly embedded graph) —

Problem definition (drawing graphs in the plane)

Input: a (planar) map
Output: a straight-line planar drawing (crossing-free)

Input of the problem: planar map

(e J
(a, f, h)
(a, h, i)
(i, h, f)
(i, f, g)
C
straight-line crossing-free drawing
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straight-line grid drawing
(bounded area and resolution)



Planar straight-line drawings

existence of straight-line drawing [Wagner’36]

— [Fary’48]

[Stein’51]

Classical algorithms:

[Tutte’63] [De Fraysseix, Pach, Pollack 89 [Schnyder'90]

spring-embedding incremental (Shift-algorithm) face-counting principle




Practical performances
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My contributions
Tutte Schnyder FPP layout

Schnyder woods and
canonical orderings
for higher genus
surfaces

fish model

random

periodic toroidal
drawings




Graph encoding




Graph encoding problem: motivation

Geometric v.s combinatorial information

" Connectivity”: combinatorial information underlying triangulation

Geometr . : : :
y (incidence relations between triangles, vertices, edges)

3 X h+n=19n references
opposite(e) |

vertex coordinates

between 30 et 96 bits/vertex

David statue (Stanford’s Digital
Michelangelo Project, 2000)

19nlogn or 608n bits

2 billions polygons

32 Giga bytes (without compression) #{trlangulatlons} =B fg)?_ 11 i ;g\/ L —n <¥>
n n

= entropy = log, 5= 290 ~ 3.24 bit/vertex.




ort of fast queries)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

Ty () ()OO0 7, 00000101010100110111

higher genus Schnyder woods (Castelli Aleardi Fusy Lewiner SoCG'08)

(standard) data structures

class Triangle{
Triangle t1, t2, i
Vertex v1, v2, v3
}
class Vertex{
Triangle root;
Point p;

B34+3)x f+n
6 x 2n +n = 13n references

Mesh encoding (worst case analysis)

Mesh compression (no supp

triangle based DS (CGAL)
for each triangle, store:

e 3 references to neighboring faces

e 3 references to incident vertices
for each vertex, store:

e 1 reference to an incident face
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Succinct representations (supporting queries in O(1) time)
(Castelli Aleardi, Devillers, Schaeffer 2005, 2006) in the Word-Ram model

log n bits pointers
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3.2451n + O(PE8R) —

324517?, _|— O(n) bits/vertex

asymptotic optimal bound

(Castelli Aleardi, Devillers 2011)
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Practical compact data structures (fast implementations)

1.2 - 1.9 times slower than
standard data structures

e

)

4n references




Mesh encoding (worst case analysis)

Mesh compression (no support of fast queries)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

T, 00000101010100110111

Ty QO OOH

higher genus Schnyder woods (Castelli Aleardi Fusy Lewiner SoCG'08)

(standard) data structures — triangie based Ds (CGAL)

class Triangle{
Triangle t1, t2, i
Vertex v1, v2, v3

}

class Vertex{

for each triangle, store:

e 3 references to neighboring faces
e 3 references to incident vertices
Triangle root; for each vertex, store:
, o e 1 reference to an incident face

tOﬁ..vq/'v/..—.\‘ U2 1(Zg 02’;
e Nto 1Ed ua vi\%/r L1, Y1, 2
t2 V9o QU3 I\, | 2. ..
B .t o e e s

(3+3) % f+n T |4

6 x 2n+n = 13n references

5 D. Knuth (Bordeaux, dec. 2007)

%" Dear Luca and Jeremy, if you want you that your
algorithm and data structures will appear in my books,
first please provide an implementation and check its
performance.”

asymptotic optimal bound

Practical compact data structures (fast implementations)
(Castelli Aleardi, Devillers 2011) 1.2 - 1.9 times slower than

standard data structures
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Schnyder woods

(and related structures)




Some (classical) applications

(He, Kao, Lu, 1999)

e Graph encoding

To O)(CONOMOCOOO)
e I e L S
T5 00000101010100110111

Figure 2: A coplanar orthogonal surface with its geodesic emk

)q anfo h:ee riangular distances. Set

Schnyder woods TD- Delaunay gtaphs, orthogbnal surfaces
and Half-Og-graphs
(Schnyder "90)
(I?oulz-zllhon-Sch?effer, Icalp 03) _ Planar straight-line grid drawing (on a O(n x n) grid)
bijective counting, random generation

2(4n+1)!
(3n+2)!(n+1)!

= optimal encoding & 3.24 bits/vertex

Cn




Schnyder woods

(definitions)




Schnyder woods (for plane triangulations): definition

[Schnyder "90]
V. &
2

rooted triangulation on

n nodes

" Vi

A Schnyder wood of a (rooted)

planar triangulation is partition of all

inner edges into three sets T, 17 and
T5 such that

Vi

1) edge are colored and oriented in such a way that each
inner node has exaclty one outgoing edge of each color

i) colors and orientations around each inner node must
respect the local Schnyder condition

iii) inner edges incident to V; are of color ¢ and oriented
toward V;




Schnyder woods (3-connected maps): definition

[Di Battista Tamassia Vismara]
a2 [Felsner]

local Schnyder rule

ao
aq 3-connect. map M

W1) edges have one or two (opposite) orientations. If an edge 3
is bo-oriented than the two direction have distinct colors

W?2) the edges at a; are outgoing of color ¢

W3) local rule for vertices: at each vertex there are
three outgoing edges (one in each color) satisfying
the local Schnyder rule

W4) there is no interior face whose boundary is a
directed cycle in one color




Schnyder woods: global spanning property

Theorem [schnyder '90]
The three sets 1, 17, I5 are spanning trees of
the inner vertices of T (each rooted at vertex V;)

Corollary
For each inner vertex v the three monochromatic paths F,, P;, P> directed from v toward each vertex
V; are vertex disjoint (except at v) and partition the inner faces into three sets Ry(v), R1(v), Rz (v)




Face counting algorithm

(Schnyder algorithm, 1990)




Face counting algorithm

.. : V = (5,6,2):=
Geometric interpretation (5,6,2) := (vo, v1, v2)
u — (7, 3, 3) = (uo,ul, u2)
i)
v
0%
i T
U= QoTo + 1Ty F Qaly _ [Ro(v)] |Ri (v)] | R (v)]
where «; is the normalized area v= [Fl=1 o+ -1 o1 + ’F|—1.x2
|R;(v)| is the number of triangles in R;(v)

Theorem

For a 3-connected planar map M having f vertices, there is drawing on a grid of size
(f =1 >x(f-1)

Theorem (Schnyder, Soda "90)

For a triangulation 7 having n vertices, we can draw it on a grid of size (2n — 5) x (2n — 5),
by setting xy = (2n — 5,0), 21 = (0,0) and x5 = (0,2n — 5).



Face counting algorithm: example

7T endowed with a Schnyder wood

a — (0,00 b—(0,1) 1 —(1,0)

" (15> 13)

" (150 15)

" > (15 15)




Canonical orderings

(for planar triangulations)




Canonical orderings: definition

[de Fraysseix Pach Pollack]
Definition 2.6 ([FPP9o]) Let T be a plane triangulation, whose vertices on the
outer (root) face are denoted Vo, V1,V2. An ordering m = {v1,v2,...,vn} of the
n vertices of T is called a canonical ordering if the subgraphs Gy (3 < k < n)
induced by the vertices vq, ..., vy satisfy the following conditions (where we denote
by By the cycle bounding the outer face of Gy):

* Gy is 2-connected and internally triangulated, and G,, = 7T;
® vy and vy belong to the outer face (Vo, V1,V2);

® for each kX = 3 the vertex vy is on the By and its neighbors in Gy, are
consecutive on By _1.

Gs + Gy 5 (s ‘A\G‘G
1

Vo

A 2 A

Gio =




incremental shift algorithm (original FPP)
use the canonical

orderi|71g

Grid size of Gg: 2k x k

Vertex coordinates are integers:
because of Manhattan distance, and
the slopes of edges on the outer face

(+1 and —1)
Theorem [de Fraysseix, Pollack, Pach’89]
The FPP algorithm computes in linear time

a straight-line grid drawing of 7', on a grid
of size 2n x n




Schnyder woods (and canonical orderings): existence
Theorem [Brehm '00]
Every planar triangulation admits a Schnyder wood (and a canonical

ordering), which can be computed in linear time, via vertex shellings.
v

Start the traversal from the root face (14, V4, V5) .
and remove free vertices (without chordal edges)

Correctness -8 ~._ Invariant
, S vertex conquest
Thel’e m USt be d free I ,’, * \\\ colormg rule

vertex v (not vy nor vy) '\ A A N W
without chords ViV, % @5 . .

‘A/&/&/@%
A A A A



Schnyder woods (and canonical orderings): existence
Theorem [Brehm '00]

Every planar triangulation admits a Schnyder wood (and a canonical
ordering), which can be computed in linear time, via |vertex shellings.

alternative way (very fast implementation) (real-world graphs)
via edge contractions/expansions Es

Hand 7

Isidore

dragon

seconds

jl
VAVAVA
o0
VAVAAVAVQAV
IVAVAVAVAN

0.5 1 1.5
millions of vertices

(random triangulations)

1.2 Random 1o0M
1

Lr:ﬂl.g

'

£0.6
'0.4
0.2

25 5 7.5
millions of vertices




Schnyder woods and higher genus surfaces

(several possible generalizations)




(pioneeristic) toroidal tree decomposition
[Bonichon Gavoille Labourel, 2005]

The tambourine solution

Compute a pair of adjacent non
contractible cycles

Graph H Tambourine T

Inconvenients:
e valid only for toroidal triangulations (genus 1)
e potentially large (non constant) number of vertices on C; and C5 not

satisfying the local condition
e shortest non contractible cycles are not trivial to compute




Definition |: genus ¢ Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Def: partition of all "inner” edges into four sets

TO, Tl, TQ and E°
such that

almost all (non inner) vertices have outgoing degree 3
all edges in Tj, T} and T, have one color/orientation

at most 4¢ special vertices (outdegree > 3)

the set £/° contains at most 2¢g edges (multiple edges)




Definition |: genus ¢ Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

local condition for special vertices

Def: partition of all "inner” edges into four sets

TQ, Tl, TQ and E°
such that

almost all (non inner) vertices have outgoing degree 3
all edges in Tj, T} and T, have one color/orientation

at most 4g special vertices (outdegree > 3)
the set £'° contains at most 2¢g edges (multiple edges)
new local conditions around special vertices

The graph Go = To U {e1,e2} is a cut-graph




Genus g Schnyder woods: spanning property
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

£ ={(1,3),(6,8)}
Vo = w6, V1 = vg, Vo = v7

Theorem
The set of (possibly multiple) edges of color 0, 1 and 2 lead to maps of genus g satisfying:

e GGy, Gy are cellularly spanning subgraphs with 1 + 2¢ faces (possibly degenerated);

e (G5 is a 1 face map (a g-tree)

Go =Tz U{e1,ea}




Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental vertex shelling algorithm

Perform a vertex conquest (as far as you can) ‘
until you get stuck G,

U, conquer(w)

conquer(7)



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

No more free vertices one boundary

all boundary vertices are
incident to chordal edges

J split(u,w)

(' is a topological disk ' two boundaries



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

conquer(bg)



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

The complement of C'is two boundaries

a topological disk

J merge(u, w)

one boundary




Genus ¢ Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental vertex shelling algorithm

The complement of (' is a topological disk: just perform vertex conquests
(only one boundary)

0 &

merge(1,3) conquer(bs) conquer(b;) conquer(bg) conquer(bg)

conquer(by) conquer(bs) conquer(bs)




Schnyder woods for toroidal graphs




Toroidal Schnyder woods: definition

Toroidal Schnyder woods [Goncalves Lévéque, DCG'14] g=1 e=3n

® 3-orientation + Schnyder local rule valid at each vertex

n—e+f=2-2g
Toroidal Schnyder woods are crossing if

® every monochromatic cycle intersects at least one monochromatic cycle of each color

not valid Schnyder wood valid Schnyder woods

the Schnyder wood

. , : ) crossing Schnyder wood
3-orientation IS not crossing

(one mono-chromatic (there are 3 disjoint mono-chromatic

(Local Schnyder rule cannot cycle for each color) cycles of color 2)

be propagated everywhere)




Toroidal Schnyder woods: existence

Thm|Fijavz, unpublished] (planar simple triangulations)

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.

(two planar quasi-triangulations) crossing toroidal Schnyder wood

(for simple triangulations)
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A simple toroidal triangulation admits a straight-line periodic drawing on

a grid of size O(n? x n?)

]

Toroidal Schnyder woods

Thm|Goncalves Lévéque

R AR R AR YL LR ALY AR LS LR R LR

i _.._¢_.¢.._____.,..—_-._
A XA
R
._.—ﬁ_.__.-_.-.__c_.___._..___..._-_.__
SO0
¥ #ﬁ...




Toroidal Schnyder woods: practical computation

Cylindric Canonical orderings [Castelli Aleardi, Fusy, Devillers]

Warning: the interior boundary (defined by I';,) must be chord-free
® perform vertex shelling starting from exterior boundary B,,;(orange)

B

boundary local Schnyder rule

Cylindrical Schnyder wood



Toroidal Schnyder woods: practical computation

Toroidal (non-crossing) Schnyder woods

ldea: cut the torus along a non-contractible cycle I' (with no chords on one side)

cylindrical triangulation

P EooSEooSEIoSEooSEos

cylindrical canonical ordering

Compute a cylindrical Schnyder wood

i NN AV;‘ -
/‘5’ Vé':v‘%‘"
W
1@7} /TRy

% ANy

e %

o /4
-

Drawback
The toroidal Schnyder wood is not crossing

Glue together the two boundaries (local Schnyder rule remains satisfied)



Graph encoding application




A simple encoding scheme

Turan encoding of planar map (1984) 12n bits encoding scheme

11
/ G=(V,E) Vi=n |E|=e

T := (any) vertex spanning tree of G

parenthesis word of size 2n

parenthesis word of size 2n

length(S) = 2e symbols
(2logy4)e = 4e = 12n bits




A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

T is redundant: reconstruct from 7, 15




efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99)
4n bits (for triangulations)

(real-world graphs)

T . 7 : Hand —«

Pl

0.5 1 _1'.5
millions of vertices

(random triangulations)

Random 1o0M —

§ S i
15 can be reconstructed from 1 and the L Rontom

mn

5 o 5 7.5 . 10
millions of vertices

number of ingoing edges (for each node)

To ()CCONOO))O)CC)) ) () 2n—1) symbols=2(n — 1) bits

B ~ 4n bits
> 00000101010100110111 (n—1) +(n —3) = 2n — 4 bits




Genus g Schnyder woods: application

Thm [Castelli-Aleardi Fusy Lewiner, SoCG'08]

A triangulation of genus g having n vertices can
be encoded with at most 4n + O(glogn) bits

Go :TQ U {61,62}

Encode map Gy = T> U E*: a tree plus |
2g edges: 2n + O(glogn) bits :

Mark special vertices: O(glogn) bits

Store outgoing blue edges incident to
special edges: O(glogn) bits

For each node in 15 U E* store the
number of ingoing blue edges (color

1): 2n + O(glogn) bits




Drawing graphs on surfaces

(periodic straight line drawings)




Drawing higher genus graphs

N




Drawing higher genus graphs

drawing in polynomial area  [Duncan, Goodrich, Kobourov, GD'09]

[Chambers, Eppstein, Goodrich, Loffler, GD'10]

(Palais de la Découverte,Féte de la Science, October 2013)

~ [Mohar'99]

periodic drawing out of circle packing




Drawing toroidal graphs
On the torus | | : | ;

(Palais de la Découverte, Féte de la Science, October 2013)



Periodic straight-line drawings
On the torus

> N straight-line drawing
x-periodic and
y-periodic drawing

[Castelli Devillers Fusy, GD'12]
- O(n x n2) grid

. [Goncalves Lévéque, DCG]
] O(n* x n?) grid

straight-line frame
not x-periodic
not y-periodic
) [Chambers et al., GD'10]
[Duncan et al., GD'09]
O(n x n?) grid

straight-line frame
x-periodic and
y-periodic drawing

> [Castelli Fusy Kostrygin, Latin'14]




A shift-algorithm for the torus

1.Recall algorithm of 2. Extend to the cylinder 3. Get toroidal drawings

[De Fraysseix et al’89] [Castelli Aleardi Fusy Devillers GD2012]
Plane Cylinder Torus

Grid 2n—4 X n—2 Grid < 2n x n(2d + 1) Grid< 2n x (14+n(2c+1))



Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]

Grid size of Gi: 2k X k




Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree




Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree




Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree




Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree




Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- Insert the next vertex as in the planar case
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Extension to the cylinder: drawing
algorithm

Width = 2n Height < n(n — 3)/2
Can also deal with chordal edges incident to outermost cycle



Extension to the cylinder: drawing
algorithm 7

Each edge has vertical extension at most w
= h < n(2d+ 1)
with d the graph-distance between the two boundaries



Getting toroidal drawings

Every toroidal triangulation admits a "tambourine”
Bonichon, Gavoille, Labourel’06]

Torus
(2 —

:

Cylinder




Getting toroidal drawings

compute delete edges:
tambourine In tambouring
. Cylinder
drawing algg y
on cylmde/
Ah < 2n —|— 1 ......................................... : w S 2n
- h<n(2d+1)

N

d

Let ¢ =length shortest non-contracti

[Hutchinson,
TV Albert'78]

Can choose tambourine so that d <|c = h = O(n°/?)




Spherical preprocessing for eulidean spring embedders

Use spherical drawings as initial layouts for 3D spring
embedders: this allows us to better untangle the layout

Initial random layvout 150 iter.
[in unit cube) 83,20 sec

L]

i

L T o

5

=

ab

c

]

8

20 iter. 50 iter, 100 iter.| 51.57 sec i

g

an

&

=

ab

1]

i

[

Our Java implementation of the FR91 spring embedder (exact computation of repulsive forces) #

count triangle collisions

T
G
S0
A0 H0
S0 H
20D

L0 HD
iterations

3 Gl )

70

iterations
14 J

1 N G4 CH

Random initial layout Initial spherical drawing SFPP






Spherical preprocessing for eulidean spring embedders
Use spherical drawings as initial layouts for 3D spring
embedders: this allows us to better untangle the layout

random planar triangulation _ y
count triangle collisions

with 5K triangles (generated with an uniform random sampler)

Random layout 20 iter. 50 iter. 80 iter. t = 34.26 sec "

(in unit cube) 4000
3000
2000
1000
iterations

5 iterations

Spherical drawing a0 4o .
ISP + Alexa (2934iter.) 20 iter. y 40 iter.

2.98sec

) iterations
£ =71.697 R
el =0.934 # colliding triangles=330
t = 20.35 sec

# colliding triangles

Spherical drawing . S
SFFP + Alexa (1024 iter.) er. 40 iter.

1.27sec

50 iter.

E =71.671 ' , 4
el =0.934 # colliding triangles=311

iterations

Layouts obtained with our Java implementation of the FR91 spring embedder
(exact computation of repulsive forces)




Experimental results on balanced Schnyder woods




Looking for "nice” Schnyder woods

Counting Schnyder woods: (there are an exponential number)

[Bonichon ’05] 4 Schnyder woods of triangulations of size n: 5 10"

# planar triangulations of size n: |7,| &~ 232!

[Felsner Zickfeld '08] 2.37" < max |[SW(T)| < 3.56™

(count of Schnyder woods of a fixed triangulation) TeT,
T, =

class of planar triangulations of size n
SW(T) := set of all Schnyder woods of the triangulation T

TAYAVAYA
FAVAVAYAY:

reversal of oriented triangles &




.Balanced Schnyder woods

P P P
N P N P .
“als ~a |l )2¢
--rANa-"- --rC aa-"- < -~
4 )
1 \
1 \

5(7}) =0 5(0) = (2—1)—1 — 0 (5(?}) — 1 =G0 =T=2
balanced vertex balanced vertex unbalanced vertices

Vo

Def

vertex defect

U1

 max indeg;(v) — min indeg; (v) if degree(v) = 3k

16{07172} 16{07172}

max indeg;(v) — minindeg;(v) —1  otherwwise

\ i€ {0,1,2} ie{0,1,2}

indeg; (v) := Fincoming edges of color i

A Schnyder wood is balanced if most vertices have a small defect

AYA IS

perfectly balanced well balanced strongly unbalanced




Computing balanced Schnyder woods

0.25

0

Proportion of balanced vertices

I

jerre’s hand

our heuristic
—— minimal Schnyder wood

Eros

david’s head |

horse

/ iphigenia bunny
Egea .

\Nfﬁ

0.25 0.5 0.75 1

Incremental vertex shelling

(Brehm's diploma thesis)

with our heuristic

strongly unbalanced

(dg := proportion of
degree 6 vertices)

balancedSchnyderWood(T', (vo,v1,v2), k)
B = {vo,v1,v2} // initialization

T =new int[n] // priority array
Qo=0,Q1=0,...Qr_1 =0 // queue initialization
Qo .addLast(v2)

while(|B| # {vo,v1}) {

let M be the largest index s.t. Qpr # 0

let v = Qps.poll()

if(v € B and v is free) {

let {v;,vj,,...vj,,vr} be the neighbors of v on B

colorOrient(v)
conquer(v) // remove v from B
T[v] + +, T[vr] + + // increase priority
Qmax(k—1,T[v;]) - 2ddLast(v;)
Qmax(k—1,T[v,]) - 2ddLast(vr)

Qo .addLast (v, ), ..., Qo.addLast(vj,)
}
}

.. . remove first boundary vertices with
priority driven vertex conquest: higher number of ingoing edges

i o




Layout quality for Schnyder drawings

i

l/!g
ﬂ,;,’iiﬂl A@Xi;ﬁ% :\g\i\ AN\ XN // N
7/

ANAYAVAY
ANAVAVAVAVAYE

I éXVAV A TAVAYAS i i . = ) /]
iy VAN VAVAVAVAVAAVIVIUT i \ ’ AP 4
L ‘ > ) 4‘%" i
R XK ‘ / /

Al
évVAV Yavivi i
.
R )
S ‘%gg%

well balanced unbalanced




Layout quality for Schnyder drawings

(lower values are better) Evaluate layout statistics for all distinct

average edge length . average aspect ratio Schnyder woods of a given graph

121

ﬂmllll J |l

03 B i i i i i
1.2 ]4 ]E ]E 2 22 1.2 14 16 18 2 22
&a [} E‘r_l-.'g

Ouvg = = >, 0(v) (average vertex defect)

[] 1- i o edge length metric= 0.66

- ] n‘ plot layout statistics as a function of average defect

aspect ratio metric= 0.80

high values indicates more uniform
edge length (aspect ratio)

¢l (higher values are better) At (higher values are better)

——— T n =27

| S =

globe (regular graph)

aspect ratio metric= 0.84

S| =5084208 | | |n T

.65 1 ! aiar ] # distinct Schnyder woods

1.2 '.I=I ]Er '.IE i ii 1.2 14 16 18 2 22
i:'l v b-r.l'.'g

average percent deviation of edge length
1 _ (4 |1(e) =lavg]
el :=1 ( 5] 2accE max(lavg lmaz —lavg)

(Fowler and Kobourov, 2012) l(e) := edge length of e




From Schnyder woods to cycle separators

(Fox-Epstein et al. 2016, Holzer et al. 2009) § = Fi() U Pi2(v) U {v} is minimized
Def (small balanced cycle separators)

choose the best index 4 and vertex v s.t.
A= Int(R;(v) U Rit2(v))  |Al < 3n

B = Int(R;+1(v)) |B| < 2n

A partition (A, B, S) of V(G) such that:

e S defines

a simple cycle

e A and B are balanced: |A| < :n, |B| < 2n
e the separator is small: |S| < v/8m

Hack

g |
RN

rc triomphe Egea

Circular box

|

Iphigenia = |
Pierre’s hand
lerre’s han J' horse

: |
l

D )
R Eros Aphrodite

1

.

|

Delaunay

rando_m
| disk
\\
| stack *

thin cylinder —

cylinder

globe

l

3

sphere

n = number of vertices
m = number of edges

Boundary size

(tests are repated with 200 random

Arc triomphe

Lampan Hack

Red circular box

[horse]

(stack]
(disk])
random

Delaunay

cylinder

thin cylinder

Separator balance

choices of the initial seed, the root face)

S| = 0.58/m
Savg = 0.931
80 = 0.485

hors

n = 20000

diam=168

S| = 1.32ym
Savg = 0.921
0 = 0.485

S| = 0.96y/m
Savg = 1.18

do = 0.42

Ege:
n = 8268
diam=59

cylinder:?

00 = 0.546

8o = 0.543
Savg = 1.153

S| = 0.15y/m

Savg = 1.148
S| = 2.34\/m




From Schnyder woods to cycle separators
How the separator quality depends on the balance

unbalanced
(lower values are better)

—— spherel2k
—— horse
—— Egea

our heuristic U heurist

- -

Boundary size




Evaluation of timing costs

total timing costs

average timings (over 100 executions) (100 choice of random seeds)
1.5 =4 1.5 - L5 |
=1 computing balanced Schnyder woods . gIObezl\’I o
[ computing Schnyder drawing Random 2M '
N 1 computing shortest separator
1| 11 | 1}
_8 Isidore Random 1M lobe 750k glob|e1M
8 d Pierre’s hand ' ) / P & ’
ragon
] — Fros | 0.5 051 -
Arc triomphe l Y
I - globe500k

0.1 05 1 11 01 0.5 1 15 2 01025 05 075 1 15 2

e Our performances (pure Java, on a core i7-5600 U, 2.60GHz, 1GB Ram):
We can process ~ 1.43M — 1.92M vertices/seconds

o Metis can process ~ 0.7 vertices/seconds (C, on a Intel core i7-5600 2.60GHz)

e Previous works can process ~ 0.54M — 0.62M vertices/seconds

(Fox-Epstein et al. 2016, Holzer et al. 2009) (C/C++, on a Xeon X5650 2.67GHz)
Our datasets (several tens of real-world, random and synthetic graphs)
3d meshes from aim@shape and Thingi 10k Random triangulations Synthetic graphs
N \ A

N | ' )
? 3 \Jj )



Practical mesh data structure

navigation
Data Structure size time vertex access dynamic

Half-edge/Winged-edge/Quad-edge 18 +n yes

Triangle based DS / Corner Table 12n +n

©

(non compact) data structures

yes

S

~— — N ~—  ~—

—_

Directed edge (Campagna et al. '99) 12n +n
2D Catalogs (Castelli Aleardi et al., '06) 7.67n

yes

S O

compact data structures yes

ISV

Star vertices (Kallmann et al. '02) n
TRIPOD (Snoeyink, Speckmann, '99) on
SOT (Gurung et al. 2010) on

SQUAD (Gurung et al. 2011) (4 + g)n

¢ between 0.09 and 0.3
ESQ (Castelli Aleardi, Devillers, Rossignac'12) 4.8n

Castelli Aleardi and Devillers (Isaac '11, JoCG'18) 41, (or 5n)

LR (Gurung et al. 2011) <2 + 5)?1
obetween 0.2 and 0.3

no
no

—_

no

—_

no

S000 99

S o
—~
—_ =
~— —

)
—~
—_
~—

Half-edge, Winged-edge, Quad-edge
T D’U (references per vertex) 19n)
12

Triangle DS, Corner Table, Directed edge
(13n)

—— 2D Catalogs
| 7.67
(0] gor ESQ,  Castelli Devillers
| 0n) (1.8n)  (4n)
Gurung et al.
Castelli Aleardi and Devillers (Isaac '11, JoCG'18) A : I
Gurung et al.
(= 2.18n)
: (

)
) 85% 1% 38% 11% Star-Vertices

pierre's hand eros hand  dragon isidore bunny iphigenia egea delaunay random




Winged Edge DS (size 19n) (Baumgar, 1972

Definition of Winged-edge

\ RightBack

U =source(e)

0<e<(Bn-6)—1
0<v<n-—1

€0

€1

€2

€3

incident
LeftBack RightBack LeftFront RightFront source target edge

€0 Vo

€3l V1

(%)

U3

Uy

Us

n entries

_— 4

-

6% |E|] = 6% (3n —6)~ 18n entries

Degree(u)
{
e = Edge(u);
f=e d=0;
do{
if w =Source(f) f =LeftBack(f) ;
else f =RightFront(f) ;
d=d+1;
} while f # ¢;

return d;




Our first simple

store only 2 references per edge

Def. v

Compact DS (size 6n)

Winged-edge
- 1) =target(e)

(Castelli Aleardi, Devillers, 2011)
e = (u,v) 0<v<n-1
0<e<3n

retrieve

( (e +1)%3 case 1

(w,u) = < (Tle] +2)%3 case 2

case 3

u := source(e) = e/3

(w,v):=T][2€]
(z,v) :=T[2e + 1]

color(e) = e%3




More compact DS (size 5n): use maximal Schnyder woods

(less redundant and " more difficult to implement”) remove one blue column

blue , o U
5 N

(sometimes)
change one red
left reference
(for red edges)

only difficult case

% 4
*q

U

L |
z




More compact DS (size 4n): use maximal Schnyder woods
(reorder vertices according to a BFS traversal of Tj)

("slightly more difficult to implement”)

(%

A 3

4

(2

v

remove one red column

JJ

=

3




More compact DS: size < 4n?

(can we exploit the regularity of the triangulation?)

upper bound depending of
vertex degree distribution

size(n) = 3n + 2(2?:_k1+3 Di

for k =4
size(n) = 3n + 2(2?:_71 pi)




Concluding remarks and perspectives

(Schnyder woods and related combinatorial structures
have still many wonderful surprises in store for us)




Schyder woods for higher genus surfaces

Thm (3-orientations for graphs on surfaces, of arbitrary genus)
[Albar Goncalves Knauer, 2014]

Any triangulation of a surface (the sphere and the projective

plane) admits a "3-orientation’: orientation without sinks

s.t. every vertex has outdegree divisible by three

Wikipedia picture

Conjecture (Existence of Schnyder woods for higher genus triangulations)
[Goncalves Knauer Lévéque, 2016]

Experimental confirmation

Multiple local Schnyder exaustive generation of all 3-orientations

condition: the outdegree of every for all triangulations with g =2, n < 11

vertex is a positive multiple of 3. . . .
All simple triangulations of genus g = 2

(there are no sinks) and size < 11 admit Schnyder woods

# irreducible | #triangulations

Thm [Suagee, 202].] triangulations (g = 2)

Simple triangulations of genus g > 1 having
large edgewidth do admit Schnyder woods

10 865
11 26276 113506

surftri software [Sulanke, 2006]

edgewidth > 40(29 — 1)




Schyder woods for higher dimension complexes

What about higher dimensional complexes?

Very challening problems... things
are far more complicated ——

No hope to generalize canonical orderings easily

Tetrahedral mesh compression

Grow&Fold (Szymczak Rossignac '00): ~ 7t bits
Cut-border machine (Gumhold et al. '99)

-
4

Non shellable simplicial 3-ball, n = 9 (Lutz)
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