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At the frontier of several domains (where graphs play an important role)
(from computational geometry to geometric processing, combinatorics, graph algorithms, ...)

Computational geometry

Combinatorics

Algorithms and Data structures

Data compression

Geometric processing

Graph Theory

Graph Drawing

Computer graphics

Social networks



What is a surface mesh?
informally: a set of vertices, edges and faces (polygons)

defining a polyhedral surface embedded in 3D (discrete

approximation of a shape)

for us this is equivalent to
combinatorial map: a graph + a combinatorial embedding

+
geometric realization in 2D or 3D ≈

planar map
genus 0 polyhedral mesh

3D surface meshes, graphs on surfaces

(on a surface)

incidence relations between
triangles, vertices
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2 permutations on the set H of the 2m darts

(i) α involution without fixed point;

(ii) φ gives the cyclic ordering of the darts (edges) around each face

Combinatorial map

two cellular embeddings defining the same planar graph

a Cellular graph embedding is

faces are homemorphic to topological disks

edges are represented as paths (curves) with

no crossings (their interiors are disjoints)
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a 1-to-1 continuous map of G into S2 s.t:



Some facts about planar graphs
(”As I have known them”)

(genus 0 meshes)



Major results on planar graphs
Kuratowski theorem (1930) (cfr Wagner’s theorem, 1937)
• G contains neither K5 nor K3,3 as minors (or no
subdivisions of K5 nor K3,3)

Schnyder woods (’89)
• planarity criterion via dimension of partial orders:
dim(G) ≤ 3

• linear-time grid drawing, with O(n)×O(n) resolution
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LG[i, k] ={−AG[i, j]

deg(vi)

Every planar graph with n vertices is
isomorphic to the intersection graph of n
disks in the plane.

Thm (Koebe-Andreev-Thurston)

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant
(multiplicity of λ2 eigenvalue of a generalized laplacian)
• µ(G) ≤ 3

Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex
representation in R2.

K5 is a minor of the Petersen graph
subdivision of K3,3



Planar straight-line drawings
(of planar graphs)



Straight-line planar drawings of planar graphs

Problem definition (Planarity testing, Embedding a planar graph)

Input: a planar graph

Output: the planar map (cellularly embedded graph)

Problem definition (drawing graphs in the plane)

Input: a (planar) map

Output: a straight-line planar drawing (crossing-free)

(a, b, c)

(a, c, d)

(d, c, e)

(c, b, e)

(a, d, f)

(f, d, g)

(d, e, g)

(e, b, g)

(a, f, h)

(a, h, i)

(i, h, f)

(i, f, g)

(i, g, b) (i, b, a)

a b
cd

e
f

gh

i A

B

C

D

E

G F

Input of the problem: planar map

straight-line crossing-free drawing
straight-line grid drawing

(bounded area and resolution)



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Classical algorithms:

[Tutte’63] [De Fraysseix, Pach, Pollack 89] [Schnyder’90]

spring-embedding incremental (Shift-algorithm) face-counting principle

existence of straight-line drawing

[Stein’51]
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Tutte Schnyder FPP layout
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My contributions

Spherical drawings
with bounded resolution

Schnyder woods and
canonical orderings
for higher genus
surfaces
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cb da

a b c d
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periodic toroidal
drawings



Graph encoding



Graph encoding problem: motivation

Geometric v.s combinatorial information

Geometry

between 30 et 96 bits/vertex

”Connectivity”: combinatorial information underlying triangulation

19n log n 608n bits

vertex coordinates

(incidence relations between triangles, vertices, edges)

or

#{triangulations} = 2(4n + 1)!

(3n + 2)!(n + 1)!
≈ 16

27

√
3

2π
n−5/2

(
256

27

)n

⇒ entropy = log2
256
27 ≈ 3.24 bit/vertex.

David statue (Stanford’s Digital
Michelangelo Project, 2000)

2 billions polygons

32 Giga bytes (without compression)

e

opposite(e)

prev(e)

next(e)

source(e)

3× h+ n = 19n references

Half-edgeh = 3e ≈ 6n



Mesh encoding (worst case analysis)
Mesh compression (no support of fast queries)
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(standard) data structures triangle based DS (CGAL)

v0

v3

v2
v1

t2

t1
t0

t2

t5

class Triangle{

Triangle t1, t2, t3;

Vertex v1, v2, v3;

}
class Vertex{

Triangle root;

Point p;

}

for each triangle, store:

• 3 references to neighboring faces
• 3 references to incident vertices

for each vertex, store:
• 1 reference to an incident face

(3 + 3)× f + n

6× 2n + n = 13n
Succinct representations (supporting queries in O(1) time) Practical compact data structures (fast implementations)

3.2451n +O( log log nlog n ) = 3.2451n + o(n) bits/vertex

asymptotic optimal bound

(Castelli Aleardi, Devillers, Schaeffer 2005, 2006)

i-th tiny triangulation
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. . .

log log n bits pointers

log n bits pointers
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Mesh encoding (worst case analysis)
Mesh compression (no support of fast queries)
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• 3 references to neighboring faces
• 3 references to incident vertices

for each vertex, store:
• 1 reference to an incident face

(3 + 3)× f + n

6× 2n + n = 13n
Succinct representations (supporting queries in O(1) time) Practical compact data structures (fast implementations)

3.2451n +O( log log nlog n ) = 3.2451n + o(n) bits/vertex

asymptotic optimal bound

(Castelli Aleardi, Devillers, Schaeffer 2005, 2006)
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”Dear Luca and Jeremy, if you want you that your

algorithm and data structures will appear in my books,

first please provide an implementation and check its

performance.”

D. Knuth (Bordeaux, dec. 2007)



Schnyder woods
(and related structures)



Some (classical) applications

bijective counting, random generation
(Poulalhon-Schaeffer, Icalp 03)

Graph encoding

(Schnyder ’90)
Planar straight-line grid drawing (on a O(n× n) grid)

cn = 2(4n+1)!
(3n+2)!(n+1)!

⇒ optimal encoding ≈ 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)

(He, Kao, Lu, 1999)
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[Felsner, Bonichon et al. ’10, ...]

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces
and Half-Θ6-graphs



Schnyder woods
(definitions)



Schnyder woods (for plane triangulations): definition

n nodes

ii) colors and orientations around each inner node must
respect the local Schnyder condition

i) edge are colored and oriented in such a way that each
inner node has exaclty one outgoing edge of each color

A Schnyder wood of a (rooted)
planar triangulation is partition of all
inner edges into three sets T0, T1 and
T2 such that

[Schnyder ’90]

rooted triangulation on

V0 V1

V2

V1

V2

V0

iii) inner edges incident to Vi are of color i and oriented
toward Vi



Schnyder woods (3-connected maps): definition
[Di Battista Tamassia Vismara]

3-connect. map M

W1) edges have one or two (opposite) orientations. If an edge 3
is bo-oriented than the two direction have distinct colors

W3) local rule for vertices: at each vertex there are
three outgoing edges (one in each color) satisfying
the local Schnyder rule

W4) there is no interior face whose boundary is a
directed cycle in one color

W2) the edges at ai are outgoing of color i

local Schnyder rule

a0
a1

a2

a0 a1

a2

0

0

0

2 2

2

1
1

2
2 2 1

1

2

2

0

1 0

1

0 1 0

0

1

2

01

0

2

2 2

0 1 0
1 0

0

Schnyder labeling

[Felsner]



Schnyder woods: global spanning property
[Schnyder ’90]Theorem

The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex Vi)

T2 T1

T0

Corollary
For each inner vertex v the three monochromatic paths P0, P1, P2 directed from v toward each vertex
Vi are vertex disjoint (except at v) and partition the inner faces into three sets R0(v), R1(v), R2(v)

R2(v6)

R1(v6)R0(v6)

v
u

v6P0(v6) = {(v6, v3), (v3, V0)}

v3

v4

v5

v7

v8

v9

P1(v6) = {(v6, v5), (v5, V1)}

P2(v6) = {(v6, V2)}

V1

V2

V0

V2

V1V0



Face counting algorithm
(Schnyder algorithm, 1990)



Face counting algorithm

x1
x0

x2

R2(v)
v R0(v)

R1(v)

v = |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2

|Ri(v)| is the number of triangles in Ri(v)

Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it on a grid of size (2n− 5)× (2n− 5),
by setting x0 = (2n− 5, 0), x1 = (0, 0) and x2 = (0, 2n− 5).

x1
x0

x2

α1

v
α0

α2

v = α0x0 + α1x1 + α2x2
where αi is the normalized area

Geometric interpretation

Theorem
For a 3-connected planar mapM having f vertices, there is drawing on a grid of size
(f − 1)× (f − 1)

v
u

v

u

→ (5, 6, 2 )

→ (7, 3, 3 )

v0, v1, v2 ):= (

u0,u1, u2):= (

v

v1 = 6

u1 = 3



⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

d

a b

c d

e f

g h

i→ (0, 0) → (0, 1) → (1, 0)

→ ( 5
13 ,

6
13 )→ ( 9

13 ,
1
13 )

→ ( 7
13 ,

4
13 ) → ( 3

13 ,
3
13 )

→ ( 4
13 ,

8
13 ) → ( 1

13 ,
4
13 )

Face counting algorithm: example



Canonical orderings
(for planar triangulations)



Canonical orderings: definition
[de Fraysseix Pach Pollack]

V0 V1

G3 3

V2

4 5

6

7
8

9

10

G4 G5 G6

G7 G8 G9 G10 = T

1 2



incremental shift algorithm (original FPP)

[de Fraysseix, Pollack, Pach’89]

1.
2.

3.

4.

5.

6.

7.

12
34

56

7

Grid size of Gk: 2k × k

use the canonical
ordering

Theorem
The FPP algorithm computes in linear time
a straight-line grid drawing of T , on a grid
of size 2n× n

Vertex coordinates are integers:
because of Manhattan distance, and
the slopes of edges on the outer face
(+1 and −1)



Schnyder woods (and canonical orderings): existence
Theorem
Every planar triangulation admits a Schnyder wood (and a canonical
ordering), which can be computed in linear time, via vertex shellings.

Start the traversal from the root face (V0, V1, V2)

Correctness

There must be a free
vertex v (not v0 nor v1)
without chords

V V

Vv =

0 1

2

V0 V1

and remove free vertices (without chordal edges)

v

vl vr

vl
vr

vertex conquest

V V
0 1

+
coloring rule

u

Invariant

[Brehm ’00]

Gk−1

Gk



Schnyder woods (and canonical orderings): existence
Theorem
Every planar triangulation admits a Schnyder wood (and a canonical
ordering), which can be computed in linear time, via vertex shellings.

[Brehm ’00]

millions of vertices

millions of vertices

(very fast implementation)

V V

V

v

0 1

2

v

v

v

. . . . . .

v

v

alternative way
via edge contractions/expansions



Schnyder woods and higher genus surfaces

(several possible generalizations)



(pioneeristic) toroidal tree decomposition
[Bonichon Gavoille Labourel, 2005]

Inconvenients:
• valid only for toroidal triangulations (genus 1)
• potentially large (non constant) number of vertices on C1 and C2 not
satisfying the local condition

Compute a pair of adjacent non
contractible cycles

Graph G GraphH Tambourine T

• shortest non contractible cycles are not trivial to compute

2
0

1

7

5
3

6
8

4

The tambourine solution
0

5

2

4

6
C1

C2

C1 C2

C1 C2

C1 C2



Definition I: genus g Schnyder woods

almost all (non inner) vertices have outgoing degree 3

at most 4g special vertices (outdegree > 3)

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

all edges in T0, T1 and T2 have one color/orientation

the set Es contains at most 2g edges (multiple edges)

Def: partition of all ”inner” edges into four sets

T0, T1, T2 and Es

such that

7 8

1

2
0

3
5

4

6

0

5

2

4

6

Es = {(1, 3), (6, 8)}
V0 = v6, V1 = v4, V2 = v7



Definition I: genus g Schnyder woods
[Castelli-Aleardi Fusy Lewiner, SoCG’08]

almost all (non inner) vertices have outgoing degree 3

at most 4g special vertices (outdegree > 3)

local condition for special vertices

all edges in T0, T1 and T2 have one color/orientation

the set Es contains at most 2g edges (multiple edges)
new local conditions around special vertices

Def: partition of all ”inner” edges into four sets

T0, T1, T2 and Es

such that

7 8

1

2
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4

6

0

5

2

4

6

Es = {(1, 3), (6, 8)}
V0 = v6, V1 = v4, V2 = v7

7 8

1

2
0

3
5

4

6

G2 = T 2 ∪ {e1, e2}

e1

e2

f1

f1

f1f1
f1

The graph G2 = T 2 ∪ {e1, e2} is a cut-graph



Genus g Schnyder woods: spanning property
[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Theorem
The set of (possibly multiple) edges of color 0, 1 and 2 lead to maps of genus g satisfying:

• G0, G1 are cellularly spanning subgraphs with 1 + 2g faces (possibly degenerated);

• G2 is a 1 face map (a g-tree)
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G0 G1

f1
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Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

⇓
Gk−1

Gk

w

conquer(w)

5

0
2

3

8

1

7
6

4

0

5

2

4

6

5

0
2

3

7

4

1

6
8

conquer(7)

v0 v1

w
vl

vr

C

conquer(w)



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG’08]

C is a topological disk

No more free vertices

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

0

5

2

4

6

5

0
2

3

7

4

1

6
8

v0 v1

u
w

C

all boundary vertices are
incident to chordal edges

5

0
2

3

7

4

1

8
6

u

w

C

v0

v1

v0

v1

u

w

C

C

C

split(u,w)

split(6, 8)

⇓

one boundary

two boundaries



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG’08]

There is one free vertex

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

0

5

2

4

6

5

0
2

3

7

4

1

8
6

split(6, 8)

5

0
2

1

4

3

8
6

7

conquer(b8)

⇓

w

conquer(w)

C

C

v0

v1

u

w

v0

v1

conquer(bw) + colorient conquer(bu) + colorient conquer(bu) + colorient

u

w

v0

v1

w

u
v0

v1

w

u

C

C

C

C

C

C



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG’08][Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental vertex shelling algorithm
Perform a vertex conquest (as far as you can)
until you get stuck

0

5

2

4

6

5

0
2

1

4

3

8
6

7

5

0
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4

8
6

3

1

v0

v1

C
u

w

v0

v1

C

u

w

merge(u,w)⇓

one boundary

two boundariesThe complement of C is
a topological disk

Choose a merge chordal edge
(if any)

merge(1, 3)



Genus g Schnyder woods: existence
[Castelli-Aleardi Fusy Lewiner, SoCG’08][Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental vertex shelling algorithm
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merge(1, 3) conquer(b3) conquer(b1) conquer(b6) conquer(b8)

conquer(b5)

The complement of C is a topological disk: just perform vertex conquests
(only one boundary)

conquer(b3)conquer(b0)



Schnyder woods for toroidal graphs



Toroidal Schnyder woods: definition
e = 3ng = 1Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods are crossing if
n− e + f = 2 − 2g
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crossing Schnyder woodthe Schnyder wood
is not crossing

(there are 3 disjoint mono-chromatic
cycles of color 2)
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1

3-orientation

(Local Schnyder rule cannot
be propagated everywhere)

not valid Schnyder wood valid Schnyder woods

0
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6
7 8
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4

1

(one mono-chromatic
cycle for each color)



Toroidal Schnyder woods: existence
(planar simple triangulations)Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.
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1 1
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6
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4

1
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0
2

1
1

1

1

1 5

6
8

0
2

7

4

1

7

4

0
2

1
1

1
5

6
8

3

V0

V1V2
V2

V0
V1

Γ2

Γ1

Γ1

Γ0

Γ0

crossing toroidal Schnyder wood
split along Γ0, Γ1, Γ2 (for simple triangulations)

(two planar quasi-triangulations)



Toroidal Schnyder woods: drawing
(planar simple triangulations)Thm[Goncalves Lévêque]

A simple toroidal triangulation admits a straight-line periodic drawing on
a grid of size O(n2 × n2)



Toroidal Schnyder woods: practical computation

Cylindric Canonical orderings [Castelli Aleardi, Fusy, Devillers]

perform vertex shelling starting from exterior boundary Bout(orange)

7 7

6

7

6

5 7

6

5

4

7

6

5

4

3

7

6

5

4

3

2 7

6

5

4
3

2

1

w1

w2 w2

w2w2

Warning: the interior boundary (defined by Γin) must be chord-free

Cylindrical Schnyder wood

Γin

Γext

v

v
vr

vl

vr
vl

boundary local Schnyder ruleBin

Bout



Toroidal Schnyder woods: practical computation

Toroidal (non-crossing) Schnyder woods

Γin

Γext

v

v
vr

vl

vrvl

Glue together the two boundaries (local Schnyder rule remains satisfied)

Idea: cut the torus along a non-contractible cycle Γ (with no chords on one side)

Compute a cylindrical Schnyder wood

The toroidal Schnyder wood is not crossing

2

345 6

789

1011 121314 11

7 1

0 5

Γ

cylindrical triangulation

cylindrical canonical ordering

Drawback

Γin



Graph encoding application



A simple encoding scheme

( ) ( ( ( ) ) ( ) ( ) ) ( ) ( ( ) ) ( ) ( )

2
3

45

6

78

9

10

11

[[[[ ] ] ][[[ [ ]][ ]][[[[[ [ ]][ ]] ][ [ ]]][ ]]]]G \ T

T

T

([[[)(](][[[)])(]][) . . .S(G)

Turan encoding of planar map (1984)

length(S) = 2e symbols

(2 log2 4)e = 4e = 12n bits

G = (V,E) |V | = n |E| = e

T := (any) vertex spanning tree of G

parenthesis word of size 2n

12n bits encoding scheme

parenthesis word of size 2n

10



A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

7
8

9

10

11
T2

T1 is redundant: reconstruct from T0, T2

10 10

T 0

2 3

45

6

78

9

10

11

T1

T2

T 0

10

(unique way to triangulate each face of T 0 ∪ T2)



A more efficient encoding

2
3

45

6

78

9

10

11T2

10 10

2
3

45

6

78

9

10

11T2

10 10

( ) ( ( ( ) ) ( ) ( ) ) ( ) ( ( ) ) ( ) ( )T 0

T 0 T 0

2(n− 1) symbols= 2(n− 1) bits

00000101010100110111T 2 (n− 1) + (n− 3) = 2n− 4 bits

Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

4n bits (for triangulations)

T2 can be reconstructed from T0 and the
number of ingoing edges (for each node)

≈ 4n bits

millions of vertices

millions of vertices



Genus g Schnyder woods: application

[Castelli-Aleardi Fusy Lewiner, SoCG’08]Thm
A triangulation of genus g having n vertices can
be encoded with at most 4n+O(g log n) bits

Encode map G2 = T 2 ∪Es: a tree plus
2g edges: 2n +O(g log n) bits

Mark special vertices: O(g log n) bits

Store outgoing blue edges incident to
special edges: O(g log n) bits

For each node in T2 ∪ Es store the
number of ingoing blue edges (color
1): 2n +O(g log n) bits

7 8

1

2
0

3
5

4

6

7

2
0

5

4

G2 = T 2 ∪ {e1, e2}

3

1

6
8

7
6

2

1

4

0

5

8

3

e1

e2

Es = {(1, 3), (6, 8)}



Drawing graphs on surfaces
(periodic straight line drawings)



Drawing higher genus graphs

vNS2
vNM

vNG

g = 0



Drawing higher genus graphs
Wikipedia picture

Universal cover

g ≥ 2 Polygonal scheme

[Mohar’99]

[Duncan, Goodrich, Kobourov, GD’09]

[Chambers, Eppstein, Goodrich, Löffler, GD’10]

periodic drawing

drawing in polynomial area

out of circle packing

(Palais de la Découverte,Fête de la Science, October 2013)



Drawing toroidal graphs
On the torus

m

(Palais de la Découverte, Fête de la Science, October 2013)

g = 1



Periodic straight-line drawings
On the torus

m
⇒

x-periodic and

y-periodic drawing

drawing on the flat torus

not x-periodic

not y-periodic

straight-line drawing

straight-line frame

straight-line frame
x-periodic and

y-periodic drawing

[Chambers et al., GD’10]

[Duncan et al., GD’09]

[Castelli Fusy Kostrygin, Latin’14]

[Castelli Devillers Fusy, GD’12]

[Goncalves Lévêque, DCG]

O(n× n2) grid

O(n2 × n2) grid

O(n× n
3
2) grid



A shift-algorithm for the torus
1.Recall algorithm of

Grid 2n−4× n−2

⇓

⇓

[De Fraysseix et al’89]

2.Extend to the cylinder

[Castelli Aleardi Fusy Devillers GD2012]

3.Get toroidal drawings

Plane Cylinder Torus

Grid ≤ 2n× n(2d + 1) Grid≤ 2n×(1+n(2c+1))



Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]
1.

2.

3.

4.

5.

6.

7.

12

34

5
6

7

Grid size of Gk: 2k × k



Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1
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Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Gk



Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1
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Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1 Gk



Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm

7

6

3
4

5

1

2 1
2

3
4

5



Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm

7

6

5
4

32

1

Width = 2n Height ≤ n(n− 3)/2

Can also deal with chordal edges incident to outermost cycle

12

3

4
5

6

7



Extension to the cylinder: drawing
algorithm

7

6

5
4

32

1
w = 2n

Each edge has vertical extension at most w
⇒ h ≤ n(2d+ 1)

with d the graph-distance between the two boundaries

12

3

4
5

6

7

d = 2



Getting toroidal drawings
Every toroidal triangulation admits a “tambourine”

[Bonichon,Gavoille,Labourel′06]

Torus

Cylinder

a
b

c
d a

e

a

b
c

dd

e

a



Getting toroidal drawings

a
b

c
d a

e

a
b

c
dd

e

a

cb da e
cb da

a b c d

e

w ≤ 2n
h≤n(2d+1)

c=3

compute
tambourine

delete edges
in tambourine

Torus Cylinder
drawing algo.
on cylinder

resinsert edges
in tambourine

∆h ≤ 2n + 1

d=2

Can choose tambourine so that d < c ⇒ h = O(n3/2)

Let c =length shortest non-contractible cycle, c ≤
√

2n
[Hutchinson,
Albert’78]
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Random initial layout Initial spherical drawing SFPP





Spherical preprocessing for eulidean spring embedders
Use spherical drawings as initial layouts for 3D spring
embedders: this allows us to better untangle the layout

count triangle collisions

Layouts obtained with our Java implementation of the FR91 spring embedder
(exact computation of repulsive forces)

#
co

ll
id
in
g
tr
ia
n
g
le
s

6000

5000

4000

3000

2000

1000

9060301

60 90301

1 30 60 90

800

600

400

200

800

600

400

200

iterations

iterations

iterations

random planar triangulation

with 5K triangles (generated with an uniform random sampler)



Experimental results on balanced Schnyder woods



Looking for ”nice” Schnyder woods
Counting Schnyder woods:

[Bonichon ’05]

[Felsner Zickfeld ’08] 2.37n ≤ max |SW (T )| ≤ 3.56n
T ∈ Tn

Tn := class of planar triangulations of size n

SW (T ) := set of all Schnyder woods of the triangulation T

(there are an exponential number)

(count of Schnyder woods of a fixed triangulation)

≈ 16n# Schnyder woods of triangulations of size n:

# planar triangulations of size n: |Tn| ≈ 23.2451

reversal of oriented triangles



Balanced Schnyder woods

v0 v1

v2

A Schnyder wood is balanced if most vertices have a small defect

balanced vertex

Def

balanced vertex unbalanced vertices

perfectly balanced well balanced strongly unbalanced

δ(v) = 1 δ(v) = (3− 0)− 1 = 2

δ(v) :=
max indegi(v)−min indegi(v)

max indegi(v)−min indegi(v)− 1

if degree(v) = 3k

otherwwise
{

δ(v) = 0 δ(v) = (2−1)−1 = 0

i ∈ {0, 1, 2} i ∈ {0, 1, 2}

i ∈ {0, 1, 2} i ∈ {0, 1, 2}

vertex defect

indegi(v) := #incoming edges of color i



Computing balanced Schnyder woods
Proportion of balanced vertices with our heuristic

minimal Schnyder wood

(d6 := proportion of
degree 6 vertices)

well balanced

strongly unbalanced

balancedSchnyderWood(T , (v0, v1, v2), k)

B = {v0, v1, v2} // initialization

while(|B| 6= {v0, v1}) {

}

let M be the largest index s.t. QM 6= ∅

Q0 = ∅, Q1 = ∅, . . . Qk−1 = ∅ // queue initialization

Q0.addLast(v2)

let v = QM .poll()

if(v ∈ B and v is free) {

T = new int[n] // priority array

}

let {vl, vj1 , . . . vjt , vr} be the neighbors of v on B

colorOrient(v)

conquer(v) // remove v from B

T [vl] + +, T [vr] + + // increase priority

Qmax(k−1,T [vl])
.addLast(vl)

Q0.addLast(vj1 ), . . . , Q0.addLast(vjt )

Qmax(k−1,T [vr ]).addLast(vr)

priority driven vertex conquest:
remove first boundary vertices with
higher number of ingoing edges

Incremental vertex shelling
(Brehm’s diploma thesis)



Layout quality for Schnyder drawings

Schnyder drawing well balanced unbalanced



Layout quality for Schnyder drawings

δavg :=
1
n

∑
v δ(v) (average vertex defect)

el := 1 −
(

1
|E|
∑

e∈E
|l(e)−lavg|

max(lavg,lmax−lavg)

)
l(e) := edge length of e

average percent deviation of edge length

(Fowler and Kobourov, 2012)

edge length metric= 0.77

aspect ratio metric= 0.84

balanced Schnyder wood

edge length metric= 0.66

aspect ratio metric= 0.80

minimal Schnyder wood

δavg = 2.25

δavg = 1.33

globe (regular graph)

(lower values are better)

high values indicates more uniform
edge length (aspect ratio)

n = 27
d6 = 0.55
dmax = 6

|S| = 5084 208
# distinct Schnyder woods

Evaluate layout statistics for all distinct
Schnyder woods of a given graph

plot layout statistics as a function of average defect



From Schnyder woods to cycle separators

Boundary size Separator balance

Egea

δ0 = 0.42

δavg = 1.18

|S| = 0.96
√
m

horse

δ0 = 0.485

δavg = 0.931

δ0 = 0.485

δavg = 0.921

|S| = 1.32
√
m|S| = 0.58

√
m

n = 8268

δ0 = 0.543

δavg = 1.153

|S| = 0.15
√
m

n = 2012

δ0 = 0.546

δavg = 1.148

|S| = 2.34
√
mdiam=59

diam=202

cylinder2k
n = 20000

diam=168

n = number of vertices

m = number of edges

A partition (A,B, S) of V (G) such that:

Def (small balanced cycle separators)

the separator is small: |S| ≤
√
8m

A and B are balanced: |A| ≤ 2
3n, |B| ≤ 2

3n

S defines a simple cycle

(Fox-Epstein et al. 2016, Holzer et al. 2009)

v6

S = Pi(v) ∪ Pi+2(v) ∪ {v} is minimized
choose the best index i and vertex v s.t.{A = Int(Ri(v) ∪Ri+2(v))

B = Int(Ri+1(v))

|A| ≤ 2
3
n

|B| ≤ 2
3
n

A B

(tests are repated with 200 random choices of the initial seed, the root face)



From Schnyder woods to cycle separators

well balanced (our heuristic)

B
ou

n
d
ar
y
si
ze

(lower values are better)

δavg :=
1
n

∑
v δ(v) (average vertex defect)

unbalanced

sphere12k
horse
Egea

How the separator quality depends on the balance



Evaluation of timing costs

Our performances (pure Java, on a core i7-5600 U, 2.60GHz, 1GB Ram):

se
co
n
d
s

average timings (over 100 executions)

computing balanced Schnyder woods

computing Schnyder drawing

computing shortest separator

total timing costs
(100 choice of random seeds)

We can process ≈ 1.43M − 1.92M vertices/seconds

Previous works can process ≈ 0.54M − 0.62M vertices/seconds
(Fox-Epstein et al. 2016, Holzer et al. 2009) (C/C++, on a Xeon X5650 2.67GHz)

Metis can process ≈ 0.7M vertices/seconds (C, on a Intel core i7-5600 2.60GHz)

Our datasets (several tens of real-world, random and synthetic graphs)

3d meshes from aim@shape and Thingi 10k Random triangulations Synthetic graphs



(non compact) data structures

compact data structures

Data Structure size

navigation
time vertex access dynamic

Half-edge/Winged-edge/Quad-edge

Triangle based DS / Corner Table

Directed edge (Campagna et al. ’99)

2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)

TRIPOD (Snoeyink, Speckmann, ’99)

SOT (Gurung et al. 2010)

Castelli Aleardi and Devillers (Isaac ’11, JoCG’18)

18n + n
12n + n

12n + n
7.67n
7n
6n
6n

4.8n
4n (or 5n)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(d)

O(d)

O(d)

O(d)

O(d)

yes

yes

yes

yes

no

no

no

yes

no

SQUAD (Gurung et al. 2011) (4 + ε)n O(1) O(d) no

LR (Gurung et al. 2011) (2+ δ)n O(1) O(1) no

ε between 0.09 and 0.3

δbetween 0.2 and 0.3

ESQ (Castelli Aleardi, Devillers, Rossignac’12)

(or O(1))

Practical mesh data structure

Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge
(13n)

2D Catalogs
(7.67n)

(7n)
Star-Vertices

SOT
(6n)

Castelli Devillers
(4n)

ESQ,
(4.8n)

Gurung et al.
(≈ 2.18n)

rpv

25%

(references per vertex)

81% 38%

Castelli Aleardi and Devillers (Isaac ’11, JoCG’18)

85% 11%

Gurung et al.
(≈ 2.18n)



u

v
w

Definition of

z

0 ≤ v ≤ n− 1

0 ≤ e ≤ (3n− 6)− 1

Winged Edge DS (size 19n)
Winged-edge e0

source target

=source(e)

=target(e)

e = (u, v)

LeftBack RightBack LeftFront RightFront

20 313 5

23 14. . . . . .

e1

e2

e3

e4

e5

. . .

. . .

. . . {
6 ∗ |E| = 6 ∗ (3n− 6) ≈ 18n entries

v0

v1

v2

v3e0

e1

e4
e5

e3

L
e
f
t
B
a
c
k

RightBack

LeftFront

R
i
g
h
t
F
r
o
n
t

edge

n entries

e4

e3

e0 v0

v1

v2

v3

v4

v5

e0

. . .

. . .

. . .

(Baumgart, 1972)
incident



u := source(e) = e/3

(w,v):=T[2e]

e := (u, v){ (e + 1)%3

T [T [e]]

(T [e] + 2)%3

u

v

w

Def.

z

(z, v) := T [2e + 1]

0 ≤ v ≤ n− 1
0 ≤ e ≤ 3n

Our first simple Compact DS (size 6n)

case 1

case 2

case 3

(w, u) :=

color(e) = e%3

retrieve

6

7

8

9

0

1

2

3

5

4

67

8

9

0

12

3

4

6

7

8

9

0

1

2

3

97

8

0

9

2

3

4

6

7

8

9

0

12

34

6 6

0

8

1

2

3

4

8

1

3

4

1

1

zw zw

zw zw

u

v

u

v
u

v

u

v1

2 3

Cleft
red [j] = true

Cright
red [j] = false

Sright
red [j]

Ired[j] = false

Sleft
red [j]

3

4

5

6

7

8

9

0
1

2

u

v
w

z=source(e)

=target(e)

e = (u, v)

L
e
f
t
B
a
c
k

RightBack

LeftFront

R
i
g
h
t
F
r
o
n
t

Winged-edgestore only 2 references per edge

{
6 ∗ n entries

(Castelli Aleardi, Devillers, 2011)



More compact DS (size 5n): use maximal Schnyder woods
(less redundant and ”more difficult to implement”)

6

7

8

9

0

1

2

3

5

4

8

12

3

7

2

9 9

2

9

1

34

6

0

8

1

3

4

8

1

3

1

3

4
5

6

7

8
9

01

2

remove one blue column

zw
u

v blue

zw
u

vblack

zw
u

v

2b2a

z
w

u

v

z
w

u

v
1

q

zw
u

vred

zw
u

v
q

zw
u

v

z
w

u

v

z
w

u

v

(sometimes)
change one red
left reference
(for red edges)

only difficult case



(”slightly more difficult to implement”)

More compact DS (size 4n): use maximal Schnyder woods
(reorder vertices according to a BFS traversal of T0)

6

7

8

9

0

1

2

3

5

4

1

2

9 9

2

1

3 0

8

3

8

1

3

1

z=u−1w

u

v

zw

u

v

remove one red column

3

4
5

6

7 8

9

0

1

2

zw

u

v

forbidden case



More compact DS: size < 4n?
(can we exploit the regularity of the triangulation?)

size(n) = 3n+ 2(
∑n−1

i=k+3 pi)

upper bound depending of
vertex degree distribution

for k = 4

size(n) = 3n+ 2(
∑n−1

i=7 pi)



Concluding remarks and perspectives

(Schnyder woods and related combinatorial structures
have still many wonderful surprises in store for us)



Schyder woods for higher genus surfaces
Thm (3-orientations for graphs on surfaces, of arbitrary genus)

Any triangulation of a surface (the sphere and the projective
plane) admits a ’3-orientation’: orientation without sinks
s.t. every vertex has outdegree divisible by three

Conjecture (Existence of Schnyder woods for higher genus triangulations)

[Goncalves Knauer Lévêque, 2016]

Wikipedia picture[Albar Goncalves Knauer, 2014]

Thm [Suagee, 2021]

Simple triangulations of genus g ≥ 1 having
large edgewidth do admit Schnyder woods

Multiple local Schnyder
condition: the outdegree of every
vertex is a positive multiple of 3.

(there are no sinks)

edgewidth ≥ 40(2g − 1)

surftri software [Sulanke, 2006]

exaustive generation of all 3-orientations
for all triangulations with g = 2, n ≤ 11

Experimental confirmation

All simple triangulations of genus g = 2

and size ≤ 11 admit Schnyder woods



Schyder woods for higher dimension complexes

(CGAL mesher)

What about higher dimensional complexes?

encoding word of length f − 1 = 2n− 5
(on the alphabet {C,L,E,R, S})

worst-case bound: 3.67n bits (4n for higher genus)

. . . . . . (many many others)

Poulalhon Schaeffer (Icalp03)

Fusy Poulalhon Schaeffer (Soda05)

Castelli-Aleardi Fusy Lewiner (SoCG08)

planar triangle meshes

planar polygonal meshes

Fusy (GD05)

4-connected triangulations

Castelli-Aleardi Fusy Lewiner (CCCG10)

Despré Goncalves Leveque (DCG2017)

Grow&Fold (Szymczak Rossignac ’00): ≈ 7t bits

Cut-border machine (Gumhold et al. ’99)

Tetrahedral mesh compression

Non shellable simplicial 3-ball, n = 9 (Lutz)

Very challening problems... things
are far more complicated

No hope to generalize canonical orderings easily
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