The two exercises below can be solved independently and in any order. All arguments should be expressed in a rigorous and clear manner.

Exercise 1 – Efficiently algorithms in planar graphs

In this exercise we consider simple planar graphs\(^1\) (no loops, no multiple edges) and we address the problem of efficiently and listing the 4-cliques (complete sub-graphs of size 4). A triangle is a cycle consisting of 3 distinct vertices (equivalently, a triangle is a 3-clique, a complete graph on 3 vertices): observe that a triangle do not necessarily defines faces in the planar embedding of a graph (refer to Fig. 1). A stack triangulation \(T\) is a plane triangulation\(^2\) defined as follows (see Fig. 1 for an illustration): \(T\) is just one triangle, or \(T\) can be obtained from a stack triangulation subdividing a face \(p\overline{q}\overline{r}\) into three faces \(p\overline{q}\overline{t}\), \(q\overline{r}\overline{t}\), \(p\overline{r}\overline{t}\).

Figure 1: Examples of stack triangulations. The triangle \(\{b, c, d\}\) defines a face in the embedding of \(T\) but it does not define a face in the embeddings of \(T'\) and \(T''\). The sets of vertices \(\{a, c, d, f\}\) and \(\{a, d, f, g\}\) define two 4-cliques in \(T''\).

Counting triangles in planar graphs

Question 1.1 Give a linear bound on the number triangles that a stack triangulation of \(n\) vertices can have.

\(^1\)In this exercise you may assume that you are provided with a representation of the embedding of the input graph \(G\) (e.g. the half-edge representation) and with a data structure for efficiently testing in \(O(1)\) time whether an edge \((u, v)\) belongs to \(G\) (using for example an adjacency matrix or a Hashing table storing the pairs \(\{u, v\}\)).

\(^2\)Recall that a triangulation is a simple (cellularly embedded) planar graph where all faces have degree 3.
Question 1.2 Let G a simple planar graph with n vertices. Give a bound on the number of triangles that G can contain.

Listing all 4-cliques in linear time

Let us consider a partition of the vertices of G into $k + 1$ sets $V_0, V_1, V_2, \ldots, V_k$ obtained by computing a BFS tree (according to a breadth-first search) whose root is an arbitrary vertex r. By definition V_j is the set of vertices at distance j from the root r (so $V_0 = \{r\}$). Let us denote by E_j the set of edges $e = (u, v)$ such that $u \in V_{j-1}$ and $v \in V_j$ (an edge belongs to E_j if it is connecting two vertices on levels V_j and V_{j-1}).

Question 1.3 Consider a 4-clique $Q = \{u, v, w, x\}$ in G. Show that the four vertices u, v, w, x cannot all belong to the same level V_j.

Question 1.4 Consider a 4-clique $Q = \{u, v, w, x\}$ in G, and let j be a positive integer $\leq k$.

- assume $u \in V_{j-1}$ and $v, w, x \in V_j$. Show that for one of the tree vertices v, w, x the only incident edge lying in E_j has u has other extremity.
- assume $u, w, x \in V_{j-1}$ and $x \in V_j$. Show that the edges incident to x lying in E_j are exactly $(u, x), (v, x)$ and (w, x).
- assume $u, v \in V_{j-1}$ and $w, x \in V_j$. Show that one of the vertices w, x has exactly two incident edges lying in E_j (whose other extremities are u and v).

Question 1.5 Based on the case analysis of previous question, devise a linear time algorithm $\text{enumerate}(G, L)$ that allows us to list all 4-cliques of the input planar graph G, provided with the complete list L of all triangles contained in G (which is assumed to be pre-computed).

Remark: You are asked to provide a high level description, as well as the pseudo-code, of your algorithm and to justify its runtime complexity (with respect to the parameter n, the size of the input planar graph).

Exercise 2 – Triangulations with boundaries

Let us consider a plane quasi-triangulation T: a simple planar graph whose inner faces have all degree 3, and where there is a single face of arbitrary degree, called the outer face (we say that the number of boundaries is $b = 1$).

Let us denote by $v_i \ (i \geq 3)$ the number of inner vertices of degree i of T (the degree of a vertex is the number of its neighbors). Let $b_j \ (j \geq 2)$ be the number of boundary vertices (incident to the outer face) having degree j.

Question 2.1 Show that the vertex degrees satisfy the following relation:

$$\sum_{i \geq 3} (6 - i) v_i + \sum_{j \geq 2} (4 - j) b_j = 6$$

What happens when there are several boundaries ($b > 1$)?