Algorithms and Combinatorics of Geometric Graphs (Geomgraphs) 2025-2026

TD2 (exercises) Luca Castelli Aleardi

october 2nd 2025

Exercise 1 – Schnyder woods and Menger theorem

Schnyder woods lead to a very simple proof of Menger theorem in the planar triangulated case.

Question 1.1 (Menger theorem for triangulations). Let us consider a plane triangulation \mathcal{T} with n > 3 vertices. Show that, given two distinct vertices u and v, there are three disjoint paths from u to v (they only cross at u and v). Devise a linear-time algorithm for computing such paths.

Question 1.2. Using previous question, show that a planar triangulation (with $n \ge 4$) is 3-connected ¹.

Exercise 2 – A simple algorithm for embedding maximal planar graphs

A maximal planar graph of size n is a planar graph with n vertices and 3n - 6 edges (it is assumed to be simple: no loops, no multiple edges).

Question 2.1. Let us consider a maximal planar graph \mathcal{G} with n vertices. Show that it is possible to compute in linear time a non separating cycle C of G.

Question 2.2. Let us consider a maximal planar graph G with n vertices and a cycle $C = \{a, b, c\}$ which is not separating. Show that, that one can compute in linear-time a canonical ordering $\pi = \{v_0 = a, v_1 = b, ..., v_{n-1} = c\}$ of G.

Question 2.3. Using previous questions show that there exists a linear-time algorithm for embedding maximal planar graphs. More precisely, if the algorithm receives as input a maximal planar graph $\mathcal G$ then it terminates and outputs a planar embedding of $\mathcal G$ (a plane triangulation).

Exercise 3 – Triangulating planar graphs

In this exercise, we will design and analyze an algorithm which, given a planar graph G with n vertices, incrementally triangulates the faces of G: the result is a planar triangulation $\mathcal{T}(G)$ that has the same vertices as G and is simple (no loops or multiple edges).

The idea of the algorithm is as follows: we will triangulate the faces of the graph G one after another, in such a way that we never create multiple edges. To do this, we triangulate a face $f = v_1, v_2, \ldots, v_k$ by adding edges, as illustrated in Figure 2. More precisely, let $v_1 \in f$ be a vertex of minimal degree in a face f of degree k: denote by $(v_1, v_2, \ldots, v_{k-1}, v_k)$ the vertices of f listed in clockwise order, and distinguish two cases:

Case 1: if none of the vertices $v_3, v_4, \ldots, v_{k-1}$ is adjacent to v_1 , then we add to G the edges

$$(v_1, v_3), (v_1, v_4) \dots (v_1, v_{k-1})$$

Case 2: otherwise, denoting by v_j a neighbor of v_1 , we add the zigzag of edges

$$(v_2, v_k), (v_2, v_{k-1}), \dots, (v_2, v_{j+1}), (v_{j+1}, v_3), \dots (v_{j+1}, v_{j-1})$$

¹A graph is 3-connected if one has to remove at least 3 vertices to disconnect the graph (the removal of two arbitrary vertices leave the graph connected).

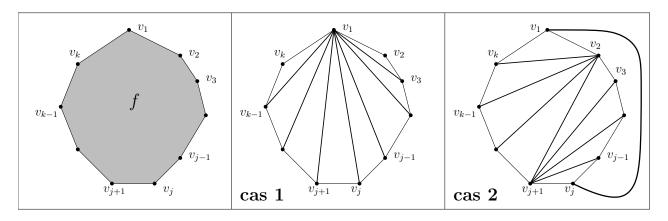


Figure 1: Triangulating a face.

Question 3.1. Let G be a 3-connected planar graph. Show that the graph G' obtained from G by triangulating a face using the above procedure is simple: it has no multiple edges.

Question 3.2. Show that if G is a simple planar graph with n vertices, then:

$$\sum_{f \in G} \min_{v \in f} \{deg(v)\} = O(n)$$

To triangulate the graph G, it is sufficient to repeat the procedure described above by triangulating each face of degree greater than 3: care must be taken to always choose a vertex v_1 of minimal degree (which is crucial for the algorithm to be efficient).

Question 3.3. Analyze the time complexity of the algorithm described above (the answer should depend on n, the size of G).

Hint: You are advised to write the pseudocode of the algorithm and analyze all of its steps. Show that the above algorithm has a complexity $\sum_{f \in G} (deg(f) + \min_{v \in f} \{deg(v)\})$ and deduce from this an upper bound that depends on n.

Question 3.4. What happens if the initial graph G is 2-connected, but not 3-connected?

The algorithm analyzed above is simple to implement but has the following drawback: the degree of some vertices in $\mathcal{T}(G)$ could be O(n), even if in the initial graph the vertices have bounded degree.

Question 3.5. Show that there exist graphs G of size n whose vertices have degree bounded by a constant, but for which the algorithm above produces a triangulation $\mathcal{T}(G)$ with vertices whose degree is linear in n.