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Goal: drawing graphs on surfaces

Spherical drawings
with bounded resolution

Schnyder woods and
canonical orderings
for higher genus
surfaces

a
b

c
d a

e

cb da
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periodic toroidal
drawings



Graphs on surfaces
(some definitions and notations)
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Periodic (planar) drawings

universal cover

G: (simple) toroidal triangulation

flat torus

G∞ (infinite graph)
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G: cylindric triangulation (planar triangulation with two boundaries)

annular representation of G x-periodic drawing of G



Simple and 3-connected graphs on surfaces

(in the universal cover)G: essentially 3-connected graph G∞ is 3-connected

G: essentially simple graph
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G′ := cut-graph of G

G

S \G′ is homeomorphic to a topological disk

G′ (its endowed embedding) has a unique face f1

(in this example S is a sub-graph spanning all vertices)



Drawing graphs on surfaces
(periodic straight line drawings)



Drawing higher genus graphs

vNS2
vNM

vNG

g = 0 Let us try planarize the graph

1- compute (canonical) polygonal schemes

Wikipedia picture

2- compute a tambourine (two cylinders)

3- compute 3 non homotopic cycles
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Drawing higher genus graphs
Wikipedia picture

Universal cover

g ≥ 2 Polygonal scheme

[Mohar’99]

[Duncan, Goodrich, Kobourov, GD’09]

[Chambers, Eppstein, Goodrich, Löffler, GD’10]

periodic drawing

drawing in polynomial area

out of circle packing

(Palais de la Découverte,Fête de la Science, October 2013)



Drawing toroidal graphs
On the torus

⇕

(Palais de la Découverte, Fête de la Science, October 2013)

g = 1



Periodic straight-line drawings
On the torus

⇕
⇒

x-periodic and

y-periodic drawing

drawing on the flat torus

not x-periodic

not y-periodic

straight-line drawing

straight-line frame

straight-line frame
x-periodic and

y-periodic drawing

[Chambers et al., GD’10]

[Duncan et al., GD’09]

[Castelli Fusy Kostrygin, Latin’14]

[Castelli Devillers Fusy, GD’12]

[Goncalves Lévêque, DCG]

O(n× n2) grid

O(n2 × n2) grid

O(n× n
3
2) grid



Toroidal drawing I: the shift algorithm on the torus

MPRI 2-38-1: Algorithms and combinatorics for geometric graphs



A shift-algorithm for the torus
1.Recall algorithm of

Grid 2n−4× n−2

⇓

⇓

[De Fraysseix et al’89]

2.Extend to the cylinder 3.Get toroidal drawings

Plane Cylinder Torus

Grid ≤ 2n× n(2d + 1) Grid≤ 2n×(1+n(2c+1))



Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]
1.

2.

3.

4.

5.

6.

7.
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34
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Grid size of Gk: 2k × k



Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1



Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1



Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1



Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Gk



Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1
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Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1



Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1 Gk



Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Extension to the cylinder: drawing
algorithm
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Width = 2n Height ≤ n(n− 3)/2

Can also deal with chordal edges incident to outermost cycle
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Extension to the cylinder: drawing
algorithm
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1
w = 2n

Each edge has vertical extension at most w
⇒ h ≤ n(2d+ 1)

with d the graph-distance between the two boundaries
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Getting toroidal drawings
Every toroidal triangulation admits a “tambourine”

[Bonichon,Gavoille,Labourel′06]

Torus

Cylinder

a
b

c
d a

e

a

b
c

dd

e

a



Getting toroidal drawings

a
b

c
d a

e

a
b

c
dd

e

a

cb da e
cb da

a b c d

e

w ≤ 2n
h≤n(2d+1)

c=3

compute
tambourine

delete edges
in tambourine

Torus Cylinder
drawing algo.
on cylinder

resinsert edges
in tambourine

∆h ≤ 2n+ 1

d=2

Can choose tambourine so that d < c ⇒ h = O(n3/2)

Let c =length shortest non-contractible cycle, c ≤
√
2n

[Hutchinson,
Albert’78]



Ensuring x-periodicity
a b c d a

e

cb da e
cb da

a b c′ d′

e

Possible issue:
after gluing the upper and bottom
boundary, the edge lengths must coincide.
The width of (c′, d′) depends on the
number of vertices in the triangle (c, e, d)



Ensuring x-periodicity: 2-pass shift

5 6

7
8

9 10

w = 24
0 8 14 24

S1 G5 G6

G7
G8

G9

G10

I1 = (2, 2, 2)

Goal: compute a grid drawing (via the shift-algorithm, with prescribed edge
lengths (for horizontal edges)

First pass: with initial vector

final width

Prescribed edge lengths: F = (48, 72, 96)
(in the final drawing)

L = (8, 6, 10)



Ensuring x-periodicity: 2-pass shift

w = 24
8

I2 = (44, 64, 80)

Goal: compute a grid drawing (via the shift-algorithm, with prescribed edge
lengths (for horizontal edges)

Second pass:

final width
6 10

Prescribed edge lengths: F = (48, 72, 96)
(in the final drawing)

use a new initial vector
S = (6, 4, 8)

G5 G6 G7

G8
G9 G10

I1 = (2, 2, 2)



Tutte drawings on surfaces



Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex
representation ρ in R2.

ρ : (VG) −→ R2

the images of interior vertices are barycenters of their neighbors

ρ(vi) =
∑

j∈N(i)

wijρ(vj)
where wij satisfy

∑
j wij = 1, and wij > 0

according to Tutte: wij =
1

deg(vi)

Tutte drawings (in the plane)



Spherical parameterization (Tutte on the sphere)

(system of quadratic equations)

(Gotsman Gu Sheffer, 2003)



Spherical parameterization (Tutte on the sphere)

(system of quadratic equations)

Tutte 2D layoutseparating cycle

south emisphere

Polar-to-cartesian mapping



Tutte drawings, from another point of view



Planar drawings and edge orientations

G

ρ(G) (G,O)

planar drawing edge orientation



Planar drawings and edge orientations

l

v1 v2

v3

v4

v5v6

l

z1

z2

z4

z6

z5

z3

ρ(G)

(G,O)

Rαβ =
β

β

−α

α

zi := αxi + βyi

Choose a generic line l and project all vertices on l
(such that the images zi of vertices are distinct)



Vertex and face classification

(G,O)

ind(v) = 1 ind(v) = 0

sc(v) = 0 sc(v) = 2

ind(v) < 0

sc(v) = 4
source non singular saddle

ind(v) = 1 ind(v) = 0

sc(f) = 0 sc(f) = 2

ind(v) < 0

sc(f) = 4
vortex non singular saddle

ind(v) := (2−sc(v))
2

Index of a vertex

Index of a face ind(f) := (2−sc(f))
2

sc(v) := number of sign changes

around vertex v

sc(f) := number of sign changes

around face f



Discrete Index Theorem (Poincaré-Hops)

Thm Given a closed manifold mesh of genus g:∑
v∈V ind(v) +

∑
f∈F ind(f) = 2− 2g

Proof∑
v∈V ind(v) +

∑
f∈F ind(f) = 1

2

∑
v∈V (2− sc(v)) + 1

2

∑
f∈F (2− sc(f))

= V + F − 1
2 [
∑

v∈V sc(v) +
∑

f∈F sc(f)]

= V + F − 1
2 [2 · E]

= 2− 2g

Claim: the total number of
changes of edge direction
(around each vertex and
around each face) is equal to
the number of half-edges



Discrete one-forms and Tutte equations
l

z1

z2
z4

z6
z5

z3

(G,O)

Rαβ =
β

β

−α

α

zi := αxi + βyi

∆zij := zj − zi (value of the one-form
∆ for edge (i, j))

Remark: ∆ij = ∆ji and ∆ij ̸= 0

Fact: Given a Tutte barycentric drawing of a planar graph G, we have:∑
vj∈N(i)

1
di
∆zij = 0, for each inner vertex vi

∑
(u,v)∈∂f ∆zuv = 0 for each face f of G



Discrete one-forms and Tutte equations
zi := αxi + βyi

∆zij := zj − zi
Proof: inner vertices are placed at the barycenter of their neighbors

∑
vj∈N(i)

1
di
∆zij = 0, for each inner vertex vi∑

(u,v)∈∂f ∆zuv = 0 for each face f of G

vi =
∑

j∈N(i)

1

di
vj , for any inner vertex vi

which is equivalent to: xi =
∑

j∈N(i)
1
di
xj et yi =

∑
j∈N(i)

1
di
yj . By

definition we have:

zi := αxi + βyi = α
∑
j

1

di
xj + β

∑
j

1

di
yj =

∑
j

1

di
(αxj + βyj) =

∑
j

1

di
zj

implying:∑
vj∈N(i)

1

di
∆zij =

∑
vj∈N(i)

1

di
(zj − zi) = (

∑
vj∈N(i)

1

di
zj)− dizi = 0



Discrete one-forms and Tutte equations
zi := αxi + βyi

∆zij := zj − zi

Fact (exercise): In an orientation induced by a Tutte drawing there are
no saddle vertices and no saddle faces

∑
vj∈N(i)

1
di
∆zij = 0, for each inner vertex vi∑

(u,v)∈∂f ∆zuv = 0 for each face f of G

Corollary (exercise): all faces in a Tutte drawing are convex

(G,O)



Tutte equations on the torus
∆zh := one-forme associated to half-edge h

∑
h∈N(i)

1
di
∆zh = 0, for each vertex vi

∑
h∈∂f ∆zh = 0 for each face f of G{ E unknowns

F+V equations

h01
0 1

32

h10h10

h23 h32h32

h02 h13

h31

h31

h20

h20

{ h01 + h01 − h10 − h20 = 0 for vertex v0

h10 + h13 − h01 − h31 = 0

h23 + h20 − h32 − h02 = 0

h32 + h31 − h23 − h13 = 0

for vertex v1

for vertex v2

for vertex v3

The rank of the two systems is (F − 1) and (V − 1)

The solution space has dimension
E − [(V − 1) + (F − 1)] = 2g = 2

Eq3 = −(Eq0 + Eq1 + Eq2)



Computing coordinates on the torus
∆zh := one-forme associated to half-edge h

∑
h∈N(i)

1
di
∆zh = 0, for each vertex vi

∑
h∈∂f ∆zh = 0 for each face f of G{ E unknowns

F+V equations

h01
0 1

32

h10h10

h23 h32h32

h02 h13

h31

h31

h20

h20

Compute the null-space of the matrix

Choose any pair of linearly indenpendent one-forms ∆x and ∆y

Choose a vertex v0 as origin and compute
coordinates relatives to v

(x0, y0) = (0, 0)

(xi, yi) = (
∑

h∈P (v0,vi)
∆xh,

∑
h∈P (v0,vi)

∆yh)

∆x = (1, 1, 1, 1, 0, 0, 0, 0)

∆y = (0, 0, 0, 0, 1, 1, 1, 1) { h01 + h01 − h10 − h20 = 0

h10 + h13 − h01 − h31 = 0

h23 + h20 − h32 − h02 = 0

h32 + h31 − h23 − h13 = 0



Toroidal drawings III: toroidal Schnyder woods
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Toroidal Schnyder woods: definition
e = 3ng = 1

Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods are crossing if
n− e + f = 2− 2g

crossing Schnyder wood
the Schnyder wood is
not half-crossing
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half-crossing
Schnyder wood



Toroidal Schnyder woods vs. 3-orientations

e = 3ng = 1Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

3-orientation + Schnyder local rule valid at each vertex

every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods are crossing if
n− e + f = 2− 2g

0
2

3

6
7 8

5

4

1

valid 3-orientation

(local Schnyder rule cannot be
propagated everywhere)

0
2

3

6
7 8

5

4

1

not valid Schnyder wood

Remark: unlike the planar case, some 3-orientations do
not lead to valid Schnyder woods

simple toroidal triangulationtoroidal triangulation (one vertex, 3 loops)

3-orientation 3-orientation

admitting a valid
Schnyder wood

not admitting a valid
Schnyder wood



Toroidal Schnyder woods: cycles
e = 3ng = 1

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

n− e + f = 2− 2g
0

6

5

4

2

0
2

3

6
7 8

5

4

1

toroidal Schnyder wood

(there are 3 disjoint
mono-chromatic cycles of color 2)

0
2

3

6
7 8

5

4

1

e = 3n

Open problem: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic componentssome colors may define disconnected components

(true for all triangulations
of size at most n = 11)

mono-chromatic cycles are non-contractibles

0
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3

6
7 8

5

4

1

u1

u3

u4

uk

u2

Remark: the inner region of a
contractible mono-chromatic cycle
is a topological disk

(n edges in each color)



Toroidal Schnyder woods: cycles
e = 3ng = 1

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

n− e + f = 2− 2g
0
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toroidal Schnyder wood

0
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e = 3n

all mono-chromatic cycles of the same color are homotopic (parallel) and oriented in one direction

mono-chromatic cycles are non-contractibles
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Toroidal Schnyder woods: cycles
e = 3ng = 1

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

n− e + f = 2− 2g
0

6
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2

0
2
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6
7 8

5

4

1

toroidal Schnyder wood

0
2

3

6
7 8

5

4

1

e = 3n

all mono-chromatic cycles of the same color are:
homotopic and disjoint (parallel) and oriented in one direction

mono-chromatic cycles are non-contractibles
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Toroidal Schnyder woods: cycles
e = 3ng = 1

toroidal Schnyder woods must contain a (mono-chromatic) cycle in each color:

n− e + f = 2− 2g
0

6
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2

0
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3

6
7 8

5

4

1

toroidal Schnyder wood

e = 3n

all mono-chromatic cycles of different colors are:
either homotopic and disjoint (parallel) or crossing

mono-chromatic cycles are non-contractibles
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Toroidal Schnyder woods: existence I
(for simple toroidal triangulations)Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.
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V0

V1V2
V2

V0
V1

Γ2

Γ1

Γ1

Γ0

Γ0

crossing toroidal Schnyder woodsplit along Γ0, Γ1, Γ2
(for simple triangulations)

(two planar quasi-triangulations)

Corollary[Goncalves Lévêque, DCG’14]
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood



Toroidal Schnyder woods: existence I
(for simple toroidal triangulations)Thm[Fijavz, unpublished]

A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and
that are pairwise disjoint otherwise.

0
2

3

6
7 8

5

4

1

0
2

3

7

4

1

3

7

4

8
6

0
2

1 1

1

1

1
5

6

0
2

3

7

4

1

3

7

4

6

0
2

1
1

1

1

1 5

6
8

0
2

7

4

1

7

4

0
2

1
1

1
5

6
8

3

V0

V1V2
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Γ2

Γ1

Γ1

Γ0

Γ0

crossing toroidal Schnyder woodsplit along Γ0, Γ1, Γ2
(for simple triangulations)

(two planar quasi-triangulations)

Corollary[Goncalves Lévêque, DCG’14]
Any simple toroidal triangulation admits a toroidal crossing Schnyder wood

Conjecture: is it possible to find (at
least) one toroidal Schnyder wood with
connected mono-chromatic components
and such the intersection of the three
cycles is a single vertex?



Toroidal Schnyder woods: existence II
(not necessarily crossing Schnyder woods)

Corollary
Any simple toroidal triangulation admits a toroidal (not necessarily crossing) Schnyder wood
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2

1

w1

w2 w2

w2
w2

edge of F

First step: cut G along a non contractible cycle Γ
Second step: compute a cylindric canonical ordering

(getting a cylindric triangulation)
Γext

Γ

⇒

v

At each step colorient and oriented edges

v
Γext

Performing vertex shelling, starting from Γext

Γ is split into two copies: Γext and Γin

Γin



Toroidal Schnyder woods: existence II
(not necessarily crossing Schnyder woods)
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Γin

v

v
vr

vl

vr
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Γext

Γ

local invariant

⇒ ⇒

glue together the two boundaries

(the local Schnyder woods remains satisfied on Γ)
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Cylindric triangulation

Toroidal Schnyder wood
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345 6

789

1011 121314 11

7 1

0 5

red and black cycles are homotopic (not crossing)

Toroidal Schnyder woods: existence II
(not necessarily crossing Schnyder woods)

Thm
Any simple toroidal triangulation admits a toroidal
(not necessarily crossing) Schnyder wood
(which can be computed in linear time)

2
0

7
6

8

4

3

1
5

Γin

v

v
vr

vl

vr
vl

Γext

Γ

local invariant

⇒ ⇒

glue together the two boundaries

n = 360
Penrose triangle

Open problem
Is it possible to modify the vertex shelling order to preserve the crossing condition?

(the local Schnyder woods remains satisfied on Γ)



Toroidal Schnyder woods: existence III
(for general toroidal triangulations)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

v

0 1

v

. . . . . .

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

V2

V2

x y

v

u

⇒
x y

w

x y
w

x y
⇒

(3 possible choices of coloring)

x y
w

x y
w

(5 cases to distinguish)



Toroidal Schnyder woods: existence III
(for general toroidal triangulations)Thm[Goncalves Lévêque, DCG’14]

Any toroidal triangulation admits a toroidal crossing Schnyder wood

v

0 1

v

. . .

computation of (planar) Schnyder woods

first phase: perform edge contractions
second phase: perform edge expansion+edge coloring

V2

V2

x y

v

u

⇒
x y

w

⇒

0
2

3

6
7 8

5

4

1

perform a sequence of n− 1

edge contractions

⇒ ⇒

decontract (and color/orient)

color and orient

. . .
. . .



Periodic (planar) Schnyder drawings of toroidal graphs



Toroidal Schnyder drawings
Goal: try to generalize the region counting method to obtain
a straight-line grid drawing which is xy-periodic

S′

S

u := (ux, uy)

uright := u + S′

utop := u + S



Region counting on the torus
How regions are defined on the torus?

How to assign coordinates to vertices to ensure periodicity?

How periodicity is defined? (how vectors S, S′ are defined?)

u u

uright

uright

u := (ux, uy)

uright := u + S′

utop := u + S

utop

utop

S′

S



Regions are unbounded

v

v

v

u

Ri−1(v) = Ri−1(u)

Planar case: bounded number
of faces in each region

v =: |R0(v)|
|F |−1 V0 +

|R1(v)|
|F |−1 V1 +

|R2(v)|
|F |−1 V2

V0 V1

V2

Toroidal case: unbounded regions



Regions are unbounded

O

v =: |R0(v)|
|F |−1 V0 +

|R1(v)|
|F |−1 V1 +

|R2(v)|
|F |−1 V2

Toroidal case: regions are unbounded
but differences between regions is
bounded

Do not use absolute coordinates

v

Fix an origin vertex O

Define coordinates of v relatives to O

v′

O′



How to define the size of a region

O

O

C0
1 C1

1

C1 := {C0
1 , C

1
1}

2 mono-chromatic consecutive blue cycles

C2 := {C0
2}

1 mono-chromatic black cycle

C0
2

L0
1 := {C0

1 , C
′0
1, . . .}

C0
1 C1

1 C ′0
1 C ′1

1

(lines in the universal cover)

R(Cj
1 , C

j+1
1 ) :=

R(C0
1 , C

1
1 )

region between consecutives 1-cycles ∥R(C0
1 , C

1
1 )∥ =?

(how many faces in the gray region?)

f j
1 := ∥R(Cj

1 , C
j+1
1 )∥ (size of the 1-region: number of faces)



How to define the size of a region

O

O

C0
1 C1

1

C1 := {C0
1 , C

1
1}

2 mono-chromatic consecutive blue cycles

C2 := {C0
2}

1 mono-chromatic black cycle

C0
2

C0
1 C1

1 C ′0
1 C ′1

1

R(C0
1 , C

1
1 )

∥R(C0
1 , C

1
1 )∥ = 2

(2 faces in the gray region)

∥R(C1
1 , C

0
1 )∥ = 2

(2 faces in the white region)

∥R(C0
0 , C

0
0 )∥ = 4

∥R(C0
2 , C

0
2 )∥ = 4

∑
j ∥R(Cj

i , C
j+1
i )∥ = F

(for each color i ∈ {0, 1, 2})

where F := number of faces of G



How assign to ccordinates to vertices
Goal: assign relative coordinates to vertices

Let us revise the planar case first

v

v =: |R0(v)|
|F |−1 V0 +

|R1(v)|
|F |−1 V1 +

|R2(v)|
|F |−1 V2

V0 V1

V2

u

α2(v) =: |R2(v)| = 3

d+ d−
A

α2(u) =: |R2(u)| = 4

α2(v) =: |R2(v)| = A+ d+

α2(u) =: |R2(u)| = A+ d−

α2(v) = α2(u) + (d+ − d−)

A =: |R2(v) ∩R2(u)| = 2

α2(v) = 4 + (1− 2)

v =: α0V0 + α1V1 + α2V2



How assign to ccordinates to vertices
Goal: assign relative coordinates to vertices

Let us consider now the toroidal case

Choose two references line L∗
i (i = 0, 2)

L∗
0

L∗
2

v
u

d+

d−A

Consider two vertices u and v in the same ”region” (defined by the same mono-chromatic lines)

the i-coordinate of v is expressed as (i = 1 in the example)

αi(v) = αi(u) + (d+ − d−)



How assign to ccordinates to vertices
Goal: assign relative coordinates to vertices

Let us consider now the toroidal case

L∗
0

L∗
2

v

d+

d−A

Consider two vertices u and v in the same ”region” (defined by the same mono-chromatic lines)

the 2-coordinate of v is expressed as

α2(v) = α2(z(v))+(d+−d−)

z1(v)

Given a vertex v and a color i take as
second vertex zi(v), the intersection of
the two mono-chromatic lines (of color
i− 1 and i+ 1 defining the region of v)



How assign to ccordinates to vertices
Goal: assign relative coordinates to vertices

L∗
0

L∗
2

v

d+

d−A

z1(v)

Assign coordinates to the mono-chromatic lines

0

f0
2

f0
2 + f1

2

f0
2 + f1

2 + f2
2

−f2
2

0f0
0f0

0 + f1
0 f1

0 −(f0
0 + f1

0 )

Remark: the signs depend on the relative position of the mono-chromatic lines with
respect to the reference lines L∗

i (top/bottom, left/right)



How assign to ccordinates to vertices
We can now define the i coordinate αi of a vertex v

L∗
0

L∗
2

v

d+1
d−1A

z1(v)

0

f0
2

f0
2 + f1

2

f0
2 + f1

2 + f2
2

−f2
2

0f0
0f0

0 + f1
0 f1

0 −(f0
0 + f1

0 )

αi(v) := di(v, zi(v)) +N · (fi+1(Li+1(v))− fi−1(Li−1(v)))

α1(v) := (d+1 − d−1 ) +N · (f0
2 − (f0

0 + f1
0 ))

(in the example i = 1)

(N constant, appropriately choosen)



How assign to ccordinates to vertices
We can now define the i coordinate αi of a vertex v

αi(v) := di(v, zi(v)) +N · (fi+1(Li+1(v))− fi−1(Li−1(v)))

O

v
z1(v)

Assign (0, 0, 0) to the origin vertex O

Observe that z0(v) coincides with v

so: d0(v, z0(v)) = 0

(set N = 3 as constant in this example)

L∗
0

L∗
2

L∗
1

v lies on L∗
1 and L∗

2

so: f1(L
∗
1(v)) = 0 , f2(L

∗
2(v)) = 0

α0(v) = 0 + 3 · (0− 0) = 0

α1(v) = 0 + 3 · (0− (−4)) = 12

α2(v) = 0 + 3 · (−4− 0) = −11

0

4

−4

0 2 4 6−2−4

0 −4 −8 −12 −16



Toroidal Schnyder woods: drawing
(planar simple triangulations)Thm[Goncalves Lévêque]

A simple toroidal triangulation admits a straight-line periodic
drawing on a grid of size O(n2 × n2)

S′ = (12, 24,−36)
S

S = (−12, 24,−12)

v

O

v = (0, 12,−11)

O = (0, 0, 0)

u

u = (6, 12,−18)

O′

O′ = O + S′ = (12, 24,−36)



Toroidal Schnyder woods: drawing
Thm[Goncalves Lévêque]

A simple toroidal triangulation admits a straight-line periodic
drawing on a grid of size O(n2 × n2)

S′ = (12, 24,−36)
S

S = (−12, 24,−12)

v

O

v = (0, 12,−11)

O = (0, 0, 0)

u

u = (6, 12,−18)

O′

O′ = O + S′ = (12, 24,−36)

Remark:
Points are not coplanar
u ∈ H0 : x + y + z = 0

v ∈ H1 : x + y + z = 1



Toroidal Schnyder woods: drawing
Thm[Goncalves Lévêque]

A simple toroidal triangulation admits a straight-line periodic
drawing on a grid of size O(n2 × n2)

S′ = (12, 24,−36)
S

S = (−12, 24,−12)

Remark:
Points are not coplanar
u ∈ H0 : x + y + z = 0

v ∈ H1 : x + y + z = 1

S′
i = N · (c′i+1 − c′i−1)

S′
i = N · (ci+1 − ci−1)

c0 = −1, c′0 = −2

c1 = −1, c′1 = 0

c2 = 1, c′2 = 0

ci := number of times the i-cycles cross
the boundary of the tile (vertically)

c′i := number of times the i-cycles cross
the boundary of the tile (horizontally)



Schyder woods for g ≥ 2
Thm (3-orientations for graphs on surfaces, of arbitrary genus)

Any triangulation of a surface (the sphere and the projective
plane) admits a ’3-orientation’: orientation without sinks
s.t. every vertex has outdegree divisible by three

Open problem [Goncalves Knauer Lévêque, 2016]

Wikipedia picture[Albar Goncalves Knauer, 2014]

Thm [Suagee, 2021]

Simple triangulations of genus g ≥ 1 having
”large” edgewidth do admit Schnyder woods

Multiple local Schnyder condition:
the outdegree of every vertex is a
positive multiple of 3.

(there are no sinks)

edgewidth ≥ 40(2g − 1)

surftri software [Sulanke, 2006]

exaustive generation of all 3-orientations
for all triangulations with g = 2, n ≤ 11

Experimental confirmation (g = 2)

All simple triangulations of genus g = 2

and size ≤ 11 admit Schnyder woods

(size of the smallest non contractible cycle)

Existence of Schnyder woods for higher genus triangulations


