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Schnyder woods
(definitions)



Schnyder labeling (3-connected maps): definition
3-connected graphs [Felsner]

3-connect. map M

suspension Mσ
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A1) the angles at ai have labels i + 1, i− 1

A2) rule for vertices: at each vertex there are non-empty intervals of labels
0, 1 and 2 (listed counter-clockwise)

A3) rule for faces: at each inner faces the angles define three non-empty
intervals of labels 0, 1 and 2 in ccw order. For the outer face the angles are
listed clockwise.
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Schnyder woods (3-connected maps): definition
3-connected graphs [Felsner]

3-connect. map M

W1) edges have one or two (opposite) orientations. If an edge 3 is bo-oriented than the two
direction have distinct colors

W3) local rule for vertices: at each vertex there are three outgoing edges
(one in each color) satisfying the local Schnyder rule

W4) there is no interior face whose boundary is a directed cycle in one color

W2) the edges at ai are outgoing of color i

local Schnyder rule

a0
a1

a2



Schnyder labelings: angles around edges

Lemma
Given a Schnyder labeling of Mσ, the angles of each
edges have colors 0, 1, 2 and are of the following 2 types:

proof:
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Schnyder labelings: angles around edges

Lemma
Given a Schnyder labeling of Mσ, the angles of each
edges have colors 0, 1, 2 and are of the following 2 types:

proof:
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possibly valid configurations
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forbidden configurations
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use a counting argument (double counts the angles)
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∑
v

d(v)+
∑
f

d(f) = 3n+3|f | = 3|E|+6

d(v) := number of label changes for the angles around v
d(f) := number of label changes for the angles in face f

α1 α2

α3α4

ϵ(e) = number of label changes at the angles around e

ϵ(e) =
{ 0

3

e
at vertex ai there are two label changes

ϵ(e) = 3 for all (normal) edges

use Euler formula: 3n+3(2+—E—-n)



Schnyder labelings: angles at exterior vertices

Corollary
Given a Schnyder labeling of Mσ, all interior angles at a
vertex ai have label i
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Correspondence between Schnyder labelings and Schnyder woods

Theorem
There is a correspondence between the Schnyder
labelings of Mσ and the Schnyder woods of Mσ
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Correspondence between Schnyder labelings and Schnyder woods

Theorem
There is a correspondence between the Schnyder
labelings of Mσ and the Schnyder woods of Mσ

i i+ 1

i− 1i
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Assume Mσ is endowed with a Schnyder labelingproof:
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local Schnyder rule (W3)

2
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01

22

Rule of vertices (A2)

0 0

0

Rule of faces (A3)
no directed cycles in
one color (W4)

Assume (W4) is violated: there is a cycle in one color

Then the coloring rule of bi-oriented edges
implies that all angles have the same color



Correspondence between Schnyder labelings and Schnyder woods

Theorem
There is a correspondence between the Schnyder
labelings of Mσ and the Schnyder woods of Mσ

i i+ 1

i− 1i
0 1
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0i i

i+ 1i− 1

i

i+ 1 i− 1

Assume Mσ is endowed with a Schnyder woodproof:
use a counting argument (double counts the angles
around vertices/faces/edges)

∑
v

d(v) +
∑
f

d(f) =
∑
e

d(e) 3n+
∑
f

d(f) = 3|E|+ 6

d(e) =
{

2

3 for all (normal) edges
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for the three half-edges

d(v) = 3

Euler formula implies
∑

f d(f) = 3|F | d(f) = 3 for all faces

The number of changes d(f) is a multiple of 3, and d(f) > 0
(otherwise there is a directed cycle of edges in one color)

Remark:
Turning around a face in ccw direction
the angle will be i or i+ 1

condition (A3) for faces is true



Correspondence between Schnyder labelings and Schnyder woods

Remark:
The condition (W4) of Schnyder woods is important
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valid Schnyder labeling
conditions (W1)-(W4) of Schnyder woods are satisfied
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Schnyder woods: spanning property
[Schnyder ’90]Theorem

The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex vi)

v1

v0

T2

T1

v2 T0

v0 v1

v2

a0 a1

a2

a0 a1

a2

T0

Ti := digraph defined by directed edges of color i



Spanning property for 3-connected maps

Theorem Let (T0, T1, T2) a Schnyder wood of M.
Then each digraph Di := Ti ∪ T−1

i−1 ∪ T−1
i+1 is acyclic

a0 a1

a2

Ti := digraph defined by directed edges of color i

Corollary: Each sets Ti is spanning tree M (rooted at vertex ai)

Claim 1: F is a single face

proof:

Claim 2: there is no face F whose boundary is a directed cycle

Let Z a directed cycle enclosing a region F of minimal size

case a: x ∈ F

x

F ′ ⊂ F

Pi(x)

Pi−1(x)

Pi(x) and Pi−1(x) cannot intersect

Z

F ′ is a smaller than F

case b: F is empty of vertices

ZF ′ ⊂ Fthere is an edge inside F

1

0

0 0

0
0

12
0

coloring rule for angles

The coloring rule for faces is violated

vVisit F in ccw order starting from v and
propagate colors (first color is i): there is
no angle with label i− 1 0 0

0

(bounded by a directed cycle)



Non crossing paths

R2(v)
v

R1(v)
R0(v)

v

Corollary
For each inner vertex v the three monochromatic paths P0, P1, P2 directed from v toward each vertex
ai are vertex disjoint (except at v) and partition the inner faces into three sets R0(v), R1(v), R2(v)

proof: the existence of two paths Pi(v) and Pi+1(v) which
are crossing would contradicts previous theorem

u

local Schnyder rule

Corollary:
Each sets Ti is spanning tree M (rooted at vertex ai)

a0 a1

a2

v



Planar straight-line drawings
(of planar graphs)



Paths and regions

Ri(v)

v

u

Ri(u)

v

u

Ri(u)

v

u

Lemma Let (T0, T1, T2) a Schnyder wood of M.
If u ∈ Ri(v) then Ri(u) ⊆ Ri(v)
If u ∈ Rint

i (v) then Ri(u) ⊂ Ri(v)

proof:
Case 1: u ∈ Rint

i (v) v
u

u ∈ Rint
1 (v)

xy

first step: compute the paths Pi+1(u) and Pi−1(u)

Case 2a: u ∈ Pi−1(v)

They must intersect the boundary of Ri(v) at x and y

Remark: x and y are different from v

and we have y ∈ Pi+1(u) and x ∈ Pi−1(u)

(because of Schnyder rule)

so we have: Ri(u) ⊂ Ri(v)

Ri(u) ⊂ Ri(v)
Ri(u)

v

u

Case 2b: u ∈ Pi−1(v)

u′

(u, u′) is bi-oriented

Ri(u) ⊆ Ri(v)

Proceed by induction on
the path Pi−1(v)

v

u

Ri−1(v) = Ri−1(u)



Paths and regions
Remarks: Let (u, v) of color i oriented from u to v

Case 1: (u, v) is unidirectional

v

uv ∈ Pi(u)

v ∈ Ri+1(u)

v ∈ Ri−1(u)

u ∈ Ri(v)

{
Case 2: (u, v) is bidirectional

u

v

i

i+ 1

i+ 1

ii− 1

i− 1

u

v

i

i+ 1

i+ 1

ii− 1

i− 1

Ri(u) ⊂ Ri(v)

Ri+1(v) ⊂ Ri+1(u)

Ri−1(v) ⊂ Ri−1(u)

v

u

Ri(u) ⊂ Ri(v)

Ri−1(v) ⊆ Ri−1(u)

Ri−1(v) = Ri−1(u)

Ri+1(v) ⊆ Ri+1(u)



Regions and coordinates
Remarks: Let (u, v) of color i oriented from u to v

v

u

Ri(u) ⊂ Ri(v)

Ri+1(v) ⊂ Ri+1(u)

Ri−1(v) ⊂ Ri−1(u)

v

u

Ri−1(v) = Ri−1(u)

Ri(u) ⊆ Ri(v) |Ri(u)| ≤ |Ri(v)| ui ≤ vi
v

u

5, 6, 2 )

7, 3, 3 )

v0, v1, v2 ):= (

u0,u1, u2):= (

v =: |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2 =

= v0

|F |−1x0 +
v1

|F |−1x1 +
v2

|F |−1x2

(

(v0 + v1 + v2 = f − 1 { ui < vi

ui+1 > vi+1

ui−1 > vi−1

For every edge (u, v) there are some indices i, j ∈ {0, 1, 2} s.t.

ui < vi

uj > vj



Face counting algorithm

u

u
u

u

u = (1, 2)

r1(u) = 2

r2(u) = 1

r3(u) = 2



v0 v1

v2

Schnyder woods and orthogonal surfaces
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Schnyder woods and orthogonal surfaces



Orthogonal surfaces and elbow geodesics

u ≤ vDominance order ui ≤ vi, ∀i = 0, 1, 2(u,v ∈ Z3): iff

△p := cone dominating p ∈ R3 ∇p := cone dominated by p ∈ R3

p p

Orthogonal surface SV := boundary of ⟨V⟩
⟨V⟩ := {α ∈ R3|α ≥ v, for some v ∈ V} =

⋃
v △v

Let V ⊂ Z3 be an antichain
(elements are pairwise incomparable)

x y

z

x

y

x

y

z

p

△p

x+ y + z = 1



Orthogonal surfaces and elbow geodesics

(0, 0, 7)

(0, 7, 0)(7, 0, 0)

(6,−2, 5) (0, 3, 5)

(2, 4, 2)

(4, 2, 1)

(2, 1, 4)

(0, 0, 7) (0, 7, 0) (7, 0, 0) (2, 4, 2)V = { }. . .

Orthogonal surface SV := boundary of ⟨V⟩
⟨V⟩ := {α ∈ R3|α ≥ v, for some v ∈ V}

u ≤ v

Dominance order

ui ≤ vi, ∀i = 0, 1, 2
(u,v ∈ Z3)

iff

u ∨ v := maximum component-wisejoin

u ∧ v := minimum component-wisemeet

Let V ⊂ Z3 be an antichain
(elements are pairwise incomparable)

x y

z

(4, 2, 1) ∨ (2, 1, 4) = (4, 2, 4)

(0, 7, 0) ∨ (0, 3, 5) = (0, 7, 5)



Orthogonal surfaces and elbow geodesics

(4, 2, 1)

(2, 1, 4)

(4, 2, 1) ∧ (2, 1, 4) = (4, 2, 4)

(0, 7, 0) ∧ (0, 3, 5) = (0, 7, 5)

elbow geodesic of u and v:

the union of the two line segments
(u, u ∨ v) and (u ∨ v, v)

every v ∈ SV has three orthogonal arcs
(parallel to each axis)
every elbow geodesic contains at least one
bounded orthogonal arc

orthogonal arcs are parallel to the 3 axis

x
y

z



Orthogonal surfaces and elbow geodesics

A geodesic embedding of a planar map G:

a drawing of G on SV s.t.

(G1)

(G2)

The vertices of G correspond to the
points of SV

(G3)

every edge of G is drawn as an elbow geodesic on SV

Every bounded orthogonal arc of SV is part of an
edge of G

There are no edge crossings on SV



From geodesic embeddings to Schnyder woods
Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex
coordinates V (region vectors). The resulting drawing of G on SV is a geodesic embedding
(no crossings)



From geodesic embeddings to Schnyder woods
Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex
coordinates V (region vectors). The resulting drawing of G on SV is a geodesic embedding
(no crossings)

orthogonal arcs parallel to
the x-axis are red (color 0)

orthogonal arcs parallel to
the y-axis are blue (color 1)

orthogonal arcs parallel to
the z-axis are black (color 2)

x
y

z



From geodesic embeddings to Schnyder woods
Thm: The edge orientation corresponding to a geodesic embedding is a Schnyder wood

v

v

u

u ∨ v

reminder: the join u ∨ v is equal or
higher than u and v (in every direction)

Remark: a path of edges of color i lead
to increasing coordinates in i-direction

(W4) no cycles

0
0

y − direction

z − direction

Claim 1:

Claim 2: condition (W4) of the definition is valid

The local Schnyder condition (W3) is valid

Every vertex has 3 outgoing edges (one for each color): the
three orthogonal arcs (by construction)

Let us consider an edge {u = (u0, u1, u2), v = (v0, v1, v2)}
incident at v in the sector parallel to the vertical yz-plane

in the example
u ∨ v = (v0, u1, u2)

The edge {u, v} contains the orthogonal arc (u ∨ v, u) parallel to
the x-direction and lying in the same horizontal plane of u: its color
must be red (color 0), and its orientation is outgoing from u.



Geodesic embeddings are planar drawings
Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V (region
vectors). The resulting drawing of G on SV is a geodesic
embedding (no crossings)

Fact 1: edge crossing are of the form

proof (assume there are edge crossings)

(as orthogonal arcs cannot cross)

v

u

y

z

Fact 2: edges (u, v) and (z, y) are of same color, lying
on the same plane: u2 = y2 (in the example)

Fact 3: vertices u and y have the same z-coordinate

thus there is a bi-directed path P ∗ between u and y

u

y

u0 > y0
u1 < y1
z0 > v0



Geodesic embeddings are planar drawings
Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V (region
vectors). The resulting drawing of G on SV is a geodesic
embedding (no crossings)

proof (assume there are edge crossings)

v

u

y

z

Claim: s cannot belong to the path P ∗

v

u
y

s

P ∗

P1(v)

Let s := first vertex at the crossing of P1(u) and P1(v)

v

y

s
P1(v)

u

P1(u)

v

u y

s
impossible
v

u
ys

(there is a cycle in T2 ∪ T−1
0 ∪ T−1

1 :
violates previous theorem)

s belong to P1(v)
and s ̸= y

u0 > y0
u1 < y1
z0 > v0

x y

z

Let P ∗ := bi-directed path between u and y



Geodesic embeddings are planar drawings
Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V (region
vectors). The resulting drawing of G on SV is a geodesic
embedding (no crossings)

proof (assume there are edge crossings)

v

u

y

z

Remark: y is an inner vertex in the (red) region R0(v)

v

u P ∗

P1(v)

Let s := first vertex at the crossing of P1(u) and P1(v)

R0(v)

by assumption (z, y) is an edge of G (z, y) belong to R0(v)

z

Since (z, y) belongs to R0(v) we have: v0 ≥ z0 (contradiction)

u0 > y0
u1 < y1
z0 > v0 y

z belong to R0(v)

s



From geodesic embeddings to straight-line planar drawings

Thm: Given a planar (3-connected) map G, the region counting
algorithm leads to a planar straight-line drawing of G (no edge
corssings). Moreover, the faces of G are convex.



(image by V. Pilaud)
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Graph separators



G

G′
G′′

Divide&Conquer for (planar) graphs: Small Separators
Tool for recursive decompositions of graphs

Many Algorithmic applications:

Point Location (in optimal time)

Approximation scheme for Maximum Independent Set

Graph Encoding: compression schemes and compact representations

Graph Drawing: spherical parameterizations

. . . . . . . . .

T (n) = C · n + t(n2) + t(n2) = O(n log n)

4 6 8 10 11 15 17 20 24 25 28 33 34 41 4225 37

{11, 15, 17, 20} {34, 37, 41, 42}{4, 6, 8, 10} {24, 25, 28, 33}



Divide&Conquer for (planar) graphs: Small Separators
Encoding planar graphs in O(n) bits Approximation scheme for

Maximum Independent Set

Graph Drawing: spherical parameterizations

Tutte barycentric layout (in 2D)

separating cycle

south emisphere

project on the sphere

compute 2D layouts of each
emisphere

(image by Clément Maria)



Graph separators: definition



Separators: definitions

Given a graph G = (V,E) with n vertices, an ε-separator is a partition

(A,B, S) of the vertices such that:

• (ε-balance) every connected component of G \ S has size at most εn

Def

Def

• S is small: |S| = o(n)

• (separation) there are no edges between A and B



Separators: definitions

Given a weighted graph G = (V,E) with n vertices and total weight W , a

separator is a partition (A,B, S) of the vertices such that:

• (balance) every connected component of G \ S has weight at most 1
2W

Def

• S is small: |S| = O(
√
n)

• (separation) there are no edges between A and B



Separators for trees
Lemma: A weighted tree T admits a separator consisting of a
single vertex (computable in O(n) time)

Proof:

v

T
C1(v)

C2(v)

C3(v)
w

T \ v := C1(v) ∪ C2(v) ∪ . . .

First step: compute for each vertex v ∈ T the weight of the sub-
tree tv rooted at v (total overall cost: linear time)

r

we know in O(1) time the weight
of each component Ci(v)

Case 1: W (Ci(v)) ≤ 1
2W ∀i

return v

Case 2: W (Cmax(v)) >
1
2W

vCmax(v)
w

r

C1(w)

C2(w)

restart from w
move to the descendant w ∈ Cmax(v)

Correctness:
The algorithm visit each vertex at most once (we move from v to its descendant w)

C4(w)

The component Ci(w) containig v is small: W (Ci(w)) ≤ W −W (Cmax(v) ≤ 1
2



Separators: definitions

examples: what about grid graphs? and general graphs? planar graphs?



Planar Separators theorems

Every planar graph with n vertices admits a 2
3-

separator of size at most 4
√
n, that can be computed

in linear time.

Thm (Lipton-Tarjan, ’79)

(purely combinatorial proof: perform a BFS traversal)

(Image by Klein)

(geometric proof: omitted)

Every planar graph with n vertices admits a 3
4-

separator of size (in expectation) at most 2
√
n.

Thm (Spielman and Teng)

p0
p1

Φ(p0) Φ(p1)

p0
p1

stereographic projection +
Möbius transformation

Compute intersections with
a random hyperplane passing
through the origin

sphere packing (Koebe)

Thm (Koebe-Andreev-Thurston)



Let G be a planar weighted graph with n vertices. Let U be a BFS spanning tree of T of depth
at most d, rooted at r. Then we can compute in linear time a separator of size at most 3d+1.

Theorem

Proof (assume the graph is triangulated)

Planar Separators for graphs of small radius

Define the spanning tree T ∗ := G∗ \ U ∗

Apply previous Lemma to T ∗, getting a separating vertex c∗

(all component of T ∗ \ c∗ are small, of cost at most 1
2
)

t

c∗
T ∗

S

P1(t)

P2(t)

P3(t)

computes three shortest paths Pi(t) from t to the root vertex r

S := t ∪ P1 ∪ P2 ∪ P3

r
Claim 1:

Claim 2:

The separator S has at most 3d+ 1 vertices

since each component C∗ of T ∗ \ c∗ has weight at most 1
2

Each component C of G \ S has weight at most 1
2

and the total (inner) weight of C is at most the weight of C∗

Construct a weighted dual graph G∗: each face (a dual vertex) get the weight of a vertex in G

each vertex assigns its weight to a unique incident face



Let G be a connected planar graph with n vertices. Then we can compute in linear time a
separator of size at most O(

√
n).

Theorem

Proof:

Planar Separators for graphs of small radius

Claim 1:
The set of vertices Li at level li are a separator (splitting G)

Compute a BFS spanning tree T of G, rooted at r

l1

l2
l3

l4 = lm
l5
l6

r

define lm := median level

∑
i<m W (Li) ≤ 1

2∑
i>m W (Li) ≤ 1

2

define linf := largest level lj (j < i) such that |Llinf
| ≤

√
n

define lsup := smallest level lj (j > i) such that |Llsup| ≤
√
n

Remark:
the levels lk between linf and lsup are large: |Lk| ≥

√
n+1 (for inf < k < sup)

Claims:
number of levels lk between linf and lsup: lsup − linf ≤ n√

n+1
<

√
n

The set of vertices S ′ := Linf ∪ Lsup is small: |S ′| ≤ 2
√
n

The connected components of G \ S ′ which are large (weight
larger than 1

2
) are between the levels linf and lsup

(by definition lm := median level)



Let G be a connected planar graph with n vertices. Then we can compute in linear time a
separator of size at most O(

√
n).

Lemma

Proof:

Planar Separators for graphs of small radius

Claim 1: The set of vertices Li at level li are a separator (splitting G)

Compute a BFS spanning tree T of G, rooted at r

linf

lsup

r′

define lm := median level

∑
i<m W (Li) ≤ 1

2∑
i>m W (Li) ≤ 1

2

Last step:

Take the graph G′ induced by the vertices strictly between the levels linf and lsup

Apply previous Lemma to graph G′: its radius is O(
√
n),

so the separator S has size O(
√
n)

R = O(
√
n)

return Llinf ∪ Llsup ∪ S

S

S

S

G′ is not necessarily connected: create a graph G′′ by adding a dummy vertex r′ and
connecting it to vertices in linf



Graph separators: algorithmic applications



(classical) Graph representations

1 0

0

v1

v4

v5

v2

v3

0

0

0

0

0

1 1

1 1

1 11 1

1 1

1 1

1

1

11

1

adjacency matrix

AG[i, j] ={ 0

1 vi adjacent vj

otherwise

O(n2) bits

2 43

. . .

v1
v2 1 54 3

5 4 1 2

3

4

4

di

Adjacency list (and its variants)

O(n log n) bits

v3

2 43

. . .

1 543

541 2

3

4

4

sorted neighbors

1 11

. . .

−1 12 1

−2 1 2 1

3

4

4

difference encodingneighbors in arbitrary order

O(n log n) bits O(n log n) bits

1 11

. . .

1 12 1

2 1 2 1

3

4

4

di positive differences

1

0

0

sign

. . .. . .

difference encoding

O(n log n) bits



Encoding of planar graphs in O(n) bits

Any planar graph with n vertices can be encoded with at most O(n) bits.

Thm

Solution: use difference encoding of adjacency lists + separators

this time we get O(n) bits

1 11

. . .

1 12 1

2 1 2 1

3

4

4

di positive differences

1

0

0

sign

. . .. . .

Why does it work? Because vertices which are ”close” in the graph get ”close indices”



Encoding of planar graphs in O(n) bits

Any planar graph with n vertices can be encoded with at most O(n) bits.

Thm

Proof (overview):

G

G1 G2

S
size(G) = size(S) + size(G1) + size(G2)

size(S) = O(|S| log |S|)

|S| = O(
√
n)

|G| := n

|G1| ≤ O(αn) |G2| ≤ O(αn)

size(S) = O(
√
|G| log |G|)

size(n) = C ·
√
n log n+ size(αn) + size(αn)

size(n) = O(n)

Step 1: compute a recursive decompo-
sition using (edge) separators

Step 2: encode using adjacency lists with dif-
ference encoding

encode the edges in S as usual

encode each piece Gi recursively



Given a planar graph G of size n and weight W = 1, and a parameter 0 ≤ ε ≤ 1.

Then it is possible to compute a separator S ⊂ V of size at most |S| = O(
√

n
ε ),

such that each connected component of G\S has size at most ε. The computation

time is O(n log n).

Thm (Lipton Tarjan)
Recursive graph decompositions and hierarchical representations

G

G′ G′′

Separator size Component size

O(
√
n)

O(nc)

O(n
2
3)

O(n
3
5)

O(n)

O(n2−2c)

O(n
2
3)

O(n
4
5)

O(
√

n
ε ) O(ε)

Trade-offs



LetG be a planar graph on n vertices. Show that you can compute
in O(n log n) time an approximated independent set of vertices I
whose size, for large values of n, is closed to the size of a maximum
independent set Iopt:

|I|−|Iopt|
|Iopt| tends to 0 with increasing n.

Thm (approx scheme)
Maximum Independent Set

Proof:

Def : maximum independent
set Iopt: a set of non adjacent
vertices (no edges between pairs
of vertices in Iopt) of maximal
size



LetG be a planar graph on n vertices. Show that you can compute
in O(n log n) time an approximated independent set of vertices I
whose size, for large values of n, is closed to the size of a maximum
independent set Iopt:

|I|−|Iopt|
|Iopt| tends to 0 with increasing n.

Thm (approx scheme)
Maximum Independent Set

Proof:

Def : maximum independent
set Iopt: a set of non adjacent
vertices (no edges between pairs
of vertices in Iopt) of maximal
size

Idea: apply previous result with parameter ε = log log n
n

Remark: planar graphs are 4-colorable

sub-components Gi have size |Gi| ≤ W (Gi)
1
n

= O(log log n)

the vertex separator S has size at most |S| = O( n√
log log n

)

use uniform weights: w(vi) =
1
n

|Iopt| ≥ n
4

|I|−|Iopt|
|Iopt| ≤ O(n/

√
log log n)
n/4 = O( 1√

log log n
)

|Iopt| − |I| ≤ |S| = O( n√
log log n

)
Trick: in each Gi use brute-force to compute a
maximal independent set (checking all subsets)

for each Giof size ni it takes: O(ni · 2ni) in overall: O( n
log logn

(log log n) · 2log logn) = O(n log n)

G2

G1



Computing triangles and cliques in planar graphs



Let G be a graph on n vertices and m edges. Then it
is possible to count (or list) the triangles of G in O(nm)
time.

Thm
Counting triangles

Proof:
u

v1

v2

v3

w1

w2

w3

w4

w5

// vertex removal in O(du) time

triangle:= cycle of size 3 (complete
graph on 3 vertices)



Let G be a graph on n vertices and m edges. Then it
is possible to count (or list) the triangles of G in O(nm)
time.

Thm
Counting triangles

Proof:
u

v1

v2

v3

w1

w2

w3

w4

w5

// vertex removal in O(du) time

∑
v∈V deg2(v) ≤ (maxv∈V deg(v)) · (

∑
v∈V deg(v)) ≤ (|V | − 1)

∑
v∈V deg(v) = O(|V ||E|)

each vertex v is marked at most deg(v) times: each time the inner loop performs at most
deg(v) iterations: the cost per vertex is thus at most (deg(v))2



Let G be a planar graph on n vertices and m edges. Then
it is possible to count (or list) the triangles of G in O(n)
time.

Thm
Counting triangles in linear time (in planar graphs)

Proof:
u

v1

v2

v3

w1

w2

w3

w4

w5

// vertex removal in O(du) time

∑
(u,v)∈E min{deg(u), deg(v)} ≤ 18n

the time complexity becomes
∑

(u,v)∈E min(du, dv)

Claim (exercise, homework I)

order vertices of V according to non-increasing degree as (u1, . . . , un)

// visit vertices according the computed order

for any edge {u, v} for a pair of vertices u, v considered in the algorithm, we have deg(v) ≤ deg(u)

Show that in a planar graph with n vertices we have:



Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list)
all 4-cliques of G in O(n) time.

Thm
Counting 4-cliques in linear time (in planar graphs)

Proof: [case analysis, exercise]

Claim 1:
Consider a 4-clique Q = {u, v, w, x} in G.
Show that the four vertices u, v, w, x cannot all belong to the same level Vj.

• assume u ∈ Vj−1 and v, w, x ∈ Vj. Show that for one of the tree vertices v, w, x the only
incident edge lying in Ej has u has other extremity.

• assume u,w, x ∈ Vj−1 and x ∈ Vj. Show that the edges incident to x lying in Ej are
exactly (u, x), (v, x) and (w, x).

• assume u, v ∈ Vj−1 and w, x ∈ Vj. Show that one of the vertices w, x has exactly two
incident edges lying in Ej (whose other extremities are u and v).

Claim 2: consider a 4-clique Q = {u, v, w, x} in G, and let j be a positive integer ≤ k.

Hint: compute a BFS of G and partition the vertices into k + 1 sets {V0, V1, . . . , Vk}
Vk := vertices at the distance k from the root (seed) vertex
define Ej := set of edges e = (u, v) s. t. u ∈ Vj−1 and v ∈ Vj

(an edge belongs to Ej if it is connecting two vertices on levels Vj and Vj−1)



Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list)
all 4-cliques of G in O(n) time.

Thm
Counting 4-cliques in linear time (in planar graphs)

Proof: [case analysis, exercise]

Claim 1:
Consider a 4-clique Q = {u, v, w, x} in G.
Show that the four vertices u, v, w, x cannot all belong to the same level Vj.

• assume u ∈ Vj−1 and v, w, x ∈ Vj. Show that for one of the tree vertices v, w, x the only
incident edge lying in Ej has u has other extremity.

• assume u,w, x ∈ Vj−1 and x ∈ Vj. Show that the edges incident to x lying in Ej are
exactly (u, x), (v, x) and (w, x).

• assume u, v ∈ Vj−1 and w, x ∈ Vj. Show that one of the vertices w, x has exactly two
incident edges lying in Ej (whose other extremities are u and v).

Claim 2: consider a 4-clique Q = {u, v, w, x} in G, and let j be a positive integer ≤ k.

Hint: compute a BFS of G and partition the vertices into k + 1 sets {V0, V1, . . . , Vk}
Vk := vertices at the distance k from the root (seed) vertex
define Ej := set of edges e = (u, v) s. t. u ∈ Vj−1 and v ∈ Vj

(an edge belongs to Ej if it is connecting two vertices on levels Vj and Vj−1)

s

u

v w

x
Claim 1:

Contracting the edges
we get K5


