MPRI 2-38-1: Algorithms and combinatorics for geometric graphs

Lecture 6

Schnyder woods for 3-connected plane graphs

october 23, 2024

Luca Castelli Aleardi

Schnyder woods (definitions)

Schnyder labeling (3-connected maps): definition

3-connect. map M

A1) the angles at a_i have labels i + 1, i - 1

A2) rule for vertices: at each vertex there are non-empty intervals of labels 0, 1 and 2 (listed counter-clockwise)

A3) rule for faces: at each inner faces the angles define three non-empty intervals of labels 0, 1 and 2 in ccw order. For the outer face the angles are listed clockwise.

Schnyder woods (3-connected maps): definition

W1) edges have one or two (opposite) orientations. If an edge 3 is bo-oriented than the two direction have distinct colors

W2) the edges at a_i are outgoing of color i

W3) **local rule for vertices:** at each vertex there are three outgoing edges (one in each color) satisfying the local Schnyder rule

W4) there is no interior face whose boundary is a directed cycle in one color

Schnyder labelings: angles around edges

Lemma

Given a Schnyder labeling of M^{σ} , the angles of each edges have colors 0, 1, 2 and are of the following 2 types:

proof:

Schnyder labelings: angles around edges

Lemma

Given a Schnyder labeling of M^{σ} , the angles of each edges have colors 0, 1, 2 and are of the following 2 types:

proof:

Schnyder labelings: angles at exterior vertices

Corollary

Given a Schnyder labeling of M^{σ} , all interior angles at a vertex a_i have label i

Theorem

There is a correspondence between the Schnyder labelings of M^σ and the Schnyder woods of M^σ

Schnyder wood+ Schnyder labeling of M^σ

Theorem

There is a correspondence between the Schnyder labelings of M^σ and the Schnyder woods of M^σ

proof: Assume M^{σ} is endowed with a Schnyder labeling

Rule of vertices (A2)

Assume (W4) is violated: there is a cycle in one color

Then the coloring rule of bi-oriented edges implies that all angles have the same color

Rule of faces (A3)

no directed cycles in one color (W4)

Theorem

There is a correspondence between the Schnyder labelings of M^{σ} and the Schnyder woods of M^{σ}

use a counting argument (double counts the angles

proof: Assume M^{σ} is endowed with a Schnyder wood

 u_2

Remark:

around vertices/faces/edges)

Turning around a face in ccw direction The number of changes d(f) is a multiple of 3, and d(f) > 0 the angle will be i or i + 1 \longrightarrow (otherwise there is a directed cycle of edges in one color)

bunts the angles d(v) = 3 $d(e) = \begin{cases} 3 & \text{for all (normal) edges} \\ 2 & \text{for the three half-edges} \end{cases}$

$$\sum_{v} d(v) + \sum_{f} d(f) = \sum_{e} d(e) \longrightarrow 3n + \sum_{f} d(f) = 3|E| + 6$$

Euler formula implies $\sum_{f} d(f) = 3|F| \longrightarrow d(f) = 3$ for all faces is true

Remark:

The condition (W4) of Schnyder woods is important

 a_1

Schnyder woods: spanning property

Corollary: Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)

Non crossing paths

 a_2

 $|a_1|$

Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)

Corollary

For each inner vertex v the three monochromatic paths P_0 , P_1 , P_2 directed from v toward each vertex a_i are vertex disjoint (except at v) and partition the inner faces into three sets $R_0(v)$, $R_1(v)$, $R_2(v)$

proof: the existence of two paths $P_i(v)$ and $P_{i+1}(v)$ which are crossing would contradicts previous theorem

Planar straight-line drawings (of planar graphs)

Paths and regions

Lemma Let (T_0, T_1, T_2) a Schnyder wood of \mathcal{M} . If $u \in R_i(v)$ then $R_i(u) \subseteq R_i(v)$ If $u \in R_i^{int}(v)$ then $R_i(u) \subset R_i(v)$

proof:

Case 1: $u \in R_i^{int}(v)$

first step: compute the paths $P_{i+1}(u)$ and $P_{i-1}(u)$

They must intersect the boundary of $R_i(v)$ at x and y

Remark: x and y are different from vand we have $y \in P_{i+1}(u)$ and $x \in P_{i-1}(u)$ (because of Schnyder rule)

so we have: $R_i(u) \subset R_i(v)$

Case 2b: $u \in P_{i-1}(v)$ (u, u') is bi-oriented

Proceed by induction on the path ${\cal P}_{i-1}(\boldsymbol{v})$

 $R_i(u) \subseteq R_i(v)$

Paths and regions

Remarks: Let (u, v) of color *i* oriented from *u* to *v*

$$v \in P_i(u) \longrightarrow \begin{cases} v \in R_{i+1}(u) \\ v \in R_{i-1}(u) \\ u \in R_i(v) \end{cases}$$

 $R_i(u) \subset R_i(v)$ $R_{i+1}(v) \subset R_{i+1}(u)$ $R_{i-1}(v) \subset R_{i-1}(u)$ **Case 2:** (u, v) is bidirectional

 $R_i(u) \subset R_i(v)$ $R_{i-1}(v) \subseteq R_{i-1}(u)$ $R_{i+1}(v) \subseteq R_{i+1}(u)$

Regions and coordinates

Remarks: Let (u, v) of color i oriented from u to v

- $v \coloneqq \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2 = \frac{v_0}{|F|-1}x_0 + \frac{v_1}{|F|-1}x_1 + \frac{v_2}{|F|-1}x_2$
- $R_i(u) \subseteq R_i(v) \longrightarrow |R_i(u)| \le |R_i(v)| \longrightarrow u_i \le v_i$
- $v_0 + v_1 + v_2 = f 1$
- For every edge (u, v) there are some indices $i, j \in \{0, 1, 2\}$ s.t.

$$\left|\begin{array}{c} u_i < v_i \\ u_j > v_j \end{array}\right|$$

v $(5, 6, 2) := (v_0, v_1, v_2)$ **u** $(7, 3, 3) := (u_0, u_1, u_2)$

Face counting algorithm

DEF. For a vertex v of M, denote:

- $P_i(v) =$ directed path in T_i to the root v_i ,
- $R_i(v)$ = region bounded by the two paths $P_{i-1}(v)$ and $P_{i+1}(v)$,
- $r_i(v) =$ number of faces in region $R_i(v)$.

THM. The map

$$\mu: v \longmapsto \frac{1}{f-1} \left(\boldsymbol{r}_1(v) \cdot \boldsymbol{p}_1 + \boldsymbol{r}_2(v) \cdot \boldsymbol{p}_2 + \boldsymbol{r}_3(v) \cdot \boldsymbol{p}_3 \right)$$

defines a straightline embedding of M in the plane where all faces are convex.

u = (1, 2)

MPRI 2-38-1: Algorithms and combinatorics for geometric graphs

Lecture 6 - part II

Schnyder woods and orthogonal surfaces

october 23, 2024

Luca Castelli Aleardi

Schnyder woods and orthogonal surfaces

Let $V \subset \mathbb{Z}^3$ be an antichain Orthogonal surface $S_V :=$ boundary of $\langle \mathcal{V} \rangle$ (elements are pairwise incomparable) $\langle \mathcal{V} \rangle := \{ \alpha \in R^3 | \alpha \ge v, \text{ for some } v \in \mathcal{V} \} = \bigcup_v \triangle_v$

Orthogonal surfaces and elbow geodesics

Dominance order $(\mathbf{u}, \mathbf{v} \in \mathbb{Z}^3)$ $\mathbf{u} \leq \mathbf{v}$ iff $u_i \leq v_i, \forall i = 0, 1, 2$

join $\mathbf{u} \lor \mathbf{v} :=$ maximum component-wise meet $\mathbf{u} \land \mathbf{v} :=$ minimum component-wise

$$(4, 2, 1) \lor (2, 1, 4) = (4, 2, 4)$$

 $(0, 7, 0) \lor (0, 3, 5) = (0, 7, 5)$

 $\mathcal{V} = \{ (0,0,7) \ (0,7,0) \ (7,0,0) \ (2,4,2) \ \dots \}$

 $\langle \mathcal{V} \rangle := \{ \alpha \in R^3 | \alpha \ge v, \text{ for some } v \in \mathcal{V} \}$ Orthogonal surface $S_V :=$ boundary of $\langle \mathcal{V} \rangle$ Let $V \subset \mathbb{Z}^3$ be an **antichain** (elements are pairwise incomparable)

Orthogonal surfaces and elbow geodesics

 $(4, 2, 1) \land (2, 1, 4) = (4, 2, 4)$ $(0, 7, 0) \land (0, 3, 5) = (0, 7, 5)$

elbow geodesic of u and v:

the union of the two line segments $(u, u \lor v)$ and $(u \lor v, v)$

- every $v \in S_V$ has three orthogonal arcs (parallel to each axis)
- every elbow geodesic contains at least one bounded orthogonal arc

Orthogonal surfaces and elbow geodesics

A **geodesic embedding** of a planar map G: a drawing of G on $S_{\mathcal{V}}$ s.t.

- (G1) The vertices of G correspond to the points of $S_{\mathcal{V}}$
- (G2) every edge of G is drawn as an elbow geodesic on $S_{\mathcal{V}}$ Every bounded orthogonal arc of $S_{\mathcal{V}}$ is part of an edge of G

(G3) There are no edge crossings on $S_{\mathcal{V}}$

From geodesic embeddings to Schnyder woods

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

From geodesic embeddings to Schnyder woods

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

From geodesic embeddings to Schnyder woods

Thm: The edge orientation corresponding to a geodesic embedding is a Schnyder wood

in the example $u \lor v = (v_0, u_1, u_2)$

Claim 1: The local Schnyder condition (W3) is valid

- Every vertex has 3 outgoing edges (one for each color): the three orthogonal arcs (by construction)
- Let us consider an edge $\{u = (u_0, u_1, u_2), v = (v_0, v_1, v_2)\}$ incident at v in the sector parallel to the vertical yz-plane

The edge $\{u, v\}$ contains the orthogonal arc $(u \lor v, u)$ parallel to the *x*-direction and lying in the same horizontal plane of u: its color must be red (color 0), and its orientation is outgoing from u.

reminder: the join $u \lor v$ is equal or higher than u and v (in every direction)

Claim 2: condition (W4) of the definition is valid Remark: a path of edges of color i lead to increasing coordinates in i-direction (W4) no cycles

Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

proof (assume there are edge crossings)

Fact 1: edge crossing are of the form (as orthogonal arcs cannot cross)

Fact 2: edges (u, v) and (z, y) are of same color, lying on the same plane: $u_2 = y_2$ (in the example)

Fact 3: vertices u and y have the same z-coordinate thus there is a bi-directed path P^* between u and y

Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

proof (assume there are edge crossings)

Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

proof (assume there are edge crossings)

Let s := first vertex at the crossing of $P_1(u)$ and $P_1(v)$

Remark: y is an inner vertex in the (red) region $R_0(v)$

by assumption (z, y) is an edge of $G \longrightarrow (z, y)$ belong to $R_0(v) \longrightarrow z$ belong to $R_0(v)$

Since (z, y) belongs to $R_0(v)$ we have: $v_0 \ge z_0$ (contradiction)

From geodesic embeddings to straight-line planar drawings

Thm: Given a planar (3-connected) map G, the region counting algorithm leads to a planar straight-line drawing of G (no edge corssings). Moreover, the faces of G are convex.

PRIMAL-DUAL GEODESIC EMBEDDING

(image by V. Pilaud)

THM. Reversing the orientation, the same orthogonal surface admits a geodesic embedding of the map M, of its suspended dual map M^* , and of its primal-dual map \widetilde{M} .

Algorithms and combinatorics for geometric graphs Lecture 6: part III

Efficient algorithms on planar graphs

october 23, 2024

Luca Castelli Aleardi

Graph separators

Many Algorithmic applications:

Approximation scheme for Maximum Independent Set

Graph Encoding: compression schemes and compact representations

Graph Drawing: spherical parameterizations

Point Location (in optimal time)

Divide&Conquer for (planar) graphs: Small Separators Encoding planar graphs in O(n) bits Approximation scheme for

Maximum Independent Set

(image by Clément Maria)

Graph Drawing: spherical parameterizations

Graph separators: definition

Separators: definitions

Def

Given a graph G = (V, E) with n vertices, an ε -separator is a partition (A, B, S) of the vertices such that:

- (ε -balance) every connected component of $G \setminus S$ has size at most εn
- \bullet (separation) there are no edges between A and B
- S is small: |S| = o(n)

Separators: definitions

Def

Given a weighted graph G = (V, E) with n vertices and total weight W, a separator is a partition (A, B, S) of the vertices such that:

- (balance) every connected component of $G \setminus S$ has weight at most $\frac{1}{2}W$
- \bullet (separation) there are no edges between A and B
- S is small: $|S| = O(\sqrt{n})$

Separators for trees

Lemma: A weighted tree T admits a separator consisting of a single vertex (computable in O(n) time)

Proof:

Separators: definitions

examples: what about grid graphs? and general graphs? planar graphs?

Planar Separators for graphs of small radius

Theorem

Let G be a planar weighted graph with n vertices. Let U be a BFS spanning tree of T of depth at most d, rooted at r. Then we can compute in linear time a separator of size at most 3d + 1.

Proof (assume the graph is triangulated)

Construct a weighted dual graph G^* : each face (a dual vertex) get the weight of a vertex in Geach vertex assigns its weight to a unique incident face

Define the spanning tree $T^* := G^* \setminus U^*$

Apply previous Lemma to T^* , getting a separating vertex c^* (all component of $T^* \setminus c^*$ are small, of cost at most $\frac{1}{2}$)

computes three shortest paths $P_i(t)$ from t to the root vertex r

$$S := t \cup P_1 \cup P_2 \cup P_3$$

Claim 1: The separator S has at most 3d + 1 vertices

Claim 2: Each component C of $G \setminus S$ has weight at most $\frac{1}{2}$

since each component C^* of $T^* \setminus c^*$ has weight at most $\frac{1}{2}$ and the total (inner) weight of C is at most the weight of C^*

Planar Separators for graphs of small radius

Theorem

Let G be a connected planar graph with n vertices. Then we can compute in linear time a separator of size at most $O(\sqrt{n})$.

Proof: Compute a BFS spanning tree T of G, rooted at r

Claim 1:

The set of vertices L_i at level l_i are a separator (splitting G)

define $l_m :=$ median level $\sum_{i < m} W(L_i) \le \frac{1}{2}$ $\sum_{i > m} W(L_i) \le \frac{1}{2}$

define $l_{inf} :=$ largest level l_j (j < i) such that $|L_{l_{inf}}| \le \sqrt{n}$ define $l_{sup} :=$ smallest level l_j (j > i) such that $|L_{l_{sup}}| \le \sqrt{n}$

Remark:

the levels l_k between l_{inf} and l_{sup} are large: $|L_k| \ge \sqrt{n} + 1$ (for inf < k < sup)

- Claims:
 - number of levels l_k between l_{inf} and l_{sup} : $l_{sup} l_{inf} \le \frac{n}{\sqrt{n+1}} < \sqrt{n}$
 - The set of vertices $S' := L_{inf} \cup L_{sup}$ is small: $|S'| \le 2\sqrt{n}$
 - The connected components of $G \setminus S'$ which are large (weight larger than $\frac{1}{2}$) are between the levels l_{inf} and l_{sup}

G l_2 l_3 $l_4 = l_m$ l_5 l_6

(by definition $l_m :=$ median level)

Planar Separators for graphs of small radius

Lemma

Let G be a connected planar graph with n vertices. Then we can compute in linear time a separator of size at most $O(\sqrt{n})$.

Proof: Compute a BFS spanning tree T of G, rooted at r

Claim 1: The set of vertices L_i at level l_i are a separator (splitting G)

define $l_m :=$ median level $\sum_{i < m} W(L_i) \le \frac{1}{2}$ $\sum_{i > m} W(L_i) \le \frac{1}{2}$

Last step:

Take the graph G' induced by the vertices strictly between the levels l_{inf} and l_{sup} G' is not necessarily connected: create a graph G'' by adding a dummy vertex r' and connecting it to vertices in l_{inf}

Apply previous Lemma to graph G': its radius is $O(\sqrt{n})$, so the separator S has size $O(\sqrt{n})$ return $L_{l_{inf}} \cup L_{l_{sup}} \cup S$

Graph separators: algorithmic applications

(classical) Graph representations

adjacency matrix $A_G[i,j] = \begin{cases} 1 & v_i \text{ adjacent } v_j \\ 0 & \text{otherwise} \end{cases}$

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ O(n^2) \text{ bits} \end{bmatrix}$$

$$v_2$$
 v_1 v_4 v_5

Adjacency list (and its variants)

$d_i O(n \log n)$					its			$O(n \log n)$ bits					$O(n \log n)$ bits					$egin{array}{c} O(n\log n) ext{ bits } \ d_i ext{ sign positive differences } \end{array}$					
v_1	$\boxed{3}$	2	3	4	_		$\overline{3}$	2	3	4	-		$\boxed{3}$	1	1	1		3	1	1	1	1	
v_2	4	1	4	5	3		4	1	3	4	5		4	-1	2	1	1	4	0	1	2	1	1
v_3	4	5	4	1	2		4	1	2	4	5		4	-2	1	2	1	4	0	2	1	2	1
																			•••	•			
neighbors in arbitrary order sorted neighbors								difference encoding					difference encoding										

Encoding of planar graphs in O(n) bits

Thm

Any planar graph with n vertices can be encoded with at most O(n) bits.

Solution: use difference encoding of adjacency lists + separators

this time we get O(n) bits

Why does it work? Because vertices which are "close" in the graph get "close indices"

Encoding of planar graphs in O(n) bits

Thm

Any planar graph with n vertices can be encoded with at most O(n) bits. **Proof (overview):**

Step 1: compute a recursive decomposition using (edge) separators

Step 2: encode using adjacency lists with difference encoding

encode the edges in ${\cal S}$ as usual

$$size(S) = O(|S| \log |S|)$$
$$size(S) = O(\sqrt{|G|} \log |G|)$$

encode each piece G_i recursively

$$size(G) = size(S) + size(G_1) + size(G_2)$$

 $size(n) = C \cdot \sqrt{n \log n} + size(\alpha n) + size(\alpha n)$

$$size(n) = O(n)$$

Recursive graph decompositions and hierarchical representations Thm (Lipton Tarjan)

Given a planar graph G of size n and weight W = 1, and a parameter $0 \le \varepsilon \le 1$. Then it is possible to compute a separator $S \subset V$ of size at most $|S| = O(\sqrt{\frac{n}{\varepsilon}})$, such that each connected component of $G \setminus S$ has size at most ε . The computation time is $O(n \log n)$.

Trade-offs							
Separator size	Component size						
$O(\sqrt{n})$	O(n)						
$O(\sqrt{\frac{n}{\varepsilon}})$	O(arepsilon)						
$O(n^c)$	$O(n^{2-2c})$						
$O(n^{rac{2}{3}})$	$O(n^{rac{2}{3}})$						
$O(n^{\frac{3}{5}})$	$O(n^{rac{4}{5}})$						

Maximum Independent Set

Thm (approx scheme)

Let G be a planar graph on n vertices. Show that you can compute in $O(n \log n)$ time an approximated independent set of vertices I whose size, for large values of n, is closed to the size of a maximum independent set I_{opt} : $\frac{|I|-|I_{opt}|}{|I_{opt}|}$ tends to 0 with increasing n.

Proof:

Def: maximum independent set I_{opt} : a set of non adjacent vertices (no edges between pairs of vertices in I_{opt}) of maximal size

Maximum Independent Set

Thm (approx scheme)

Let G be a planar graph on n vertices. Show that you can compute in $O(n \log n)$ time an approximated independent set of vertices I whose size, for large values of n, is closed to the size of a maximum independent set I_{opt} : $\frac{|I|-|I_{opt}|}{|I_{opt}|}$ tends to 0 with increasing n.

Proof: use uniform weights: $w(v_i) = \frac{1}{n}$

Idea: apply previous result with parameter $\varepsilon = \frac{\log \log n}{n}$

Def: maximum independent set I_{opt} : a set of non adjacent vertices (no edges between pairs of vertices in I_{opt}) of maximal size

sub-components G_i have size $|G_i| \leq \frac{W(G_i)}{\frac{1}{n}} = O(\log \log n)$ the vertex separator S has size at most $|S| = O(\frac{n}{\sqrt{\log \log n}})$ Trick: in each G_i use brute-force to compute a maximal independent set (checking all subsets) $|I_{opt}| - |I| \leq |S| = O(\frac{n}{\sqrt{\log \log n}})$ for each G_i of size n_i it takes: $O(n_i \cdot 2^{n_i})$ in overall: $O(\frac{n}{\log \log n}(\log \log n) \cdot 2^{\log \log n}) = O(n \log n)$ Remark: planar graphs are 4-colorable $|I_{opt}| \geq \frac{n}{4}$ $\frac{|I| - |I_{opt}|}{|I_{ort}|} \leq \frac{O(n/\sqrt{\log \log n})}{n/4} = O(\frac{1}{\sqrt{\log \log n}})$ Computing triangles and cliques in planar graphs

Counting triangles

Thm

Let G be a graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in O(nm)time.

Proof:

procedure CountTriangles(G = (V, E))

Count := 0;

for each vertex $u \in V$

 $\underline{\text{mark}}$ all vertices which are neighbors of u in G; for each marked vertex $v \in V$

 $\mathbf{do} \left\{ \mathbf{do} \left\{ \begin{array}{l} \mathbf{for} \text{ each vertex } w \text{ which is a neighbor of } v \text{ in } G \\ \mathbf{do} \text{ if } w \text{ is } \underline{\text{marked}} \text{ then } Count := Count + 1; \\ \underline{\text{unmark}} \text{ vertex } v; \end{array} \right. \right\}$

 $\bigcup_{u \in G} G := G \setminus \{u\}; // \text{ vertex removal in } O(d_u) \text{ time return } Count;$

triangle:= cycle of size 3 (complete
graph on 3 vertices)

Counting triangles

Thm

Let G be a graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in O(nm)time.

Proof:

procedure CountTriangles(G = (V, E))

Count := 0;

for each vertex $u \in V$

<u>mark</u> all vertices which are neighbors of u in G; for each marked vertex $v \in V$

 $\mathbf{do} \begin{cases} \mathbf{do} & \begin{cases} \mathbf{for} \text{ each vertex } w \text{ which is a neighbor of } v \text{ in } G \\ \mathbf{do} \text{ if } w \text{ is } \underline{\text{marked then } Count := Count + 1;} \\ \underline{\text{unmark vertex } v;} \\ G := G \setminus \{u\}; \ // \text{ vertex removal in } O(d_u) \text{ time} \end{cases} \end{cases}$

return Count;

- each vertex v is marked at most deg(v) times: each time the inner loop performs at most deg(v) iterations: the cost per vertex is thus at most $(deg(v))^2$
- $\sum_{v \in V} \deg^2(v) \le (\max_{v \in V} \deg(v)) \cdot (\sum_{v \in V} \deg(v)) \le (|V| 1) \sum_{v \in V} \deg(v) = O(|V||E|)$

Counting triangles in linear time (in planar graphs) Thm

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in O(n)time.

Proof:

procedure CountTriangles(G = (V, E))

Count := 0; order vertices of V according to non-increasing degree as (u_1, \ldots, u_n) for each vertex $u \in V$ // visit vertices according the computed order

 $\begin{cases} \underline{\text{mark}} \text{ all vertices which are neighbors of } u \text{ in } G; \\ \mathbf{for each } \underline{\text{marked}} \text{ vertex } v \in V \end{cases}$

(for each vertex w which is a neighbor of v in G

do
do
do
do if w is marked then
$$Count := Count + 1;$$

 $G := G \setminus \{u\}; // \text{ vertex removal in } O(d_u) \text{ time}$
return $Count:$

• for any edge $\{u, v\}$ for a pair of vertices u, v considered in the algorithm, we have $\deg(v) \leq \deg(u)$

 w_3

 w_2

• the time complexity becomes $\sum_{(u,v)\in E} \min(d_u, d_v)$

Claim (exercise, homework I) Show that in a planar graph with n vertices we have: $\sum_{(u,v)\in E} \min\{\deg(u), \deg(v)\} \le 18n$

Counting 4-cliques in linear time (in planar graphs) **Thm**

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in O(n) time. **Proof:** [case analysis, exercise]

Hint: compute a BFS of G and partition the vertices into k + 1 sets $\{V_0, V_1, \dots, V_k\}$ $V_k :=$ vertices at the distance k from the root (seed) vertex define $E_j :=$ set of edges e = (u, v) s. t. $u \in V_{j-1}$ and $v \in V_j$ (an edge belongs to E_j if it is connecting two vertices on levels V_j and V_{j-1})

Claim 1:

• Consider a 4-clique
$$Q = \{u, v, w, x\}$$
 in G .
Show that the four vertices u, w, w, x connet all belong to t

Show that the four vertices u, v, w, x cannot all belong to the same level V_j .

Claim 2: consider a 4-clique $Q = \{u, v, w, x\}$ in G, and let j be a positive integer $\leq k$.

- assume $u \in V_{j-1}$ and $v, w, x \in V_j$. Show that for one of the tree vertices v, w, x the only incident edge lying in E_j has u has other extremity.
- assume $u, w, x \in V_{j-1}$ and $x \in V_j$. Show that the edges incident to x lying in E_j are exactly (u, x), (v, x) and (w, x).
- assume $u, v \in V_{j-1}$ and $w, x \in V_j$. Show that one of the vertices w, x has exactly two incident edges lying in E_j (whose other extremities are u and v).

Counting 4-cliques in linear time (in planar graphs) **Thm**

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in O(n) time. **Proof:** [case analysis, exercise]

Hint: compute a BFS of G and partition the vertices into k + 1 sets $\{V_0, V_1, \ldots, V_k\}$ $V_k :=$ vertices at the distance k from the root (seed) vertex define $E_j :=$ set of edges e = (u, v) s. t. $u \in V_{j-1}$ and $v \in V_j$

(an edge belongs to E_j if it is connecting two vertices on levels V_j and V_{j-1})

Claim 1:

• Consider a 4-clique
$$Q = \{u, v, w, x\}$$
 in G .

Show that the four vertices u, v, w, x cannot all belong to the same level V_j .

