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Schnyder woods

(definitions)




Schnyder labeling (3-connected maps): definition

3-connected graphs [Felsner]

3-connect. map M

Al) the angles at a; have labels i + 1, i — 1

A2) rule for vertices: at each vertex there are non-empty intervals of labels
0,1 and 2 (listed counter-clockwise)

A3) rule for faces: at each inner faces the angles define three non-empty

intervals of labels 0,1 and 2 in ccw order. For the outer face the angles are
listed clockwise.




Schnyder woods (3-connected maps): definition

3-connected graphs [Felsner]

as

local Schnyder rule

3-connect. map M

ag
aq

W1) edges have one or two (opposite) orientations. If an edge 3 is bo-oriented than the two
direction have distinct colors

W?2) the edges at a; are outgoing of color ¢

W3) local rule for vertices: at each vertex there are three outgoing edges
(one in each color) satisfying the local Schnyder rule

W4) there is no interior face whose boundary is a directed cycle in one color




Schnyder labelings: angles around edges

Lemma >O

Given a Schnyder labeling of M7, the angles of each
edges have colors 0,1, 2 and are of the following 2 types: >0
2
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proof:




Schnyder labelings: angles around edges

Lemma >g ;(
Given a Schnyder labeling of M7, the angles of each

edges have colors 0, 1,2 and are of the following 2 types: >0 0<
2

>i ijk >i]l—1 1+]1<

use a counting argument (double counts the angles)

proof:
possibly valid configurations

1 14+ 1 1 1 d(v) := number of label changes for the angles around v
>:. - < > : < d(f) := number of label changes for the angles in face f
1 1—1 i—1 1+

1

i ; d(v)+ d(f) =3n+3|f| = 3|E|+6
N PO LD

use Euler formula: 3n+3(2+—E—n)

a 1 6 a2 at vertex a; there are two label changes
forbidden configurations 0y a3

>:8 (:_I)'< >:8 ](_)< >8 1:( e(e) = number (r)f;bel changes at the angles around e

>g §< >3 g< >g §< 6(6) = , — - ¢(e) = 3 for all (normal) edges

\




Schnyder labelings: angles at exterior vertices

Corollary
Given a Schnyder labeling of M7, all interior angles at a
vertex a; have label 2

N




Correspondence between Schnyder labelings and Schnyder woods

i i+1 i %

R . - . O
Tk =< <

1

Theorem
There is a correspondence between the Schnyder

labelings of M and the Schnyder woods of M?

Schnyder wood+ Schnyder labeling of M?




Correspondence between Schnyder labelings and Schnyder woods
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Theorem
There is a correspondence between the

labelings of M and the Schnyder woods of M?

proof: Assume M°? is endowed with a Schnyder labeling

Schnyder

Assume (W4) is violated: there is a cycle in one color

Then the coloring rule of bi-oriented edges
implies that all angles have the same color

Rule of vertices (A2) |ocal Schnyder rule (W3)

directed cycles in
Rule of f A3) — /
ule of races ( ) one color (W4)




Correspondence between Schnyder labelings and Schnyder woods

It e
>ii—1 i+i1< e

Theorem

There is a correspondence between the Schnyder
labelings of M and the Schnyder woods of M?°

proof: Assume M°? is endowed with a Schnyder wood

use a counting argument (double counts the angles (
around vertices/faces/edges
ffaces/edges) ) 3

Remark: \

3 for all (normal) edges

2 for the three half-edges

Turning around a face in ccw direction The number of changes d(f) is a multiple of 3, and d(f) > 0
the angle will be 2 or 7 +1 — (otherwise there is a directed cycle of edges in one color)

D _dw)+) d(f)=) dle) = 30+ d(f)=3|E|+6
v f e f

Euler formula implies > _ . d(f) =3|F| —» d(f) = 3 for all faces

condition (A3) for faces is true




Correspondence between Schnyder labelings and Schnyder woods

i 141 i

i i i+1 i—1 O O
> — 1< >o—><—c< >>2—><—1<
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Remark:
The condition (W4) of Schnyder woods is important

ai not valid Schnyder labeling

valid Schnyder labeling

conditions (W1)-(W4) of Schnyder woods are satisfied condition (W4) of Schnyder woods is not satisfied

A



Schnyder woods: spanning property

Theorem [Schnyder '90] T; := digraph defined by directed edges of color ¢
The three sets 1, 17, I5 are spanning trees of

the inner vertices of 7 (each rooted at vertex v;)
a9 a2

U2
. . T2 () TO &
é \ 1y

(0 U1 U1




Spanning property for 3-connected maps
T; := digraph defined by directed edges of color ¢

Theorem Let (Ty,T7,T5) a Schnyder wood of M.
Then each digraph D; :== T, UT,_} U Tle Is acyclic

proof:
Let Z a directed cycle enclosing a region F' of minimal size

Claim 1: F'is a single face ﬁ
case a: x € I F'c F
F’ is a smaller than F ) and P,y () cannot intersect
(bounded by a directed cycle)
. . g
case b: F'is empty of vertices /f\
there is an edge inside F F'CF | 7

Claim 2: there is no face F' whose boundary is a directed cycle

Visit F' in ccw order starting from v and coloring rule for ang'GS
propagate colors (first color is 7): there is
no angle with label ¢ — 1 > >< <

The coloring rule for faces is violated

Corollary: Each sets 7; is spanning tree M (rooted at vertex a;)



Non crossing paths a

Corollary:
Each sets T; is spanning tree M (rooted at vertex a;)

ao aq

Corollary
For each inner vertex v the three monochromatic paths Py, P;, P> directed from v toward each vertex

a; are vertex disjoint (except at v) and partition the inner faces into three sets Ry(v), R1(v), R2(v)

proof: the existence of two paths P;(v) and P;11(v) which
are crossing would contradicts previous theorem




Planar straight-line drawings

(of planar graphs)




Paths and regions
Lemma Let (7T, T7,75) a Schnyder wood of M.

t
If u e RZ(U) then RZ(U) C Rz(?})
If u e R (v) then R;(u) C R;(v)

proof:
Case 1: v € R (v)

Py
L

first step: compute the paths P,,1(u) and P,_1(u)

They must intersect the boundary of R;(v) at x and y

Remark: x and y are different from v A
and we have y € Pyi(u) and z € F_1(u) ':*?:‘

(because of Schnyder rule) !

so we have: R;(u) C R;(v)

Case 2a: u € P,_(v) Case 2b: u € P,_1(v)

(u,u) is bi-oriented

Proceed by induction on
the path P,_(v)

Ri(u) C Ri(v)




Paths and regions

Remarks: Let (u,v) of color i oriented from wu to v

v € Pi(u) ——

f

\

v E Rirq(u)
v € R;_1(u)
u € R;(v)

Case 1: (u,v) is unidirectional Case 2: (u,v) is bidirectional

1+ 1

At+1

1+ 1




Regions and coordinates

Remarks: Let (u,v) of color i oriented from wu to v

v =: |RO(_U)|£U0 _l_

Ra()l . [Ra()l . _
-1 P T =T P

Fl—1 F[—1 %2 =
U1

1 _vp
R Wl i py

* Ri(u) € Ri(v) — [Ri(u)| < |Ri(v)| —>

L d ’U0—|—U1—|—U2:f—1

Rz(u) C RZ(U) Ui < Ui

e Rit1(v) C Riy1(u) —» { Uitl > Vit
Ri—1(v) C Ri—1(u) w1 > v

e For every edge (u,v) there are some indices 7,5 € {0, 1,2} s.t.

U; < V;

Uj>?}j




Face counting algorithm

DEF. For a vertex v of M, denote:
e P(v) = directed path in 7} to the root v,
e R?;(v) = region bounded by the two paths P,_,(v) and P, (v),
e r;(v) = number of faces in region R;(v).

THM. The map
(1) P rav) Py 1a(0) - )

defines a straightline embedding of M in the plane where all faces are convex.

N

A
%9,
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Schnyder woods and orthogonal surfaces
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cone dominating p € R’

(elements are pairwise incomparable)

Dominance order (u,v € Z3):

Ap
A

Let V C Z> be an antichain Orthogonal surface Sy := boundary of (V)




Orthogonal surfaces and elbow geodesics

Dominance order (u,v ¢ Z3) V=1{(0,0,7) (0,7,0) (7,0,0) (2,4,2) ... }

u<v off ou < vy, Vi=0,1,2
join uV v := maximum component-wise
meet U /A vV := minimum component-wise

(4,2,1) V (2,1,4) = (4,2, 4)
(0,7,0) v (0,3,5) = (0,7,5)

V) :={a € R3|a > v, for some v € V}
Orthogonal surface Sy := boundary of (V)
Let V' C Z? be an antichain

(elements are pairwise incomparable)
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the union of the two line segments

elbow geodesic of u and v:
(u,u Vo) and (uVv,v)
bounded orthogonal arc

(parallel to each axis)
e every elbow geodesic contains at least one

e every v € Sy has three orthogonal arcs




Orthogonal surfaces and elbow geodesics
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A geodesic embedding of a planar map G:
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Every bounded orthogonal arc of Sy, is part of an
edge of G
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(G3) There are no edge crossings on Sy
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From geodesic embeddings to Schnyder woods

Thm: Consider a Schnyder wood of a planar map GG and the corresponding set of vertex
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coordinates V' (region vectors). The resulting drawing of G on Sy, is a geodesic embedding

(no crossings)




From geodesic embeddings to Schnyder woods

Thm: Consider a Schnyder wood of a planar map GG and the corresponding set of vertex

coordinates V' (region vectors). The resulting drawing of G on Sy, is a geodesic embedding

(no crossings)
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From geodesic embeddings to Schnyder woods

Thm: The edge orientation corresponding to a geodesic embedding is a Schnyder wood

y //

>\

in the example
uVo= (UO,Ul,UQ)

Claim 1: The local Schnyder condition (W3) is valid

g!5;1:5§=~
"”’i===‘====== o Every vertex has 3 outgoing edges (one for each color): the
1 1> é.h. three orthogonal arcs (by construction)
Fra et SN
:0”?&””&‘.0‘== o Let us consider an edge {u = (ug,u,u2),v = (vo, v1,v2)}
N o N 1§ incident at v in the sector parallel to the vertical yz-plane
The edge {u, v} contains the orthogonal arc (u V v, u) parallel to

the z-direction and lying in the same horizontal plane of u: its color
must be red (color 0), and its orientation is outgoing from w.

z — direction

reminder: the join u V v is equal or
higher than u and v (in every direction)

u Vv

v y — direction

Claim 2: condition (W4) of the definition is valid

Remark: a path of edges of color 7 lead (W4) no cycles
to increasing coordinates in i-direction




Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V' (region
vectors). The resulting drawing of G on Sy, is a geodesic
embedding (no crossings)
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Fact 2: edges (u,v) and (z,y) are of same color, lying
on the same plane: us = yo (in the example)

Fact 3: vertices u and y have the same z-coordinate
thus there is a bi-directed path P* between u and y

4o




Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V' (region
vectors). The resulting drawing of G on Sy, is a geodesic
embedding (no crossings)

proof (assume there are edge crossings)

Let P* := bi-directed path between u and y
Let s := first vertex at the crossing of P;(u) and P (v)

Claim: s cannot belong to the path P*— s belong to P; (v)
and s # y
y

S

u
(there is a cycle in T, UT, P U Ty
violates previous theorem)

\Y
impossible




Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and
the corresponding set of vertex coordinates V' (region
vectors). The resulting drawing of G on Sy, is a geodesic
embedding (no crossings)

proof (assume there are edge crossings)

Let s := first vertex at the crossing of P;(u) and P (v)

Remark: y is an inner vertex in the (red) region Ry(v)

by assumption (z,y) is an edge of G —® (z,y) belong to Ry(v) —® =z belong to Ry(v)

Since (z,y) belongs to Ry(v) we have: [vg > zq |(contradiction)
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Thm: Given a planar (3-connected) map G, the region counting
algorithm leads to a planar straight-line drawing of G (no edge

corssings). Moreover, the faces of GG are convex.




B

PRIMAL-DUAL GEODESIC EMBEDDING

1
1
2 3 2 3
3 2 3 2
1 1

(image by V. Pilaud)

THM. Reversing the orientation, the same orthogonal surface admits a geodesic em-
bedding of the map M, of its suspended dual map M*, and of its primal-dual map M.

E
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Graph separators




D1V1de&Conquer for (planar) graphs: Small Separators

Tool for recursive decomposﬂ:mns of graphs

{34,37,41,42}

Many Algorithmic applications:

Approximation scheme for Maximum Independent Set

Graph Encoding: compression schemes and compact representations

Graph Drawing: spherical parameterizations

Point Location (in optimal time)




Divide&Conquer for (planar) graphs: Small Separators

Encoding planar graphs in O(n) bits Approximation scheme for
Mazximum Independent Set

(image by Clément Maria)

Graph Drawing: spherical parameterizations

compute 2D layouts of each

. X X
- erisphere i 0y /
separating cycle I ' iy

yﬂ}‘ €y
/ QQ ‘é{kgggp’ project on the sphere

south emisphere
Tutte barycentric layout (in 2D)




Graph separators: definition




Separators: definitions

Def

Given a graph G = (V, E) with n vertices, an e-separator is a partition
(A, B, S) of the vertices such that:

e (c-balance) every connected component of G\ S has size at most en

e (separation) there are no edges between A and B

e S issmall: |S|=o0(n)




Separators: definitions

Def
Given a weighted graph G = (V, E) with n vertices and total weight W, a

separator is a partition (A, B,S) of the vertices such that:

e (balance) every connected component of G\ S has weight at most %W
e (separation) there are no edges between A and B

e Sissmall: |S| = O(y/n)




Separators for trees

Lemma: A weighted tree T admits a separator consisting of a
single vertex (computable in O(n) time)

Proof:
First step: compute for each vertex v € T the Weigbt of t}'le sub- we know in 0(1) time the Weight
tree t, rooted at v (total overall cost: linear time)
of each component C;(v)

T\v:=Ci(v)UCyv)U...
T

N
Case 1: W(C@(U)) < %W i Case 2: W(Cmax(?])) > %W
move to the descendant w € C’max(v)
restart from w
The algorithm visit each vertex at most once (we move from v to its descendant w)
The component Cj(w) containig v is small: W (Cj(w)) < W — W (Crnap(v) < 3

return v

Correctness:




Separators: definitions

examples: what about grid graphs? and general graphs? planar graphs?




Planar Separators theorems
Thm (Lipton-Tarjan, ’79)

FEvery planar graph with n wvertices admits a %-
separator of size at most 4y/n, that can be computed
in linear time.

(purely combinatorial proof: perform a BFS traversal)

(Image by Klein)

Thm (Spielman and Teng) Thm (Koebe-Andreev-Thurston)

FEvery planar graph with n vertices admits a %-

separator of size (in expectation) at most 24/n.
(geometric proof: omitted)

sphere packing (Koebe)

Compute intersections with
a random hyperplane passing
through the origin

stereographic projection +
Mobius transformation




Planar Separators for graphs of small radius

Theorem
Let G be a planar weighted graph with n vertices. Let U be a BFS spanning tree of T of depth
at most d, rooted at r. Then we can compute in linear time a separator of size at most 3d + 1.

Proof (assume the graph is triangulated)

Construct a weighted dual graph G*: each face (a dual vertex) get the weight of a vertex in G

each vertex assigns its weight to a unique incident face

Define the spanning tree 7" := G* \ U*
Apply previous Lemma to T™, getting a separating vertex c*
(all component of 7% \ ¢* are small, of cost at most 1)

computes three shortest paths P;(t) from ¢ to the root vertex r

S::tUP1UP2UP3

" Claim 1: The separator S has at most 3d + 1 vertices
Py(t

Claim 2: Each component C of G'\ S has weight at most %

since each component C* of T\ ¢* has weight at most 3

S and the total (inner) weight of C' is at most the weight of C*




Planar Separators for graphs of small radius

Theorem

Let G be a connected planar graph with n vertices. Then we can compute in linear time a
separator of size at most O(y/n).

Proof: Compute a BFS spanning tree 1" of G, rooted at r
Claim 1:

The set of vertices L; at level [; are a separator (splitting G)
Zi<m W(LZ) <
Zi>m W(LZ) <

define [,,, := median level

N

define I,y := largest level I; (j < i) such that [L;, | < /n
define Iy, := smallest level I; (j > ¢) such that |L; | < /n

Remark: ,
the levels [, between l;,,r and Iy, are large: |Lg| > /n+1 (for inf < k < sup)

Claims:

o number of levels [, between l;,; and lgyp: lsup — ling < ﬁ <+/n

o The set of vertices S” := L, s U Ly, is small: |S'| < 2y/n

o The connected components of G \ S’ which are large (weight

by definition [,, := median level
larger than %) are between the levels l;,,5 and [y, (by definition median level)




Planar Separators for graphs of small radius

Lemma

Let G be a connected planar graph with n vertices. Then we can compute in linear time a
separator of size at most O(y/n).

Proof: Compute a BFS spanning tree 1" of GG, rooted at r

Claim 1:  The set of vertices L; at level [; are a separator (splitting G)

define [,,, := median level D iem WI(Li) <
Zi>m W(LZ) < ‘

Ye=o

Last step:
Take the graph G’ induced by the vertices strictly between the levels [;,,f and [y,

GG’ is not necessarily connected: create a graph G” by adding a dummy vertex " and
connecting it to vertices in [,y

Apply previous Lemma to graph G’: its radius is O(y/n),

so the separator S has size O(y/n)

return L, UL, US

sup




Graph separators: algorithmic applications




(classical) Graph representations

adjacency matrix 0 1 1

1 0
1 v; adjacent v;
- 1 1 1 1
AG[Za ]] — ] 0 1 ]
O otherwise
1 1
L 1

O(n?) bits

Adjacency list (and its variants)
O(nlogn) bits

d; sign positive differences

d;  O(nlogn) bits O(nlogn) bits O(nlogn) bits

3 3:2 3 4 31 1 1
4 4.1 3 4 5 40 -12 1 1
4 41 2 4 5 40 -21 2 1

neighbors in arbitrary order ~ sorted neighbors —  difference encoding  difference encoding




Encoding of planar graphs in O(n) bits

Thm

Any planar graph with n vertices can be encoded with at most O(n) bits.

Solution: use difference encoding of adjacency lists + separators

this time we get O(n) bits

Why does it work? Because vertices which are ”close” in the graph get ”close indices”

d; sign positive differences
311 1 1
4:0:1 2 1 1
4:0: 2 1 2




Encoding of planar graphs in O(n) bits
Thm

Any planar graph with n vertices can be encoded with at most O(n) bits.

Proof (overview):

Step 1: compute a recursive decompo- Step 2: encode using adjacency lists with dif-
sition using (edge) separators ference encoding
encode the edges in S as usual
G size(S) = O(|S|log |S])
Gl =mn size(S) = O(/G] Jos|G)

encode each piece GG; recursively

S
M size(G) = size(S) + size(G) + size(Go)
@ ‘S‘ - O(\/ﬁ) % size(n) = C - y/nlogn + size(an) + size(an)

1G1| < O(an) Gs| < O(an) size(n) = O(n)




Recursive graph decompositions and hierarchical representations

Thm (Lipton Tarjan)
Given a planar graph G of size n and weight W = 1, and a parameter 0 < e < 1.

n

Then it is possible to compute a separator S C V' of size at most |S| = O(,/%),
such that each connected component of G\'S has size at most . The computation

time is O(nlogn).

Trade-offs

Separator size [Component size




Maximum Independent Set

Def:  maximum independent

Thm (approx scheme) set Io: a set of non adjacent
LetG be a planar graph on n vertices. Show that you can compute — V€rces (no edges between pairs
in O(nlogn) time an approximated independent set of vertices I
whose size, for large values of n, is closed to the size of a maximum

independent set Loy : ‘IH;‘—I:’”' tends to 0 with increasing n.
op

of wvertices in I,,) of maximal
size

Proof:




MaXHnum Independent Set Def:  maximum independent
Thm (approx scheme) set Io: a set of non adjacent
LetG be a planar graph on n vertices. Show that you can compute —VeTHces (no edges between pairs
. . . . _ of wvertices in I,,) of maximal
in O(nlogn) time an approximated independent set of vertices I .,
whose size, for large values of n, is closed to the size of a maximum

G
independent set Loy : mu‘—]"pt' tends to 0 with increasing n. / '
Proof:  use uniform weights: w(v;) = +
Idea: apply previous result with parameter ¢ = bgl% G
sub-components G; have size |G;| < ) = O(loglogn)
the vertex separator S has size at most || = O(Z===)
Trick: in each GG; use brute-force to compute a Lyl — 1] < |S] = O(=—2—)
maximal independent set (checking all subsets) ——————* "% = T T loglogn
for each Gjof size n; it takes: O(n; - 2") — in overall: O(j it (loglogn) - 2'°#1°¢™) = O(nlog n)

Remark: planar graphs are 4-colorable ____ || > 2

[T —|Topt| < O(n/+/loglogn) O( 1 )
Topt|] — n/4 Vioglogn




Computing triangles and cliques in planar graphs




Counting triangles

Thm

Let G be a graph on n wvertices and m edges. Then it
is possible to count (or list) the triangles of G in O(nm)
time.

Proof:

procedure COUNTTRIANGLES(G = (V. E))
Count = (),
for each vertex u € V'
( mark all vertices which are neighbors of u in G
for each marked vertex v € V
{ for each vertex w which is a neighbor of v in G
do

do if w is marked then Count := Count + 1; triangle;: cycle Of size 3 (Complete

unmark vertex v; ravh on 3 vertices)
|G =G\ {u}; // vertex removal in O(d,,) time grap

return Count;




Counting triangles

Thm

Let G be a graph on n wvertices and m edges. Then it
is possible to count (or list) the triangles of G in O(nm)
time.

Proof:

procedure COUNTTRIANGLES(G = (V. E))
Count = (),
for each vertex u € V'
( mark all vertices which are neighbors of u in G
for each marked vertex v € V
{ for each vertex w which is a neighbor of v in G
do

do if w is marked then Count := Count + 1;
unmark vertex v;

|G =G\ {u}; // vertex removal in O(d,,) time
return Count;

« each vertex v is marked at most deg(v) times: each time the inner loop performs at most
deg(v) iterations: the cost per vertex is thus at most (deg(v))?

* Lev deg’(v) < (maxiey deg(v)) - (L ey deg(v)) < (V] = 1) 3¢ deg(v) = O(IV]|E])




Counting triangles in linear time (in planar grap

Thm

Let G be a planar graph on n vertices and m edges. Then
it is possible to count (or list) the triangles of G in O(n)
time.

Proof:

procedure COUNTTRIANGLES(G = (V. E))

for cach vertex w € V' // visit vertices according the computed order
( mark all vertices which are neighbors of u in G
for each marked vertex v € V
for each vertex w which is a neighbor of v in G
do do if w is marked then Count := Count + 1;

unmark vertex v;

|G =G\ {u}; // vertex removal in O(d,,) time

return Count;

e for any edge {u,v} for a pair of vertices u, v considered in the algorithm, we have deg(v) < deg(u)

« the time complexity becomes ., \cpmin(dy, dy)

Claim (exercise, homework I)
Show that in a planar graph with n vertices we have:

> tuyer min{deg(u), deg(v)} < 18n




Counting 4-cliques in linear time (in planar graphs)

Thm
Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list)
all 4-cliques of G in O(n) time.
Proof: [case analysis, exercise]
Hint: compute a BFS of G and partition the vertices into k + 1 sets {Vp, V4,..., Vi }
V}. := vertices at the distance k from the root (seed) vertex
define £ := set of edges e = (u,v) s. t. u e V;_yand v €'V}
Claim 1: (an edge belongs to E; if it is connecting two vertices on levels V; and V;_1)
« Consider a 4-clique Q = {u,v,w,z} in G.
Show that the four vertices u, v, w, x cannot all belong to the same level V.

Claim 2: consider a 4-clique @ = {u,v,w,z} in G, and let j be a positive integer < k.

e assume u € V;_1 and v,w,z € V;. Show that for one of the tree vertices v, w, z the only
incident edge lying in F; has u has other extremity.

e assume u,w,r € V;_1 and = € V;. Show that the edges incident to x lying in £ are
exactly (u,x), (v,x) and (w,x).

e assume u,v € V1 and w,x € V;. Show that one of the vertices w,z has exactly two
incident edges lying in E; (whose other extremities are v and v).




Counting 4-cliques in linear time (in planar graphs)

Thm

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list)
all 4-cliques of G in O(n) time.
Proof: [case analysis, exercise]

Hint: compute a BFS of G and partition the vertices into k + 1 sets {Vp, V4,..., Vi }
V}. := vertices at the distance k from the root (seed) vertex
define £ := set of edges e = (u,v) s. t. u e V;_yand v €'V}
Claim 1: (an edge belongs to E; if it is connecting two vertices on levels V; and V;_1)

« Consider a 4-clique Q = {u,v,w,z} in G.
Show that the four vertices u, v, w, x cannot all belong to the same level V.

Cls Claim 1:

Contracting the edges
we get K5




