Algorithms and combinatorics for geometric graphs (Geomgraphs)

Lecture 5

Schnyder woods for 3-connected plane graphs

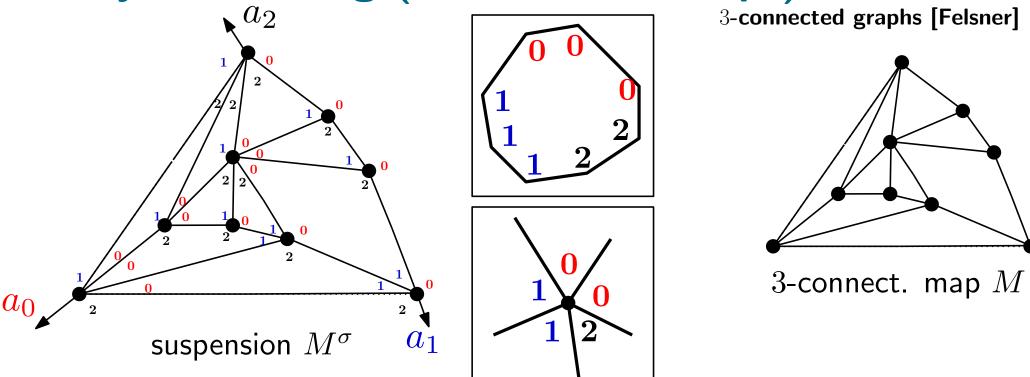
october 16, 2025

Luca Castelli Aleardi

Schnyder woods

(definitions)

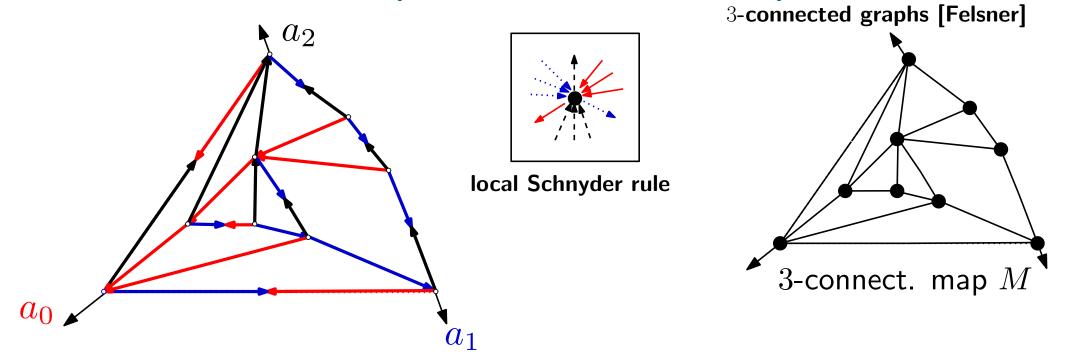
Schnyder labeling (3-connected maps): definition



A1) the angles at a_i have labels i+1, i-1

- A2) rule for vertices: at each vertex there are non-empty intervals of labels 0,1 and 2 (listed counter-clockwise)
- A3) **rule for faces:** at each inner faces the angles define three non-empty intervals of labels 0,1 and 2 in ccw order. For the outer face the angles are listed clockwise.

Schnyder woods (3-connected maps): definition



W1) edges have one or two (opposite) orientations. If an edge 3 is bo-oriented than the two direction have distinct colors

W2) the edges at a_i are outgoing of color i

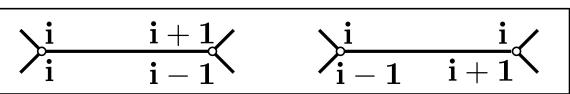
W3) **local rule for vertices:** at each vertex there are three outgoing edges (one in each color) satisfying the local Schnyder rule

W4) there is no interior face whose boundary is a directed cycle in one color

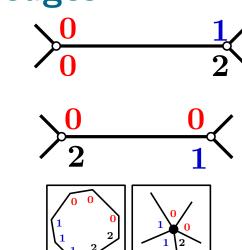
Schnyder labelings: angles around edges

Lemma

Given a Schnyder labeling of M^{σ} , the angles of each edges have colors 0,1,2 and are of the following 2 types:



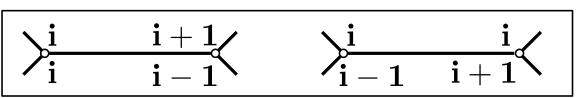
proof:

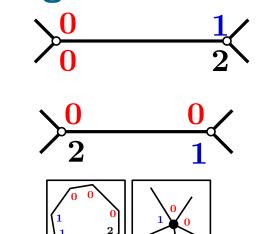


Schnyder labelings: angles around edges

Lemma

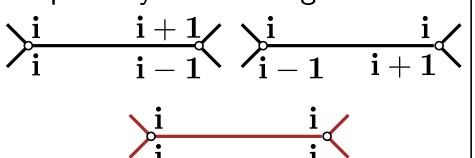
Given a Schnyder labeling of M^{σ} , the angles of each edges have colors 0, 1, 2 and are of the following 2 types:



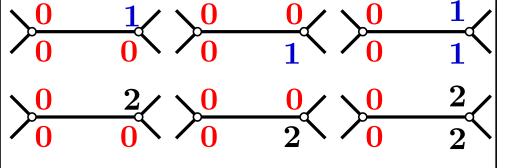


proof:

possibly valid configurations



forbidden configurations



use a counting argument (double counts the angles)

 $d(v):=\mbox{number of label changes for the angles around }v$ $d(f):=\mbox{number of label changes for the angles in face }f$

$$\sum_{v} d(v) + \sum_{f} d(f) = 3n + 3|f| = 3|E| + 6$$
 use Euler formula: 3n+3(2+-E-n)

$$\begin{array}{cccc} \alpha_1 & e & \alpha_2 \\ \alpha_4 & \alpha_3 \end{array}$$

at vertex \boldsymbol{a}_i there are two label changes

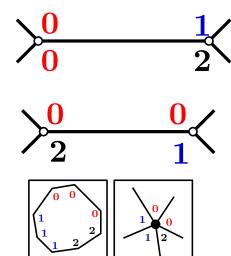
 $\epsilon(e) = {\sf number} \ {\sf of} \ {\sf label} \ {\sf changes} \ {\sf at} \ {\sf the} \ {\sf angles} \ {\sf around} \ e$

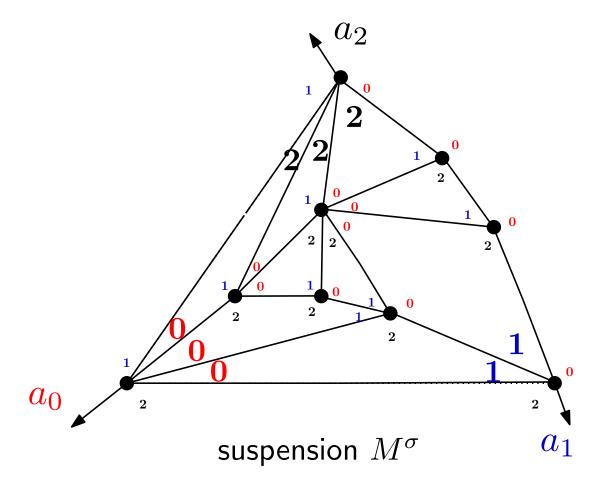
$$\epsilon(e) = \left\{ egin{array}{ll} 0 & \longrightarrow \epsilon(e) = 3 \ ext{for all (normal) edges} \end{array}
ight.$$

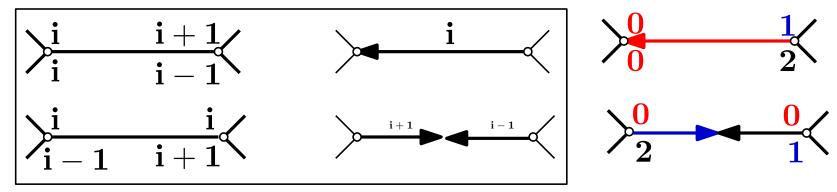
Schnyder labelings: angles at exterior vertices

Corollary

Given a Schnyder labeling of M^{σ} , all interior angles at a vertex a_i have label i

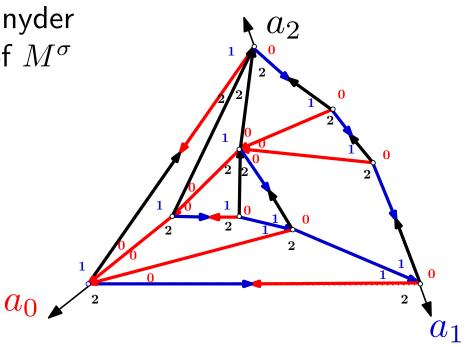




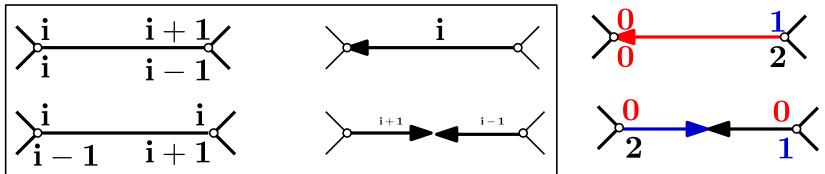


Theorem

There is a correspondence between the Schnyder labelings of M^{σ} and the Schnyder woods of M^{σ}



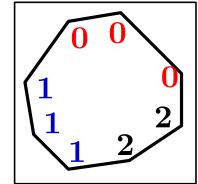
Schnyder wood+ Schnyder labeling of M^{σ}

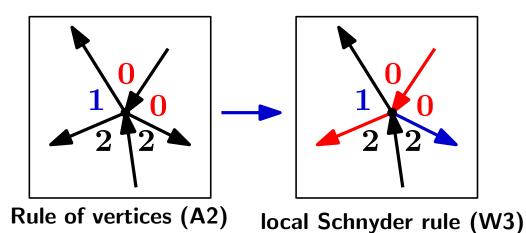


Theorem

There is a correspondence between the Schnyder labelings of M^{σ} and the Schnyder woods of M^{σ}

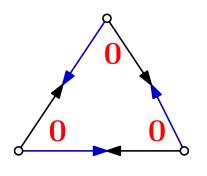
proof: Assume M^{σ} is endowed with a Schnyder labeling



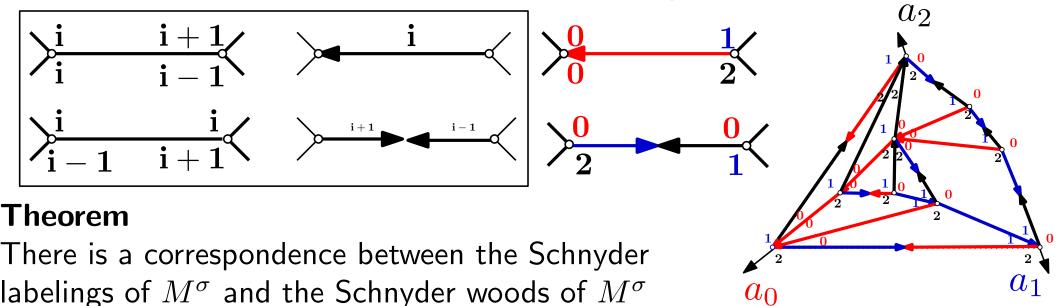


Assume (W4) is violated: there is a cycle in one color

Then the coloring rule of bi-oriented edges implies that all angles have the same color



Rule of faces (A3) — no directed cycles in one color (W4)



proof: Assume M^{σ} is endowed with a Schnyder wood use a counting argument (double counts the angles

use a counting argument (double counts the angles around vertices/faces/edges)

$$d(v) = 3$$

$$d(e) = \begin{cases} 3 & \text{for all (normal) edges} \\ 2 & \text{for the three half-edges} \end{cases}$$

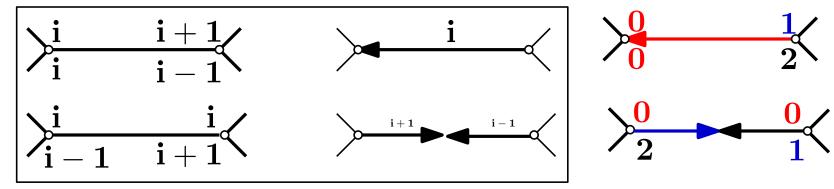
Remark:

Turning around a face in ccw direction The number of changes d(f) is a multiple of 3, and d(f) > 0 the angle will be i or i+1 (otherwise there is a directed cycle of edges in one color)

$$\sum_{v} d(v) + \sum_{f} d(f) = \sum_{e} d(e) \longrightarrow 3n + \sum_{f} d(f) = 3|E| + 6$$

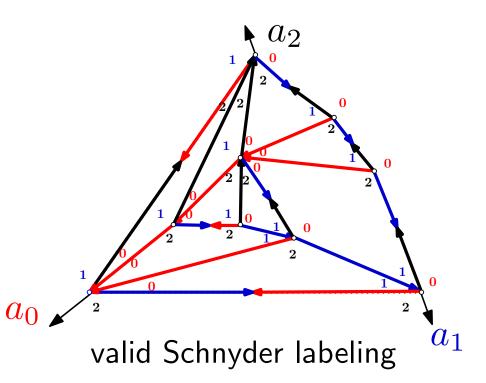
Euler formula implies $\sum_f d(f) = 3|F|$ — d(f)

d(f)=3 for all faces condition (A3) for faces is true

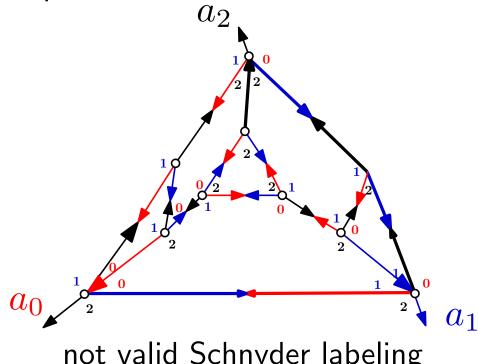


Remark:

The condition (W4) of Schnyder woods is important

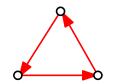


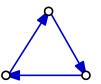
conditions (W1)-(W4) of Schnyder woods are satisfied



not valid Schnyder labeling

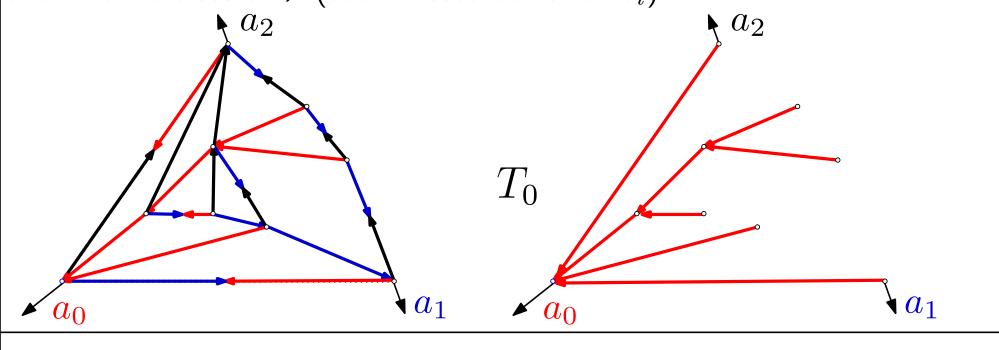
condition (W4) of Schnyder woods is not satisfied

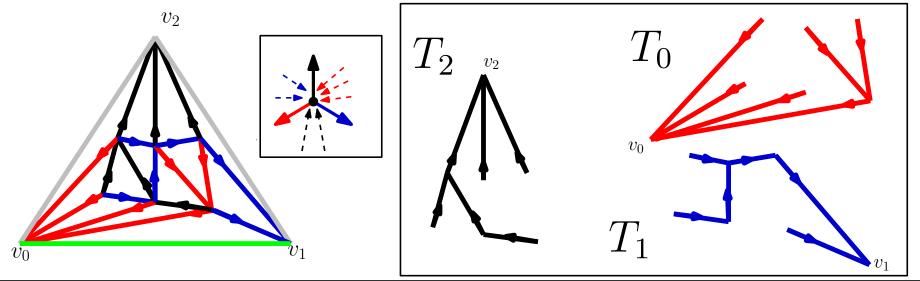




Schnyder woods: spanning property

Theorem [Schnyder '90] $T_i := \text{digraph defined by directed edges of color } i$ The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of \mathcal{T} (each rooted at vertex v_i)





Spanning property for 3-connected maps

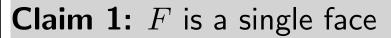
 $T_i := digraph defined by directed edges of color i$

Theorem Let (T_0, T_1, T_2) a Schnyder wood of \mathcal{M} .

Then each digraph $D_i := T_i \cup T_{i-1}^{-1} \cup T_{i+1}^{-1}$ is acyclic

proof:

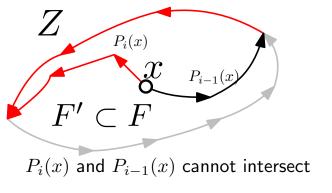
Let Z a directed cycle enclosing a region F of minimal size,

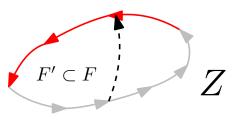


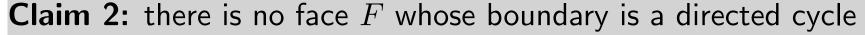
case a: $x \in F$

 F^\prime is a smaller than F

case b: F is empty of vertices there is an edge inside F

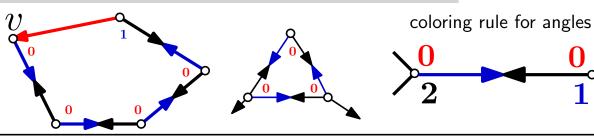






Visit F in ccw order starting from v and propagate colors (first color is i): there is no angle with label i-1

The coloring rule for faces is violated

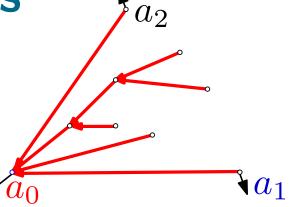


Corollary: Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)

Non crossing paths

Corollary:

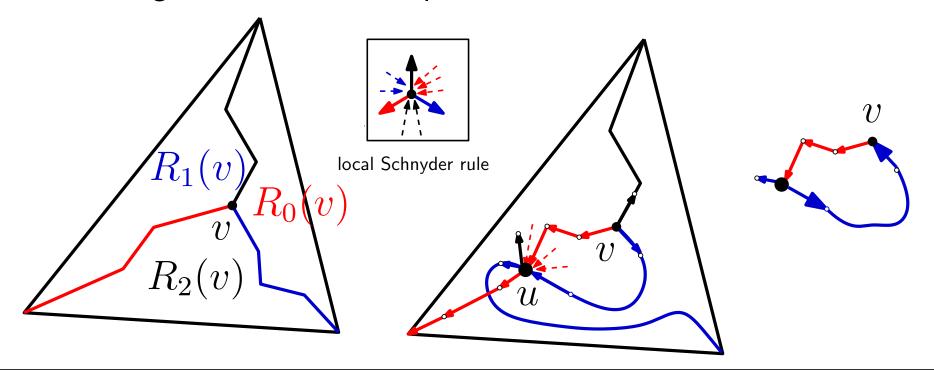
Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)



Corollary

For each inner vertex v the three monochromatic paths P_0 , P_1 , P_2 directed from v toward each vertex a_i are vertex disjoint (except at v) and partition the inner faces into three sets $R_0(v)$, $R_1(v)$, $R_2(v)$

proof: the existence of two paths $P_i(v)$ and $P_{i+1}(v)$ which are crossing would contradicts previous theorem



Planar straight-line drawings

(of 3-connected planar graphs)

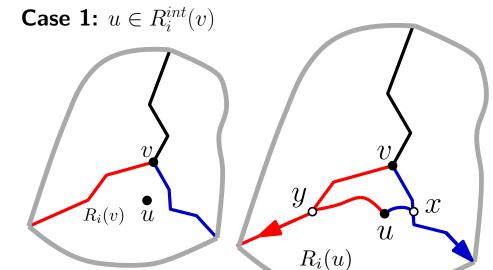
Paths and regions

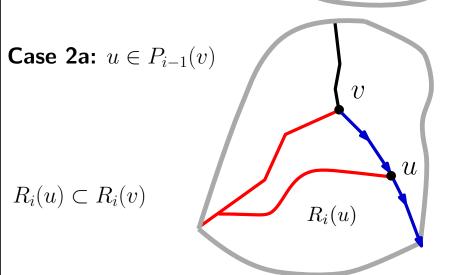
Lemma Let (T_0, T_1, T_2) a Schnyder wood of \mathcal{M} .

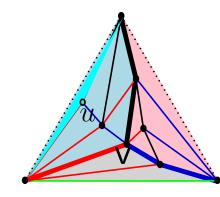
 $u \in R_1^{int}(v)$

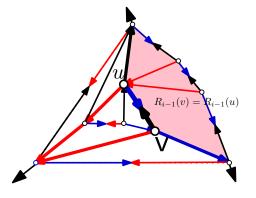
If $u \in R_i(v)$ then $R_i(u) \subseteq R_i(v)$ If $u \in R_i^{int}(v)$ then $R_i(u) \subset R_i(v)$

proof:





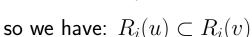




first step: compute the paths $P_{i+1}(u)$ and $P_{i-1}(u)$

They must intersect the boundary of $R_i(v)$ at x and y

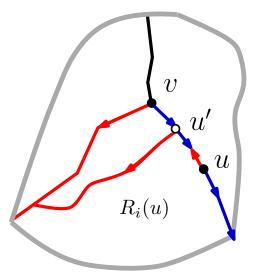
Remark: x and y are different from v and we have $y \in P_{i+1}(u)$ and $x \in P_{i-1}(u)$ (because of Schnyder rule)



Case 2b: $u \in P_{i-1}(v)$ (u, u') is bi-oriented

Proceed by induction on the path $P_{i-1}(v)$

$$R_i(u) \subseteq R_i(v)$$

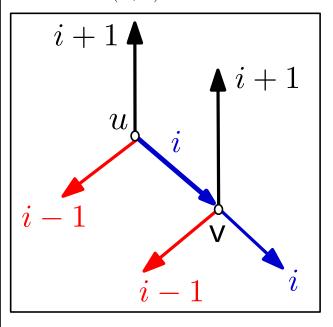


Paths and regions

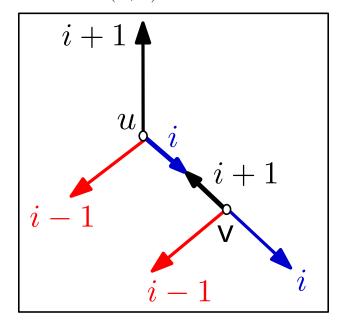
Remarks: Let (u, v) of color i oriented from u to v

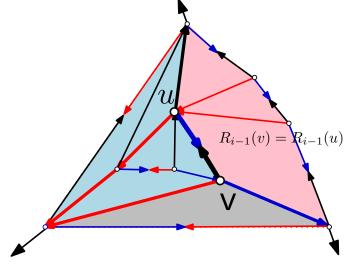
$$v \in P_i(u) \longrightarrow \begin{cases} v \in R_{i+1}(u) \\ v \in R_{i-1}(u) \\ u \in R_i(v) \end{cases}$$

Case 1: (u, v) is unidirectional



Case 2: (u, v) is bidirectional





$$R_{i}(u) \subset R_{i}(v)$$

$$R_{i+1}(v) \subset R_{i+1}(u)$$

$$R_{i-1}(v) \subset R_{i-1}(u)$$

$$R_{i}(u) \subset R_{i}(v)$$

$$R_{i-1}(v) \subseteq R_{i-1}(u)$$

$$R_{i+1}(v) \subseteq R_{i+1}(u)$$

Regions and coordinates

Remarks: Let (u, v) of color i oriented from u to v

$$v =: \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2 =$$

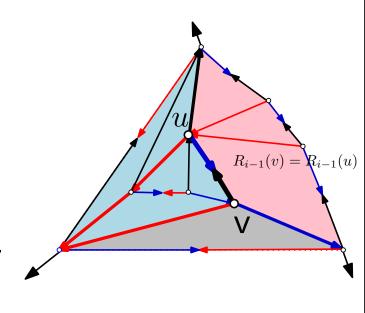
$$= \frac{v_0}{|F|-1}x_0 + \frac{v_1}{|F|-1}x_1 + \frac{v_2}{|F|-1}x_2$$

•
$$R_i(u) \subseteq R_i(v) \longrightarrow |R_i(u)| \le |R_i(v)| \longrightarrow u_i \le v_i$$

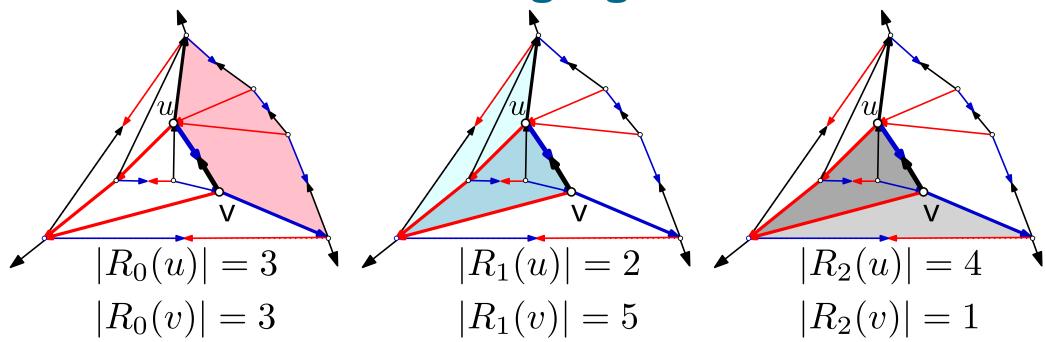
•
$$v_0 + v_1 + v_2 = f - 1$$

$$R_{i}(u) \subset R_{i}(v) \longrightarrow \begin{cases} u_{i} < v_{i} \\ u_{i+1} > v_{i+1} \\ R_{i-1}(v) \subset R_{i-1}(u) \end{cases} \longrightarrow \begin{cases} u_{i} < v_{i} \\ u_{i+1} > v_{i+1} \\ u_{i-1} > v_{i-1} \end{cases}$$

 \bullet For every edge (u,v) there are some indices $i,j\in\{0,1,2\}$ s.t.



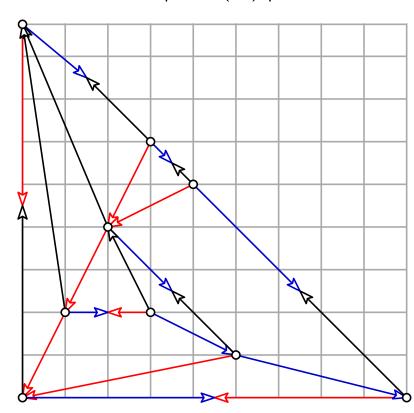
Face counting algorithm



Theorem

Given a 3-connected planar graph \mathcal{G} having |F| vertices, the map above defines a straight-line crossing free planar drawing of G (where all faces are convex).

$$v = \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2$$
 where $|R_i(v)|$ is the number of triangles in $R_i(v)$

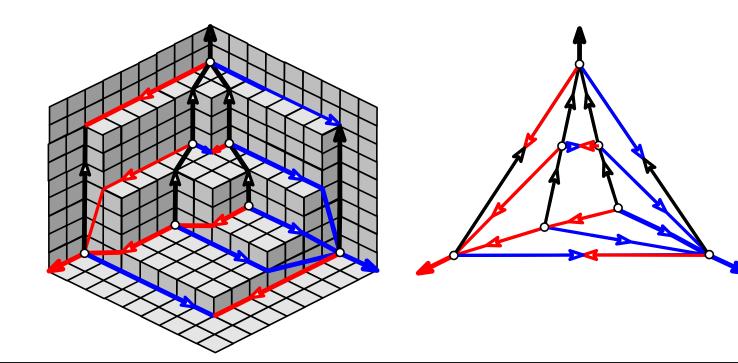


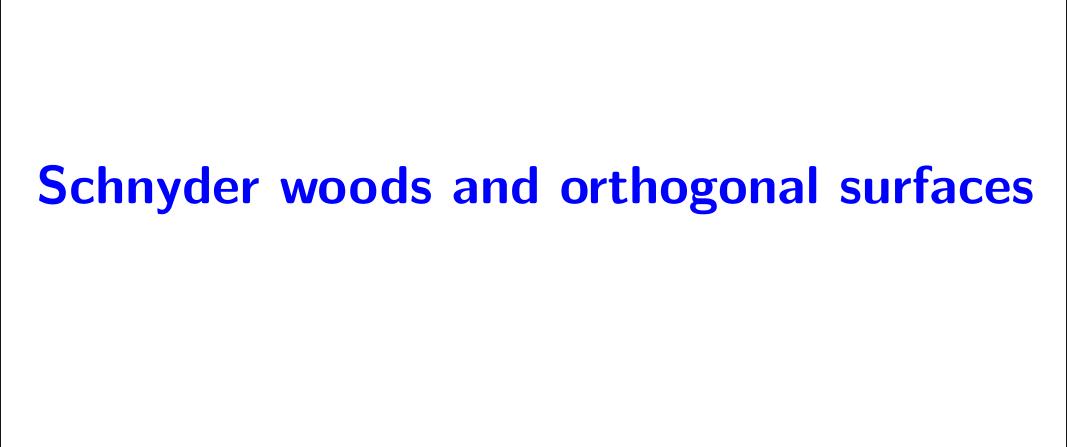
Algorithms and combinatorics for geometric graphs (Geomgraphs)

Lecture 5 - part II

Schnyder woods and orthogonal surfaces

Luca Castelli Aleardi





Dominance order $(\mathbf{u}, \mathbf{v} \in \mathbb{Z}^3)$: $\mathbf{u} \leq \mathbf{v}$ iff $u_i \leq v_i, \ \forall i = 0, 1, 2$ $\nabla_p := \mathsf{cone} \; \mathsf{dominated} \; \mathsf{by} \; p \in \mathbb{R}^3$ $\triangle_p := \mathsf{cone} \; \mathsf{dominating} \; p \in \mathbb{R}^3$

Let $V \subset \mathbb{Z}^3$ be an **antichain** Orthogonal surface $S_V :=$ boundary of $\langle \mathcal{V} \rangle$

 $\langle \mathcal{V} \rangle := \{ \alpha \in \mathbb{R}^3 | \alpha \ge v, \text{ for some } v \in \mathcal{V} \} = \bigcup_v \triangle_v$

Dominance order $(\mathbf{u}, \mathbf{v} \in \mathbb{Z}^3)$

$$\mathbf{u} \leq \mathbf{v}$$
 iff $u_i \leq v_i, \ \forall i = 0, 1, 2$

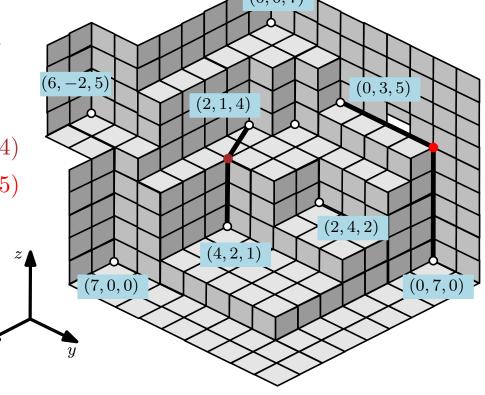
join $\mathbf{u} \lor \mathbf{v} := \mathsf{maximum}$ component-wise

meet $\mathbf{u} \wedge \mathbf{v} := minimum component-wise$

$$(4,2,1) \lor (2,1,4) = (4,2,4)$$

$$(0,7,0) \lor (0,3,5) = (0,7,5)$$

 $\mathcal{V} = \{ (0,0,7) \ (0,7,0) \ (7,0,0) \ (2,4,2) \ \dots \}$



$$\langle \mathcal{V} \rangle := \{ \alpha \in \mathbb{R}^3 | \alpha \ge v, \text{ for some } v \in \mathcal{V} \}$$

Orthogonal surface $S_V := \text{boundary of } \langle \mathcal{V} \rangle$

Let $V \subset \mathbb{Z}^3$ be an antichain

(elements are pairwise incomparable)

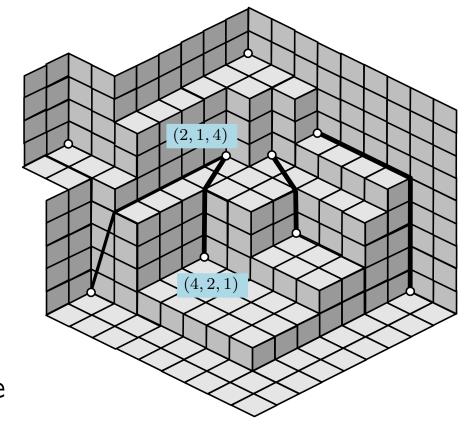
$$(4,2,1) \land (2,1,4) = (4,2,4)$$

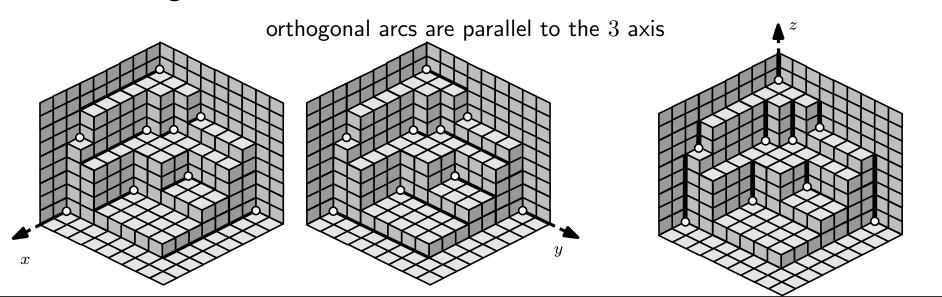
 $(0,7,0) \land (0,3,5) = (0,7,5)$

elbow geodesic of u and v:

the union of the two line segments $(u, u \lor v)$ and $(u \lor v, v)$

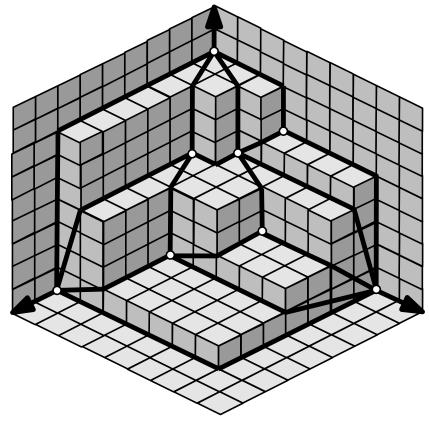
- \bullet every $v \in S_V$ has three orthogonal arcs (parallel to each axis)
- every elbow geodesic contains at least one bounded orthogonal arc

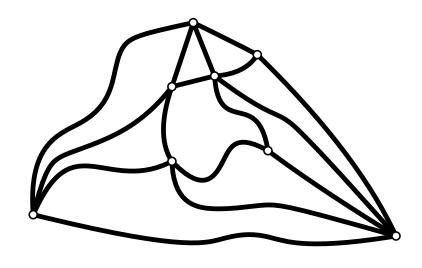




A **geodesic embedding** of a planar map G: a drawing of G on $S_{\mathcal{V}}$ s.t.

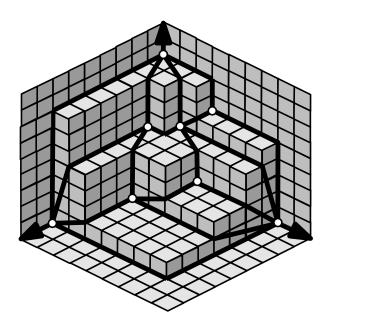
- (G1) The vertices of G correspond to the points of $S_{\mathcal{V}}$
- (G2) every edge of G is drawn as an elbow geodesic on $S_{\mathcal{V}}$ Every bounded orthogonal arc of $S_{\mathcal{V}}$ is part of an edge of G
- (G3) There are no edge crossings on $S_{\mathcal{V}}$

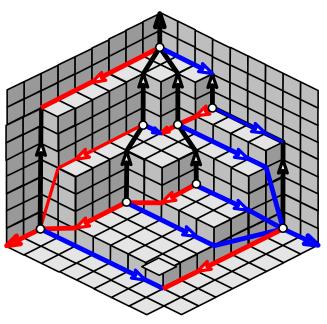


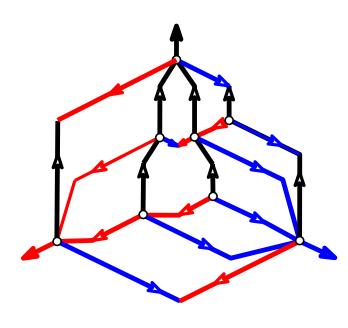


From geodesic embeddings to Schnyder woods

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

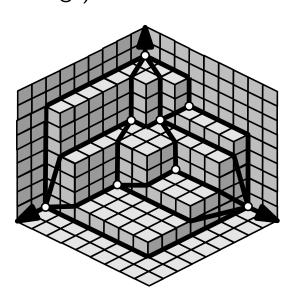


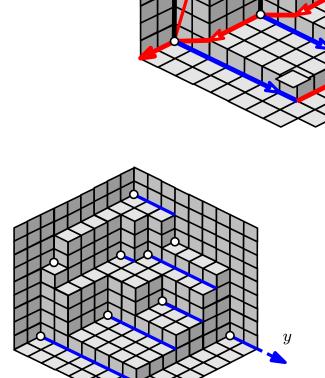


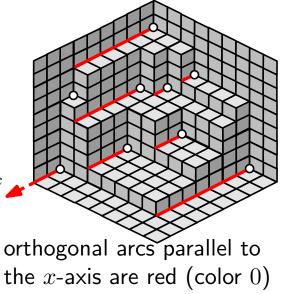


From geodesic embeddings to Schnyder woods

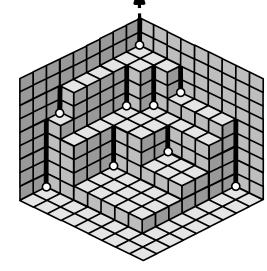
Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)







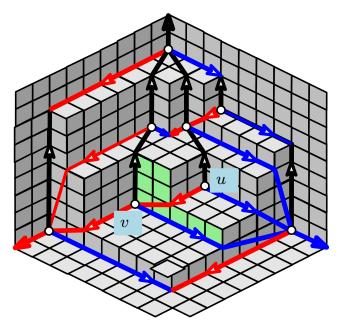
orthogonal arcs parallel to the y-axis are blue (color 1)



orthogonal arcs parallel to the z-axis are black (color 2)

From geodesic embeddings to Schnyder woods

Thm: The edge orientation corresponding to a geodesic embedding is a Schnyder wood

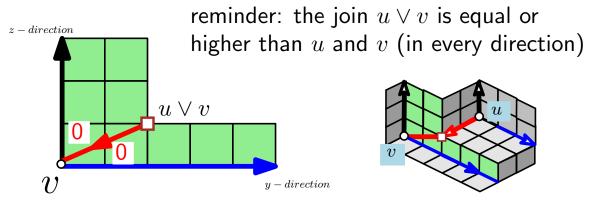


in the example $u \lor v = (v_0, u_1, u_2)$

Claim 1: The local Schnyder condition (W3) is valid

- Every vertex has 3 outgoing edges (one for each color): the three orthogonal arcs (by construction)
- Let us consider an edge $\{u = (u_0, u_1, u_2), v = (v_0, v_1, v_2)\}$ incident at v in the sector parallel to the vertical yz-plane

The edge $\{u, v\}$ contains the orthogonal arc $(u \lor v, u)$ parallel to the x-direction and lying in the same horizontal plane of u: its color must be red (color 0), and its orientation is outgoing from u.



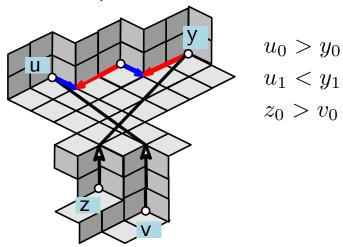
Claim 2: condition (W4) of the definition is valid Remark: a path of edges of color i lead to increasing coordinates in i-direction (W4) no cycles

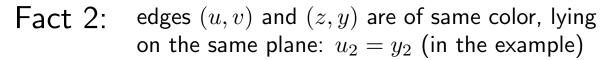
Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

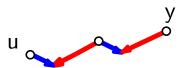
proof (assume there are edge crossings)

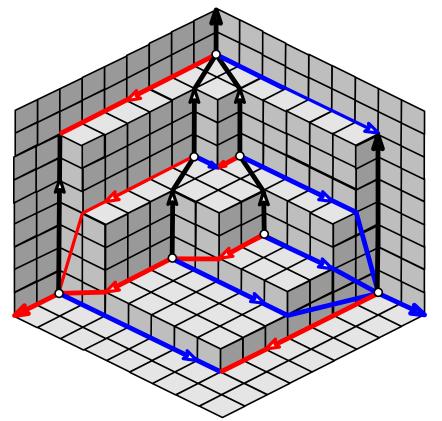
Fact 1: edge crossing are of the form (as orthogonal arcs cannot cross)





Fact 3: vertices u and y have the same z-coordinate thus there is a bi-directed path P^* between u and y

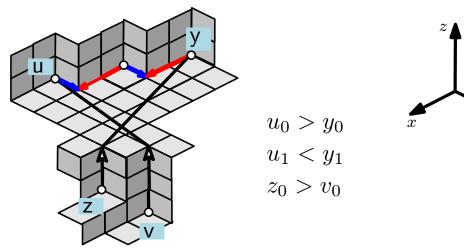


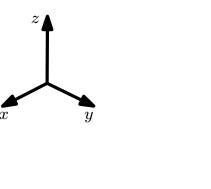


Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

proof (assume there are edge crossings)

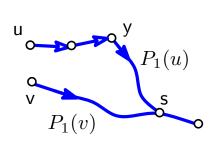


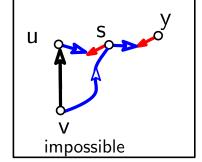


Let $P^* := \text{bi-directed path between } u \text{ and } y$

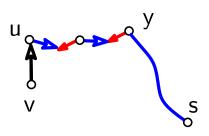
Let s := first vertex at the crossing of $P_1(u)$ and $P_1(v)$

Claim: s cannot belong to the path P^* \longrightarrow s belong to $P_1(v)$ and $s \neq y$





(there is a cycle in $T_2 \cup T_0^{-1} \cup T_1^{-1}$: violates previous theorem)

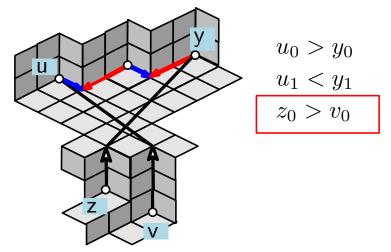


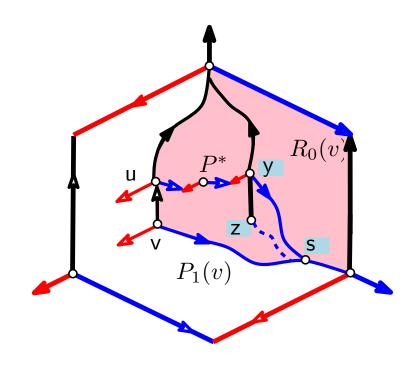
 $P_1(v)$

Geodesic embeddings are planar drawings

Thm: Consider a Schnyder wood of a planar map G and the corresponding set of vertex coordinates \mathcal{V} (region vectors). The resulting drawing of G on $S_{\mathcal{V}}$ is a geodesic embedding (no crossings)

proof (assume there are edge crossings)





Let s := first vertex at the crossing of $P_1(u)$ and $P_1(v)$

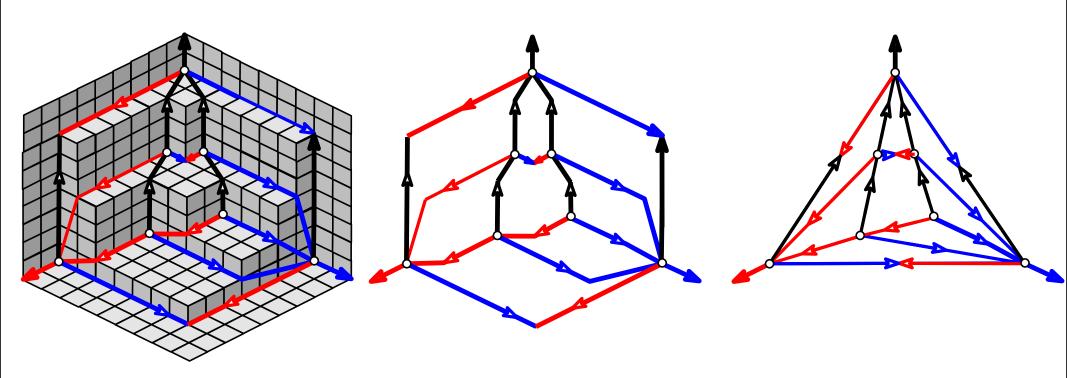
Remark: y is an inner vertex in the (red) region $R_0(v)$ (since there is red path from y to u)

by assumption (z,y) is an edge of $G \longrightarrow (z,y)$ belong to $R_0(v) \longrightarrow z$ belong to $R_0(v)$

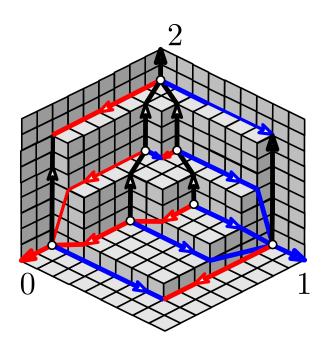
Since (z,y) belongs to $R_0(v)$ we have: $R_0(z) \subset R_0(v)$, implying $v_0 \geq z_0$ (contradiction)

From geodesic embeddings to straight-line planar drawings

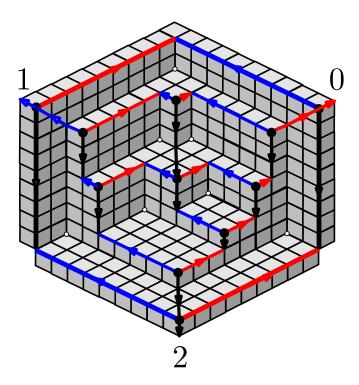
Thm: Given a planar (3-connected) map G, the region counting algorithm leads to a planar straight-line drawing of G (no edge corssings). Moreover, the faces of G are convex.



Primal/dual geodesic embeddings



Schnyder wood of the primal graph



Schnyder wood of the dual graph