
Planar straight-line grid drawings

(some slides are provided by Eric Fusy)

Luca Castelli Aleardi

october 9, 2024

MPRI 2-38-1: Algorithms and combinatorics for geometric graphs

Lecture 4

(and canonical orderings)
Chapter I: FPP algorithm



Straight-line planar drawings of planar graphs
Problem definition (Planarity testing, Embedding a planar graph)

Input: a planar graph

Output: the planar map (cellulaly embedded graph)

Problem definition (drawing in the plane)

Input: a planar map

Output: a straight-line planar drawing

(crossing-free)

(a, b, c)

(a, c, d)

(d, c, e)

(c, b, e)

(a, d, f)

(f, d, g)

(d, e, g)

(e, b, g)

(a, f, h)

(a, h, i)

(i, h, f)

(i, f, g)

(i, g, b)

(i, b, a)

a b

cd

e

f

gh

i A

B

C

D

E
G F

Input of the problem: planar map

straight-line crossing-free drawing

straight-line grid drawing



Spring embedding vs. grid drawing

Tutte barycentric layout Schnyder layout FPP layout

ra
n
d
o
m

tr
ia
n
g
.
(n

=
1
0
0
)

f
i
s
h
m
o
d
el

(n
=

2
4
1
)



Canonical orderings
(the definition)



Canonical orderings: definition
[de Fraysseix Pach Pollack]



Canonical orderings: definition
[de Fraysseix Pach Pollack]

e V1

G3 = {V0, V1, v3}

e e

3

G5G4

e

4

e

5

G = G9

V0

6
8

7 9

G7G6



Canonical orderings: existence

Theorem
Every planar triangulation admits a Canonical Ordering,
which can be computed in linear time.

The traversal starts from the root face

V1V0



The traversal starts from the root face

V2 = vn

⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Canonical orderings: existence

V1V0



The traversal starts from the root face

vn−1

w
⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Canonical orderings: existence



The traversal starts from the root face

vn−2
⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Canonical orderings: existence



The traversal starts from the root face

Canonical orderings: existence

vn−3



The traversal starts from the root face

Canonical orderings: existence

vn−4



The traversal starts from the root face

Canonical orderings: existence

vn−4



v0 v1

The traversal starts from the root face



V0 V1

The traversal starts from the root face

v3

Canonical orderings: existence

Claim (correctness): the shelling
procedure terminates computing a
canonical ordering

There must be a free vertex v (not
V0 nor V1) without chords

Claim (complexity): the canonical
ordering can be computed in O(n)
time



Canonical orderings: exercices
exercice 1
Give a proof of Euler formula using vertex shellings n− e + f = 2n− e + f = 2

patron
n− 1 aretes

f faces
primal spanning tree

e = (n− 1) + (f − 1)

f − 1 edges

f dual vertices

Famous proof of Euler formula

⇓

Gk−1

Gk

vk



Canonical orderings: exercices
Application (exercise)
Design a (simple) linear time algorithm to embed a maximal planar graph
G (it outputs false if the input graph is not a planar triangulation)

Step 1: simulate the computation of the canonical ordering on the graph G

Remark: what happens if the 3-cycle is not a face of G?

Assume first you are given a 3-cycle (V0, V1, V2) which is a face of G

V0
V1

Step 2: compute the embedding of G (its faces) by adding the vertices v3, v4, . . . , vn incrementally
together with the fan of incident faces (neighbors are consecutive on the outer face)

v3 v4 v5

vn

V2 ?



Planar straight-line drawings
(FPP algorithm)



Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]
1.

2.

3.

4.

5.

6.

7.
Grid size of Gk: 2k × k



Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]

Idea: add vertices incrementally (according to the canonical
ordering) together with their incident faces (in the outer face)

v3 v4 v5

Step 1:
Add first face

v3

V0 = v1 V1 = v2

v4

v5

v6

v6
Step 2:
Add v4

Step 4:
problems: either the vertices
are not visible, or the grid
becomes too big

v6



incremental shift algorithm (original FPP)

1. 2. 3.

4. 5. 6.

1. Make the grid large enough: add two vertical strips (of width 1)

2. Add the edges incident to vk (leftmost and rightmost) of slope +1 and −1

e1
e2

stretch horizontally edges e1 and e2 of 1

Gk−1 Gk

e2
e1



incremental shift (FPP) algorithm

1. 2. 3.

4. 5. 6.
12

34

56

7

use the canonical ordering

1. Vertices are drawn as grid points

2. the grid is polynomial: O(n)×O(n)

e1
e2

Gk−1 Gk

3. the execution takes O(n) time

4. the drawing is planar: no edge crossings

e2
e1

stretch horizontally edges e1 and e2 of 1

Claims:



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2

Gk−1 Gk

1. Consider the following primal (red) tree:
connect v to its largest neighbor w

e

7

6 5

4 3

2 1

w

e2
e1



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2

Gk−1 Gk

2. Consider the dual (blue) spanning tree T ∗ of T

e

7

6 5

4 3

2 1

e2
e1



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2

Gk−1 Gk

2. Consider the dual (blue) spanning tree T ∗ of T

e

7

6 5

4 3

2 1

e2
e1



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2

Gk−1 Gk

3. Stretch e1 and e2 and all edges which are ”below”

e1

e2

(e1, e2:= leftmost and rightmost edges incident to vk)

e2
e1



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2 e1

e2

Gk−1 Gk

3. Stretch e1 and e2 and all edges which are ”below”

e1

e2

(e1, e2:= leftmost and rightmost edges incident to vk)

vk



incremental shift (FPP) algorithm

4. 5. 6.

Let us make things more precise

e1
e2 e1

e2

Gk−1 Gk

3. Stretch e1 and e2 and all edges which are ”below”

e1

e2

(e1, e2:= leftmost and rightmost edges incident to vk)

vk

width k width k + 2



incremental shift (FPP) algorithm

e1
e2 e1

e2

Gk−1 Gk

4. add vk at the crossing of the edges with slopes +1 and −1

Claim: vertex vk is a grid point

width k, outer edges have slopes +1 or −1

Proof: the manhattan distance between ul and ur is even
(since the slopes of outer edges are always +1 or −1)

width k + 2, the slope of outer edges is still +1 or −1

vk

vk

ul

ur

ul

ur

ul

ur



incremental shift algorithm (original FPP)
[de Fraysseix, Pollack, Pach’89]

12
34

56

7

Grid size of Gk: 2k × k

Theorem
The FPP algorithm computes in linear time
a straight-line grid drawing of T , on a grid
of size 2n× n

Vertex coordinates are integers, because the Manhattan distance
between vertices on the outer boundary is even: at each step the edges
on the outer face have slopes +1 or −1

1. Vertices are drawn as grid points

1.

2.

3.

4.

5.

6.

7.

2. the grid is polynomial: 2n× n
for every vertex we stretch by 2 horizontally



Two-passes implementation: linear-time

1.

2.

3.

4.

5.

6.

7.
12

34

56

7

First pass: compute for each edge
(not in T ) the x-span, defined by
sub-tree size in the dual spanning tree

7.

1.

2.

3.

4.

5.

6.

a b

Second pass

14

14

1

1

1

1

2

3

4

2

2

a b

1

2
10

4

7



Again on Canonical Orderings
(variants and applications)



Drawing 4-connected planar triangulations

Theorem
A planar 4-connected triangulation (with at least four vertices on the
bounday), admits a straight-line on a grid of size n

2 × n
2



Fast enumeration of planar triangulations

[Nakano et al.]



v0 v1

v2

Chapter II: Schnyder woods

MPRI 2-38-1: Algorithms and combinatorics for geometric graphs

Luca Castelli Aleardi

october 9, 2024

Lecture 4



Some facts about planar graphs
(”As I have known them”)



G planar if and only if G contains
neither K5 nor K3,3 as minors

Thm (Schnyder, Trotter, Felsner)

Every planar graph with n vertices is isomorphic to the
intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

Some facts about planar graphs

Thm (Kuratowski, excluded minors)
G planar if and only if dim(G) ≤ 3

E(ρ) :=
∑

(i,j)∈E

|x(vi)−x(vj)|2 =
∑

(i,j)∈E

(xi−xj)
2+(yi−yj)

2

x(vi) =
∑

j∈N (i)

1

deg(vi)
x(vj)

Thm (Tutte)



Thm (Schnyder 1990)

Straight-line planar drawings of planar graphs

O(n)×O(n) grid drawings

12
34

56

7

Thm (De Fraysseix, Pack Pollack 1989)

[Tutte’63]Tutte barycentric embedding

face counting via Schnyder woods shift algorithm via Canonical orderings

Spring embedder (Eades, 1984)
(Fruchterman and Reingold, 1991)

force-directed paradigm

linear time algorithms

not trivial to implement

E(ρ) :=
∑

(i,j)∈E

|x(vi)−x(vj)|2 =
∑

(i,j)∈E

(xi−xj)
2+(yi−yj)

2

solve large sparse linear systems

images from Kaufman Wagner (Springer, 2001)

extremey fast: they can process
millions of vertices per second

easy to implement
not very fast: they can process ≈ 104

vertices per second

easy to implement
pretty slow: O(n2) or O(n log n) time per iteration

FPP
algorithm

minimize the spring energy

x(vi) =
∑

j∈N (i)

1

deg(vi)
x(vj)

Fa(v) = c1 ·
∑

(u,v)∈E log(dist(u, v)/c2)

Fr(v) = c3 ·
∑

u∈V
1√

dist(u,v)



Thm (Schnyder 1990)

Straight-line planar drawings of planar graphs

O(n)×O(n) grid drawings

12
34

56

7

Thm (De Fraysseix, Pack Pollack 1989)

[Tutte’63]Tutte barycentric embedding

face counting via Schnyder woods shift algorithm via Canonical orderings

linear time algorithms

not trivial to implement

E(ρ) :=
∑

(i,j)∈E

|x(vi)−x(vj)|2 =
∑

(i,j)∈E

(xi−xj)
2+(yi−yj)

2

solve large sparse linear systems

extremey fast: they can process
millions of vertices per second

easy to implement
not very fast: they can process ≈ 104

vertices per second

FPP
algorithm

minimize the spring energy

x(vi) =
∑

j∈N (i)

1

deg(vi)
x(vj)

Timing performances
Schnyder drawing or FPP algorithm:

(Java, 2.66GHz Intel i7 CPU)
less than 1 second

vertices
200k 400k 600k

vertices

1.2
1.0

0.8
0.6
0.4

0.2

solve sparse linear systems with the conjugate
gradient solver of MTJ (Java) library

80

60

40

20

200k 400k 600k

100

se
co
nd
s

ISP layout
PC layout

(numeric precision 10−6)

se
co
nd
s

Chinese dragon (655k vert.)



Every planar graph with n vertices is isomorphic to the
intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

Using circles to measure distances

(images by N. Bonichon)

(images by R. Silveira)

Not every planar triangulation is
Delaunay realizable



TD-Delaunay: triangular distance Delaunay triangulations

Thm (de Fraysseix, Ossona de Mendez, Rosenstiehl, ’94)

Using triangles to measure distances

(images by S. Felsner)

Chew, ’89

(images by N. Bonichon)Every planar triangulation is TD-Delaunay realizable



Schnyder woods and canonical orderings: overview of applications

(graph drawing, graph encoding, succinct representations, compact data structures, exhaustive graph

enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing,

untangling of planar graphs, Steinitz representations of polyhedra, . . .)



Some (classical) applications

bijective counting, random generation

(Poulalhon-Schaeffer, Icalp 03)

Graph encoding (4n nits)

Thm (Schnyder ’90)

Planar straight-line grid drawing (on a O(n× n) grid)

cn = 2(4n+1)!
(3n+2)!(n+1)!

⇒ optimal encoding ≈ 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)

(He, Kao, Lu, 1999)

2
3

45

6

78

9

10

11

( ) ( ( ( ) ) ( ) ( ) ) ( ) ( ( ) ) ( ) ( )T 0

00000101010100110111T 2



More (”recent”) applications

u

v
a

b

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

(conjectured by Papadimitriou and Ratajczak
for 3-connected planar graphs)

Greedy routing

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces and
Half-Θ6-graphs [ Bonichon et al., WG’10, Icalp ’10, ...]



Schnyder woods
(definitions)



Schnyder woods (for triangulations): definition

n nodes

ii) colors and orientations around each inner node must
respect the local Schnyder condition

i) edge are colored and oriented in such a way that each
inner nodes has exaclty one outgoing edge of each color

A Schnyder wood of a (rooted)
planar triangulation is partition of all
inner edges into three sets T0, T1 and
T2 such that

[Schnyder ’90]

rooted triangulation on

v0 v1

v2



Schnyder woods: equivalent formulations

v0 v1

v2

[3-orientation][Schnyder labeling]

0 0
0

0

0
0

00

2 2 2 2

2 2
2

2

2

1

1

1

1

1
1

1

1

1

1

1

1

1
2

2
2

0

2

0 0
0

1

1

0

2
0

1
2



Schnyder woods (3-connected maps): definition
3-connected graphs [Felsner]

3-connect. map M

local Schnyder rule

a0
a1

a2

More details: next Lecture



Schnyder woods: spanning property
[Schnyder ’90]Theorem

The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex vi)

v1

v0

T2

T1

v2 T0

v0 v1

v2

a0 a1

a2

T0

Ti := digraph defined by directed edges of color i

Remark
Planar graphs have arboricity at most 3

(minimum number of edge-disjoint spanning forests)



Spanning property for triangulations

v0 v1

v2

u u1

u2

u3u4

uk

fi = 2ni + k − 2

ei = 3ni + (k − 3)

k := #boundary edges=#boundary vertices

ni := #inner vertices

proof (use a counting argument)

ei = 3ni + k

Schnyder local rule implies:

3 outgoing edges for inner vertices

1 outgoing edges for boundary vertices

Triangulations with a boundary

there is a vertex u violating Schnyder rule

[Schnyder ’90]Theorem
The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex vi)

local Schnyder rule

Claim 1: Ti does not contain cycles

C:=monochromatic cycle of size k
(cw or ccw) oriented

C:=non oriented monochromatic
cycle of size k

Case 1:

Case 2:C

u4

u1

u2

u3

uk

(assume there are monochromatic cycles, by contradiction)

(count edges in the triangulation bounded by the cycle)

ei := # inner edges



Spanning property for triangulations

v0 v1

v2

proof (use a counting argument)

[Schnyder ’90]Theorem
The three sets T0, T1, T2 are spanning trees of
the inner vertices of T (each rooted at vertex vi)

local Schnyder rule

Claim 2: Ti is connected

Let G be a connected component not containing vi

(by contradiction, assume there are several disjoint components)

u

G is connected and without cycles

then G is a tree: |G| vertices and |G| − 1 edges

there is a vertex u ∈ G violating Schnyder rule:
no outgoing edge of color i

all vertices of G are inner vertices (distinct from v0, v1 and v2)
{



Non crossing paths

R2(v)
v

R1(v)
R0(v) v

Corollary
For each inner vertex v the three monochromatic paths P0, P1, P2 directed from v toward each vertex
ai are vertex disjoint (except at v) and partition the inner faces into three sets R0(v), R1(v), R2(v)

proof: (by contradiction)

u

Corollary:
Each sets Ti is spanning tree M (rooted at vertex ai)

a0 a1

a2



Non crossing paths

R2(v)
v

R1(v)
R0(v)

v

Corollary
For each inner vertex v the three monochromatic paths P0, P1, P2 directed from v toward each vertex
ai are vertex disjoint (except at v) and partition the inner faces into three sets R0(v), R1(v), R2(v)

proof: the existence of two paths Pi(v) and Pi+1(v) which
are crossing would contradicts previous theorem

u

local Schnyder rule

Corollary:
Each sets Ti is spanning tree M (rooted at vertex ai)

a0 a1

a2

Remark: the outgoing black
is just after (in ccw order) the
last ingoing red and it cannot
be followed by an outgoing
blue edge



Consequences
Efficient graph data structure for planar graphs
There exist a (simple) data structure of size O(n log n) bits supporting
constant time adjacency test between vertices

Menger theorem for planar triangulations
Schnyder woods allows us to compute in linear time, for any pair of vertices
(u, v), 3 vertex disjoint paths between u and v

If G is k-connected, then for each pair
u, vthere exist k disjoint path from u
to v

Thm (Menger)

AG[i, j] = { 0

1 vi adjacent vj

otherwise

1 0

0

0

0

0
0

0

1 1
1 1

1 11 1

1 1
1 1

1
1

11

1

v1

v4

v5

v2

v3

space: O(n2) bits

adjacency: O(1) time

2 43

. . .

v1

v21 54 3

5 4 1 2

3

4

4

di neighbors

space: O(n log n) bits

adjacency: O(n) time

Adjacency lists

Adjacency matrix



Consequences
Efficient graph data structure for planar graphs
There exist a (simple) data structure of size O(n log n) bits supporting
constant time adjacency test between vertices

Menger theorem for planar triangulations
Schnyder woods allows us to compute in linear time, for any pair of vertices
(u, v), 3 vertex disjoint paths between u and v

0 86

. . .

v7

v9 6 108

neighbors (outgoing edges)

space: O(n log n) bits

adjacency: O(1) time

Truncated adjacency lists: store only 3 successors

2 3

45

6

78

9

10

v0 = 0 v1 = 1

v2 = 11

. . .

0 106v8



Consequences
Efficient graph data structure for planar graphs
There exist a (simple) data structure of size O(n log n) bits supporting
constant time adjacency test between vertices

Menger theorem for planar triangulations
Schnyder woods allows us to compute in linear time, for any pair of vertices
(u, v), 3 vertex disjoint paths between u and v

Truncated adjacency lists: store only 3 successors

v

u

v

u

Case 1: Case 2:



Consequences
Efficient graph data structure for planar graphs
There exist a (simple) data structure of size O(n log n) bits supporting
constant time adjacency test between vertices

Menger theorem for planar triangulations
Schnyder woods allows us to compute in linear time, for any pair of vertices
(u, v), 3 vertex disjoint paths between u and v

Truncated adjacency lists: store only 3 successors

v

u

v

u

Case 1: Case 2:

fout



Number and structure of Schnyder woods
Counting Schnyder woods:

[Bonichon ’05]

[Felsner Zickfeld ’08] 2.37n ≤ max |SW (T )| ≤ 3.56n
T ∈ Tn

Tn := class of planar triangulations of size n

SW (T ) := set of all Schnyder woods of the triangulation T

(there are grahs admitting an exponential number)

(count of Schnyder woods of a fixed triangulation)

≈ 16n# Schnyder woods of triangulations of size n:

reversal of oriented triangles

(all Schnyder woods over all distinct triangulations of size n)

Exercice: there exists a class of
planar triangulations admitting a
unique Schnyder wood. Which one?



Structure of Schnyder woods: distributive lattice

Flip:= to

[Ossona de Mendez’94], [Felsner’03]

The min is the unique Smin ∈ S(T ) with no clockwise circuit

Thm:
The set S(T ) of all distinct Schnyder woods of a given triangulation T defines a connected graph
with respect to the flip operation. Furthermore, this set has a lattice structure: a partial order such
that for every pair of Schnyder woods of T there is an unique supremum (and unique infimum).

minimal Schnyder wood maximal Schnyder wood
(no directed cycles in ccw direction)

(no directed cycles in cw direction)

reversal of directed cycles
(cycles could bound several faces)

Smin Smax

Sa < Sb iff Sa can be
obtained by Sb by flipping ccw
directed cycles



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Via Canonical orderings (see Lecture 2)



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−1

⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Via Canonical orderings (see Lecture 2)



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−2

w
⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Via Canonical orderings (see Lecture 4)



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−3 ⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Invariant:

vk

u



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Invariant:

vk

u



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Invariant:

vk

u



Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

v2

Invariant:

vk

u



Planar straight-line drawings
(of planar graphs)



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Classical algorithms:

[Tutte’63] [De Fraysseix, Pach, Pollack 89] [Schnyder’90]

spring-embedding incremental (Shift-algorithm) face-counting principle

existence of straight-line drawing

[Stein’51]



Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒



Face counting algorithm
(Schnyder algorithm, 1990)



Face counting algorithm

x1

x0

x2

R2(v)
v R0(v)

R1(v)

v = |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2

|Ri(v)| is the number of triangles in Ri(v)

Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it on a grid of size (2n− 5)× (2n− 5),
by setting x0 = (2n− 5, 0), x1 = (0, 0) and x2 = (0, 2n− 5).

x1
x0

x2

α1

v
α0

α2

v = α0x0 + α1x1 + α2x2

where αi is the normalized area

Geometric interpretation

Theorem
For a 3-connected planar map M having f vertices, there is drawing on a grid of size
(f − 1)× (f − 1)

v
u

v

u

→ (5, 6, 2 )

→ (7, 3, 3 )

v0, v1, v2 ):= (

u0,u1, u2):= (

v

v1 = 6

u1 = 3



⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

d

a b

c d

e f

g h

i→ (0, 0) → (0, 1) → (1, 0)

→ ( 5
13 ,

6
13 )→ ( 9

13 ,
1
13 )

→ ( 7
13 ,

4
13 ) → ( 3

13 ,
3
13 )

→ ( 4
13 ,

8
13 ) → ( 1

13 ,
4
13 )

Face counting algorithm: example



Face counting algorithm: example

⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

d

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4) d

5, 6, 2 )



⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4) d

5, 6, 2 )

Face counting algorithm: example

x+ y + z = 2n− 5



Barycentric representation of a planar graph

(validity of the Schnyder layout)



Barycentric representation of a planar graph

f(v) −→ (v0, v1, v2) ∈ R3 satisfying:

v0 + v1 + v2 = 1 , for each vertex v

for each edge (x, y) ∈ E and each vertex z /∈ {x, y}
there is an index k ∈ {0, 1, 2} such that

xk < zk
yk < zk

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

a b

c
example:

Definition: A barycentric representation of a
graph G is defined by a mapping



Barycentric representation of a planar graph

f(v) −→ (v0, v1, v2) ∈ R3 satisfying:

v0 + v1 + v2 = 1 , for each vertex v

for each edge (x, y) ∈ E and each vertex z /∈ {x, y}
there is an index k ∈ {0, 1, 2} such that

xk < zk
yk < zk

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

example:

Definition: A barycentric representation of a
graph G is defined by a mapping

Intuition: no vertex z in the gray
triangle defined by f(x), f(y)

x0 < z0
y0 < z0

u

u1

u0

u2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

f(x)

f(y)

f(z)

max(x2, y2)

max(x0, y0)

max(x1, y1)



Barycentric representation of a planar graph
Theorem
A barycentric representation defines a planar straight-line (crossing-free) drawing of G, in the
plane spanned by (1, 0, 0), (0, 1, 0) and (0, 0, 1).

for each edge (x, y) ∈ E and each vertex
z /∈ {x, y}, f(z) cannot lie on (f(x), f(y))

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

f(x)

f(y)

f(z)

max(x2, y2)

max(x0, y0)

f(z) = tf(x) + (1− t)f(y) , for some t ∈ [0, 1]

zk = txk + (1− t)yk < tzk + (1− t)zk = zk

f is a barycentric representation, so there is k ∈ {0, 1, 2} s. t.

proof:

Claim 1:

by contradiction: assume f(z) ∈ (f(x), f(y)), so we can write

xk < zk
yk < zk

so get a contradiction



Barycentric representation of a planar graph
Theorem
A barycentric representation defines a planar straight-line (crossing-free) drawing of G, in the
plane spanned by (1, 0, 0), (0, 1, 0) and (0, 0, 1).

given two edges (x, y), (u, v) of G they cannot cross

f(x)

f(y)

f(u)

f(v)

proof (intuition): we can find a straight-line l (parallel to
one of the 3 axis) separating the two edges

Claim 2:

l

d
c

f

g

c

d→ (

→ (3, 9, 1)

5, 6, 2 )
f
g

→ (7, 3, 3)

→ (1, 4, 8)

c2, d2 < f2

d2, c2 < g2

ll



Barycentric representation of a planar graph
Theorem
A barycentric representation defines a planar straight-line drawing of G, in the plane spanned
by (1, 0, 0), (0, 1, 0) and (0, 0, 1).

given two edges (x, y), (u, v) of G they cannot cross

f(v)

f(u)

f(x)

ui, vi < xi

f(y)

by definition there are four indices i, j, k, l ∈ {0, 1, 2}

uj , vj < yj

xk, yk < uk

xl, yl < vl

i ̸= k, l and j ̸= k, l i = j or k = l

the line l parallel to [(1, 0, 0), (0, 1, 0)]
separates (u, v) and (x, y)

if i = k we would have
uk < xk

vk < xk

contradicting

xk, yk < uk

proof:

Claim 2:

l

In the example above
we have i = j = 2

there exists a separating line l parallel to
one of the sides of the outer triangle, that
separates (u, v) and (x, y)

Fact: i ̸= k



The Schnyder layout defines a barycentric
representation

(validity of the Schnyder layout)



Paths and regions

Ri(v)

v

u

Ri(u)

v

u

Ri(u)

v

u

Lemma Let (T0, T1, T2) a Schnyder wood of M.
If u ∈ Ri(v) then Ri(u) ⊆ Ri(v)
If u ∈ Rint

i (v) then Ri(u) ⊂ Ri(v)

proof:
Case 1: u ∈ Rint

i (v)

v

u

u ∈ Rint
1 (v)

xy

first step: compute the paths Pi+1(u) and Pi−1(u)

Case 2a: u ∈ Pi−1(v)

They must intersect the boundary of Ri(v) at x and y

Remark: x and y are different from v

and we have y ∈ Pi+1(u) and x ∈ Pi−1(u)

(because of Schnyder rule)

so we have: Ri(u) ⊂ Ri(v)

Ri(u) ⊂ Ri(v)



Paths and regions
Remarks: Let (u, v) be an edge of color i oriented from u to v

v
u

v ∈ Pi(u)

v ∈ Ri+1(u)

v ∈ Ri−1(u)

u ∈ Ri(v)

{

u

v

i

i+ 1

i+ 1

ii− 1

i− 1

Ri(u) ⊂ Ri(v)

Ri+1(v) ⊂ Ri+1(u)

Ri−1(v) ⊂ Ri−1(u) R1(u) ⊂ R1(v)

R2(v) ⊂ R2(u)

R0(v) ⊂ R0(u)

v
u

v
u

i = 1



Regions and coordinates

Given (u, v) of color i oriented from u to v we have:
v

u

Ri(u) ⊂ Ri(v)

Ri+1(v) ⊂ Ri+1(u)

Ri−1(v) ⊂ Ri−1(u)

Ri(u) ⊆ Ri(v) |Ri(u)| ≤ |Ri(v)| ui ≤ vi
v

u

5, 6, 2 )

7, 3, 3 )

v0, v1, v2 ):= (

u0,u1, u2):= (

v =: |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2 =

= v0

|F |−1x0 +
v1

|F |−1x1 +
v2

|F |−1x2

(

(

v0 + v1 + v2 = f − 1

{ ui < vi

ui+1 > vi+1

ui−1 > vi−1

For every edge (u, v) there are some indices i, j ∈ {0, 1, 2} s.t.
ui < vi

uj > vj

Lemma: The Schnyder layout is a barycentric representation

Schnyder
coordinates

Corollary: The Schnyder layout is crossing free



Regions and coordinates
Remarks: Let (u, v) of color i oriented from u to v

v

u

Ri(u) ⊂ Ri(v)

Ri+1(v) ⊂ Ri+1(u)

Ri−1(v) ⊂ Ri−1(u)

Ri(u) ⊆ Ri(v) |Ri(u)| ≤ |Ri(v)| ui ≤ vi
v

u

5, 6, 2 )

7, 3, 3 )

v0, v1, v2 ):= (

u0,u1, u2):= (

v =: |R0(v)|
|F |−1 x0 +

|R1(v)|
|F |−1 x1 +

|R2(v)|
|F |−1 x2 =

= v0

|F |−1x0 +
v1

|F |−1x1 +
v2

|F |−1x2

(

(v0 + v1 + v2 = f − 1 { ui < vi

ui+1 > vi+1

ui−1 > vi−1

v x2 = v2

x0 = v0, x1 = v1

Remark:

u

is ui < vi the u lies in the white sector
xi+1 > ui+1

xi−1 > vi−1

the outgoing edges (v, w) lie in the gray sectors

w



Linear-time implementation

(how to efficiently perform region counting)



Linear-time implementation

Problem: how to efficiently compute |Ri(v)| (for all v ∈ V )?

Remark: the number of faces |Ri(v)| can
be retrieved from: the number of inner
vertices and the number of vertices on the
path Pi+1(v) and Pi−1(v)

c

ba
Ri(v)

v

u

c

ba

vPi+1(v)

Pi−1(v)
tw1

tw2 tu3

tu2 tu1



Linear-time implementation

Ri(v)

v vPi+1(v)

Pi−1(v)

Problem: how to efficiently compute |Ri(v)| (for all v ∈ V )?

tw1

tw2 tu3

tu2

Remark: the number of faces |Ri(v)| can
be retrieved from: the number of inner
vertices and the number of vertices on the
path Pi+1(v) and Pi−1(v)

v
Ri(v) = 4 ∑

w∈Pi+1
|tw|+

∑
u |tu| = 1

tu1

(inner faces)

∂Ri(v) := (Pi+1(v) + Pi−1(v))− 1 = 4
(outer vertices)

(inner vertices)

fi = 2ni + k − 2



Linear-time implementation

Ri(v)

v vPi+1(v)

Pi−1(v)

Problem: how to efficiently compute |Ri(v)| (for all v ∈ V )?

tw1

tw2 tu3

tu2 tu1

fi = 2ni + k − 2

Compute and store for each vertex v the subtree size of T0(v), T1(v), T2(v)

Compute the length of the paths P0(v), P1(v), P2(v)

cumulate the size of sub-trees for all vertices wk, uj on the paths Pi+1(v), Pi−1(v)

Pi(v)



Linear-time implementation

Ri(v)

v

u

V1

V0

vPi+1(v)

Pi−1(v)

Problem: how to efficiently compute |Ri(v)| (for all v ∈ V )?

tw1

tw2 tu3

tu2 tu1

fi = 2ni + k − 2

Compute and store for each vertex v the subtree size of T0(v), T1(v), T2(v)

Compute the length of the paths P0(v), P1(v), P2(v)

cumulate the size of sub-trees for all vertices wk, uj on the paths Pi+1(v), Pi−1(v)

Pi(v)

V2

P0(v) = {V0, w1, w2, . . . v}
P1(v) = {V1, u1, u2, . . . v}



Practical performances
se
co
n
d
s

average timings (over 100 executions)

computing balanced Schnyder woods

computing Schnyder drawing

Schnyder woods can process ≈ 1.43M − 1.92M vertices/seconds
Timing performances (pure Java, on a core i7-5600 U, 2.60GHz, 1GB Ram):

Two Schnyder drawings of a sphere graph



Tutte Schnyder FPP layout

ra
n
d
om

f
i
s
h
m
o
d
el

Practical performances


