Algorithms and combinatorics for geometric graphs

Lecture 3

Efficient algorithms on planar graphs

september 28, 2023

Luca Castelli Aleardi
Graph separators
Divide & Conquer for (planar) graphs: *Small Separators*

Tool for recursive decompositions of graphs

Many Algorithmic applications:
- Approximation scheme for *Maximum Independent Set*
- Graph Encoding: *compression schemes* and *compact representations*
- Graph Drawing: *spherical parameterizations*
- Point Location (in optimal time)
Divide & Conquer for (planar) graphs: Small Separators

Encoding planar graphs in $O(n)$ bits

Approximation scheme for Maximum Independent Set

Graph Drawing: spherical parameterizations

Compute 2D layouts of each hemisphere

Tutte barycentric layout (in 2D)
Graph separators: definition
Given a graph $G = (V, E)$ with n vertices, an ε-separator is a partition (A, B, S) of the vertices such that:

- (balanced) every connected component of $G \setminus S$ has size at most εn
- (separation) there are no edges between A and B
- S is small: $|S| = o(n)$
Separators: definitions

Def

Given a weighted graph $G = (V, E)$ with n vertices and total weight W, a separator is a partition (A, B, S) of the vertices such that:

- (balance) every connected component of $G \setminus S$ has weight at most $\frac{1}{2}W$
- (separation) there are no edges between A and B
- S is small: $|S| = O(\sqrt{n})$
Separators for trees

Lemma: A weighted tree T admits a separator consisting of a single vertex (computable in $O(n)$ time)

Proof:

First step: compute for each vertex $v \in T$ the weight of the subtree t_v rooted at v (total overall cost: linear time)

$$T \setminus v := C_1(v) \cup C_2(v) \cup \ldots$$

Case 1: $W(C_i(v)) \leq \frac{1}{2} W$ $\forall i$

return v

Case 2: $W(C_{\text{max}}(v)) > \frac{1}{2} W$

move to the descendant $w \in C_{\text{max}}(v)$

restart from w

Correctness: The algorithm visit each vertex at most once (we move from v to its descendant w) The component $C_i(w)$ containing v is small: $W(C_i(w)) \leq W - W(C_{\text{max}}(v)) \leq \frac{1}{2}$
Separators: definitions

examples: what about grid graphs? and general graphs? planar graphs?
Planar Separators theorems

Thm (Lipton-Tarjan, ’79)

Every planar graph with n vertices admits a $\frac{2}{3}$-separator of size at most $4\sqrt{n}$, that can be computed in linear time.

(purely combinatorial proof: perform a BFS traversal)

Thm (Spielman and Teng)

Every planar graph with n vertices admits a $\frac{3}{4}$-separator of size (in expectation) at most $2\sqrt{n}$.

(geometric proof: omitted)

sphere packing (Koebe)

stereographic projection + Möbius transformation

Compute intersections with a random hyperplane passing through the origin
Let G be a planar weighted graph with n vertices. Let U be a BFS spanning tree of T of depth at most d, rooted at r. Then we can compute in linear time a separator of size at most $3d + 1$.

Proof (assume the graph is triangulated)

Construct a weighted dual graph G^*: each face (a dual vertex) get the weight of a vertex in G and each vertex assigns its weight to a unique incident face.

Define the spanning tree $T^* := G^* \setminus U^*$

Apply previous Lemma to T^*, getting a separating vertex c^* (all component of $T^* \setminus c^*$ are small, of cost at most $\frac{1}{2}$)

computes three shortest paths $P_i(t)$ from t to the root vertex r

$$S := t \cup P_1 \cup P_2 \cup P_3$$

Claim 1: The separator S has at most $3d + 1$ vertices

Claim 2: Each component C of $G \setminus S$ has weight at most $\frac{1}{2}$

since each component C^* of $T^* \setminus c^*$ has weight at most $\frac{1}{2}$

and the total (inner) weight of C is at most the weight of C^*
Planar Separators for graphs of small radius

Theorem
Let G be a connected planar graph with n vertices. Then we can compute in linear time a separator of size at most $O(\sqrt{n})$.

Proof: Compute a BFS spanning tree T of G, rooted at r

Claim 1:
The set of vertices L_i at level l_i are a separator (splitting G)

- Define $l_m :=$ median level
 \[\sum_{i < m} W(L_i) \leq \frac{1}{2} \]
 \[\sum_{i > m} W(L_i) \leq \frac{1}{2} \]

- Define $l_{\inf} :=$ largest level l_j ($j < i$) such that $|L_{l_{\inf}}| \leq \sqrt{n}$
- Define $l_{\sup} :=$ smallest level l_j ($j > i$) such that $|L_{l_{\sup}}| \leq \sqrt{n}$

Remark: The levels l_k between l_{\inf} and l_{\sup} are large: $|L_k| \geq \sqrt{n} + 1$ (for $\inf < k < \sup$)

Claims:
- Number of levels l_k between l_{\inf} and l_{\sup}: $l_{\sup} - l_{\inf} \leq \frac{n}{\sqrt{n} + 1} < \sqrt{n}$
- The set of vertices $S' := L_{l_{\inf}} \cup L_{l_{\sup}}$ is small: $|S'| \leq 2\sqrt{n}$
- The connected components of $G \setminus S'$ which are large (weight larger than $\frac{1}{2}$) are between the levels l_{\inf} and l_{\sup} (by definition $l_m :=$ median level)
Planar Separators for graphs of small radius

Lemma

Let G be a connected planar graph with n vertices. Then we can compute in linear time a separator of size at most $O(\sqrt{n})$.

Proof: Compute a BFS spanning tree T of G, rooted at r

Claim 1: The set of vertices L_i at level l_i are a separator (splitting G)

\[
\text{define } l_m := \text{median level} \quad \sum_{i<m} W(L_i) \leq \frac{1}{2} \\
\sum_{i>m} W(L_i) \leq \frac{1}{2}
\]

Last step:

Take the graph G' induced by the vertices strictly between the levels l_{inf} and l_{sup}

G' is not necessarily connected: create a graph G'' by adding a dummy vertex r' and connecting it to vertices in l_{inf}

Apply previous Lemma to graph G': its radius is $O(\sqrt{n})$, so the separator S has size $O(\sqrt{n})$

\text{return } L_{l_{\text{inf}}} \cup L_{l_{\text{sup}}} \cup S
Graph separators: algorithmic applications
(classical) Graph representations

Adjacency matrix

\[
A_G[i, j] = \begin{cases}
1 & \text{if } v_i \text{ adjacent } v_j \\
0 & \text{otherwise}
\end{cases}
\]

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

\(O(n^2)\) bits

Adjacency list (and its variants)

<table>
<thead>
<tr>
<th>(d_i)</th>
<th>(O(n \log n)) bits</th>
<th>(O(n \log n)) bits</th>
<th>(O(n \log n)) bits</th>
<th>(O(n \log n)) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>3 2 3 4</td>
<td>3 2 3 4</td>
<td>3 1 1 1</td>
<td>3 1 1 1 1</td>
</tr>
<tr>
<td>(v_2)</td>
<td>4 1 4 5 3</td>
<td>4 1 3 4 5</td>
<td>4 –1 2 1 1</td>
<td>4 0 1 2 1 1</td>
</tr>
<tr>
<td>(v_3)</td>
<td>4 5 4 1 2</td>
<td>4 1 2 4 5</td>
<td>4 –2 1 2 1</td>
<td>4 0 2 1 2 1</td>
</tr>
</tbody>
</table>

neighbors in arbitrary order

sorted neighbors

difference encoding

difference encoding

negative differences

positive differences

sign
Encoding of planar graphs in $O(n)$ bits

Thm

Any planar graph with n vertices can be encoded with at most $O(n)$ bits.

Solution: use difference encoding of adjacency lists + separators

this time we get $O(n)$ bits

Why does it work? Because vertices which are ”close” in the graph get ”close indices”

<table>
<thead>
<tr>
<th>d_i</th>
<th>sign</th>
<th>positive differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1 2 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2 1 2 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Any planar graph with \(n \) vertices can be encoded with at most \(O(n) \) bits.

Proof (overview):

1. **Step 1:** compute a recursive decomposition using (edge) separators

 \[
 |G| := n \\
 |S| = O(\sqrt{n}) \\
 |G_1| \leq O(\alpha n) \\
 |G_2| \leq O(\alpha n)
 \]

2. **Step 2:** encode using adjacency lists with difference encoding

 - encode the edges in \(S \) as usual
 \[
 \text{size}(S) = O(|S| \log |S|)
 \]
 \[
 \text{size}(S) = O(\sqrt{|G|} \log |G|)
 \]
 - encode each piece \(G_i \) recursively
 \[
 \text{size}(G) = \text{size}(S) + \text{size}(G_1) + \text{size}(G_2)
 \]
 \[
 \text{size}(n) = C \cdot \sqrt{n \log n} + \text{size}(\alpha n) + \text{size}(\alpha n)
 \]
 - \(\text{size}(n) = O(n) \)
Recursive graph decompositions and hierarchical representations

Thm (Lipton Tarjan)

Given a planar graph G of size n and weight $W = 1$, and a parameter $0 \leq \varepsilon \leq 1$. Then it is possible to compute a separator $S \subset V$ of size at most $|S| = O\left(\frac{n}{\varepsilon}\right)$, such that each connected component of $G \setminus S$ has size at most ε. The computation time is $O(n \log n)$.
Maximum Independent Set

Thm (approx scheme)
Let G be a planar graph on n vertices. Show that you can compute in $O(n \log n)$ time an approximated independent set of vertices I whose size, for large values of n, is closed to the size of a maximum independent set I_{opt}:
$$\left| \frac{|I| - |I_{\text{opt}}|}{|I_{\text{opt}}|} \right|$$ tends to 0 with increasing n.

Proof:
Let \(G \) be a planar graph on \(n \) vertices. Show that you can compute in \(O(n \log n) \) time an approximated independent set of vertices \(I \) whose size, for large values of \(n \), is closed to the size of a maximum independent set \(I_{\text{opt}} \):

\[
\left| I \right| - \left| I_{\text{opt}} \right| \leq O\left(\frac{n}{\sqrt{\log \log n}}\right)
\]

with increasing \(n \).

Proof:

Use uniform weights: \(w(v_i) = \frac{1}{n} \).

Idea: apply previous result with parameter \(\varepsilon = \frac{\log \log n}{n} \).

- Sub-components \(G_i \) have size \(|G_i| \leq \frac{W(G_i)}{n} = O(\log \log n) \).
- The vertex separator \(S \) has size at most \(|S| = O\left(\frac{n}{\sqrt{\log \log n}}\right) \).

Trick: in each \(G_i \) use **brute-force** to compute a maximal independent set (checking all subsets) for each \(G_i \) of size \(n_i \) it takes: \(O(n_i \cdot 2^{n_i}) \) in overall: \(O\left(\frac{n}{\log \log n} (\log \log n) \cdot 2^{\log \log n}\right) = O(n \log n) \).

Remark: planar graphs are 4-colorable

\[
\frac{|I| - |I_{\text{opt}}|}{|I_{\text{opt}}|} \leq O\left(\frac{n/\sqrt{\log \log n}}{n/4}\right) = O\left(\frac{1}{\sqrt{\log \log n}}\right)
\]
Computing triangles and cliques in planar graphs
Let G be a graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in $O(nm)$ time.

Thm

Let G be a graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in $O(nm)$ time.

Proof:

```plaintext
procedure COUNT_TRIANGLES(G = (V, E))
    Count := 0;
    for each vertex $u \in V$
        mark all vertices which are neighbors of $u$ in $G$;
        for each marked vertex $v \in V$
            do { for each vertex $w$ which is a neighbor of $v$ in $G$
                    do if $w$ is marked then Count := Count + 1;
                    unmark vertex $v$;
                    $G := G \backslash \{u\}$; // vertex removal in $O(d_u)$ time
            }
    return Count;
```

triangle:= cycle of size 3 (complete graph on 3 vertices)
Counting triangles

Thm

Let G be a graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in $O(nm)$ time.

Proof:

```plaintext
procedure COUNT_TRIANGLES(G = (V, E))
    Count := 0;
    for each vertex $u \in V$
        mark all vertices which are neighbors of $u$ in $G$;
        for each marked vertex $v \in V$
            do 
                for each vertex $w$ which is a neighbor of $v$ in $G$
                    do if $w$ is marked then Count := Count + 1;
                unmark vertex $v$;
            $G := G \setminus \{u\}$; // vertex removal in $O(d_u)$ time
    return Count;
```

- each vertex v is marked at most $\text{deg}(v)$ times: each time the inner loop performs at most $\text{deg}(v)$ iterations: the cost per vertex is thus at most $\text{deg}(v)^2$
- $\sum_{v \in V} \text{deg}^2(v) \leq (\max_{v \in V} \text{deg}(v)) \cdot (\sum_{v \in V} \text{deg}(v)) \leq (|V| - 1) \sum_{v \in V} \text{deg}(v) = O(|V||E|)$
Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in $O(n)$ time.

Thm

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) the triangles of G in $O(n)$ time.

Proof:

procedure COUNT_TRIANGLES($G = (V,E)$)

$Count := 0$; order vertices of V according to non-increasing degree as (u_1, \ldots, u_n)

for each vertex $u \in V$ // visit vertices according to computed order

 mark all vertices which are neighbors of u in G;

 for each marked vertex $v \in V$
 do
 for each vertex w which is a neighbor of v in G
 do if w is marked then $Count := Count + 1$;

 unmark vertex v;

 $G := G \setminus \{u\}$; // vertex removal in $O(d_u)$ time

return $Count$;

- for any edge $\{u, v\}$ for a pair of vertices u, v considered in the algorithm, we have $\deg(v) \leq \deg(u)$
- the time complexity becomes $\sum_{(u,v)\in E} \min(d_u, d_v)$

Claim (exercise, homework I)

Show that in a planar graph with n vertices we have:

$$\sum_{(u,v)\in E} \min\{\deg(u), \deg(v)\} \leq 18n$$
Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in $O(n)$ time.

Thm

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in $O(n)$ time.

Proof: [case analysis, exercise]

Claim 1:

- Consider a 4-clique $Q = \{u, v, w, x\}$ in G.

 Show that the four vertices u, v, w, x cannot all belong to the same level V_j.

Claim 2: consider a 4-clique $Q = \{u, v, w, x\}$ in G, and let j be a positive integer $\leq k$.

- assume $u \in V_{j-1}$ and $v, w, x \in V_j$. Show that for one of the tree vertices v, w, x the only incident edge lying in E_j has u has other extremity.

- assume $u, w, x \in V_{j-1}$ and $x \in V_j$. Show that the edges incident to x lying in E_j are exactly $(u, x), (v, x)$ and (w, x).

- assume $u, v \in V_{j-1}$ and $w, x \in V_j$. Show that one of the vertices w, x has exactly two incident edges lying in E_j (whose other extremities are u and v).

Hint: compute a BFS of G and partition the vertices into $k + 1$ sets $\{V_0, V_1, \ldots, V_k\}$

- $V_k :=$ vertices at the distance k from the root (seed) vertex

- define $E_j :=$ set of edges $e = (u, v)$ s. t. $u \in V_{j-1}$ and $v \in V_j$

 (an edge belongs to E_j if it is connecting two vertices on levels V_j and V_{j-1}).
Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in $O(n)$ time.

Thm

Let G be a planar graph on n vertices and m edges. Then it is possible to count (or list) all 4-cliques of G in $O(n)$ time.

Proof: [case analysis, exercise]

Hint: compute a BFS of G and partition the vertices into $k + 1$ sets $\{V_0, V_1, \ldots, V_k\}$

- $V_k :=$ vertices at the distance k from the root (seed) vertex
- define $E_j :=$ set of edges $e = (u, v)$ s. t. $u \in V_{j-1}$ and $v \in V_j$

(an edge belongs to E_j if it is connecting two vertices on levels V_j and V_{j-1})

Claim 1:

- Consider a 4-clique $Q = \{u, v, w, x\}$ in G.
 Show that the four vertices u, v, w, x cannot all belong to the same level V_j.

Claim 1:

Contracting the edges we get K_5.

\[u \quad v \quad w \quad s \quad x \]