Algorithms and combinatorics for geometric graphs (Geomgraphs)

Lecture 3

Planar straight-line grid drawings

Chapter I: FPP algorithm (and canonical orderings)

october 2, 2025

Luca Castelli Aleardi

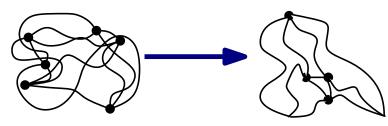
(some slides are provided by Eric Fusy)

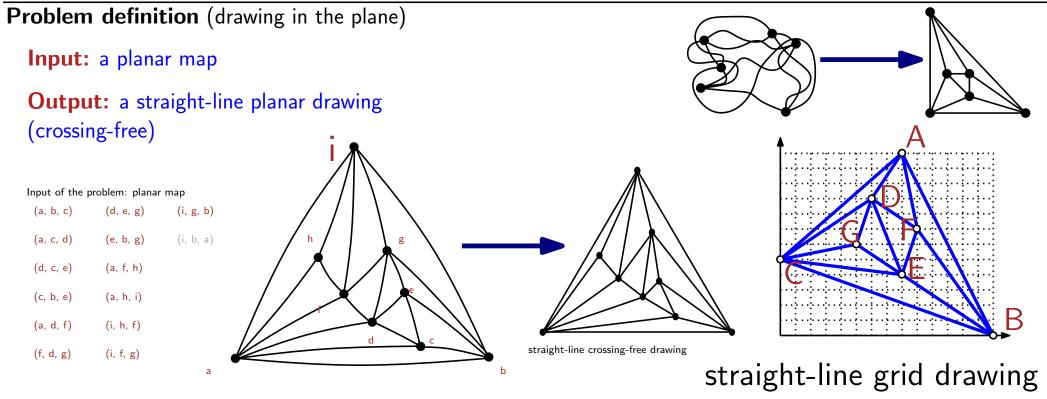
Straight-line planar drawings of planar graphs

Problem definition (Planarity testing, Embedding a planar graph)

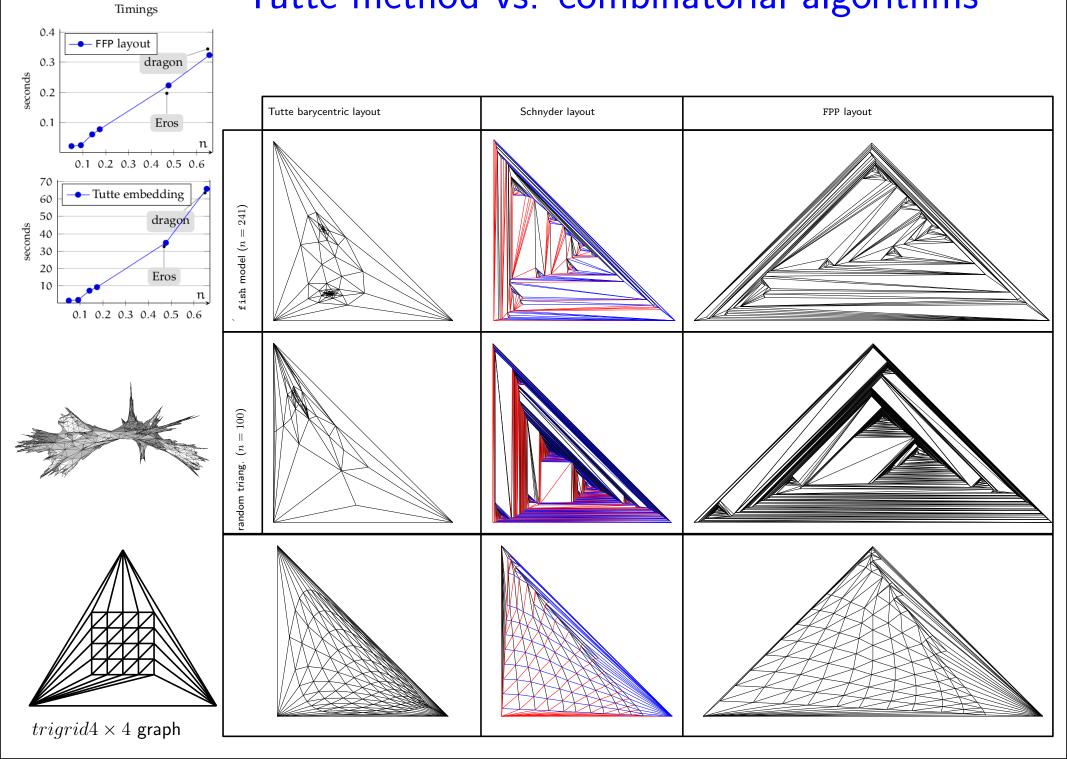
Input: a planar graph

Output: the planar map (cellulaly embedded graph)





Tutte method vs. combinatorial algorithms



Canonical orderings

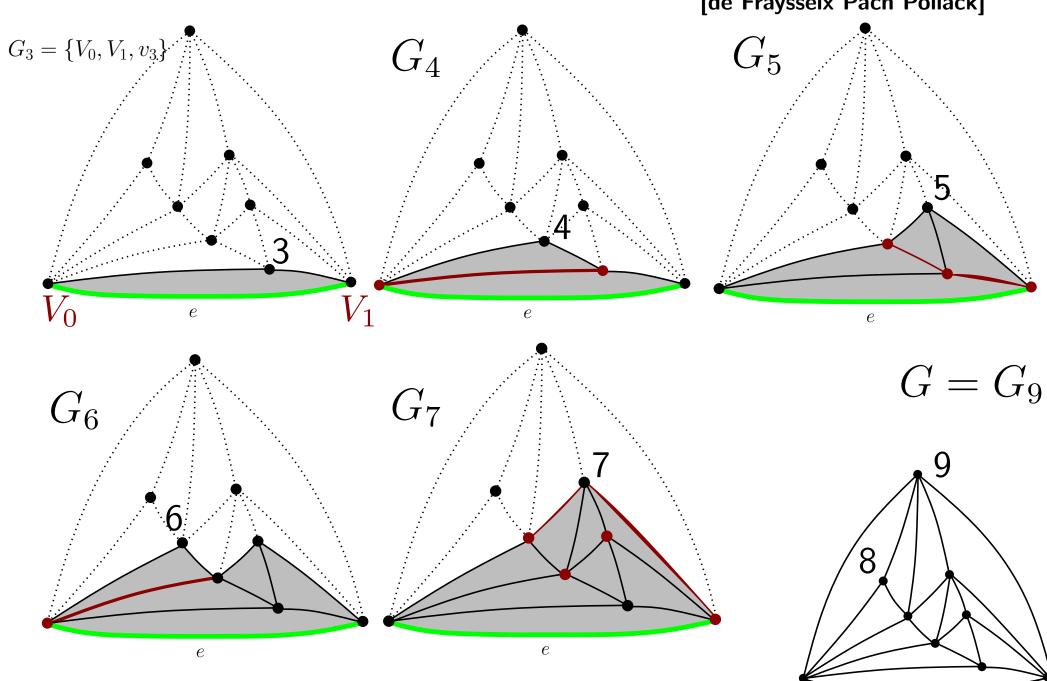
(the definition)

Canonical orderings: definition

[de Fraysseix Pach Pollack]

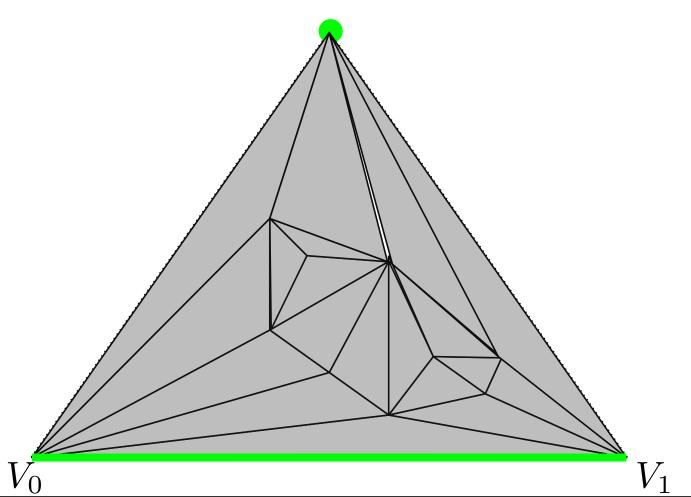
Definition 2.6 ([FPP90]) Let T be a plane triangulation, whose vertices on the outer (root) face are denoted V_0, V_1, V_2 . An ordering $\pi = \{v_1, v_2, \ldots, v_n\}$ of the n vertices of T is called a canonical ordering if the subgraphs G_k $(3 \le k \le n)$ induced by the vertices v_1, \ldots, v_k satisfy the following conditions (where we denote by B_k the cycle bounding the outer face of G_k):

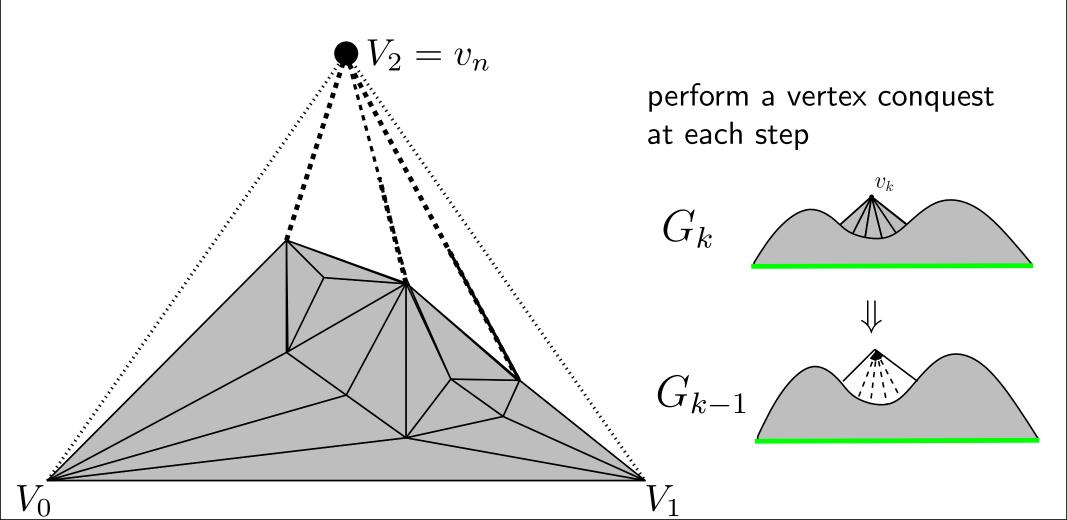
- G_k is 2-connected and internally triangulated, and $G_n = T$;
- v_1 and v_2 belong to the outer face (V_0, V_1, V_2) ;
- for each $k \ge 3$ the vertex v_k is on the B_k and its neighbors in G_{k-1} are consecutive on B_{k-1} .

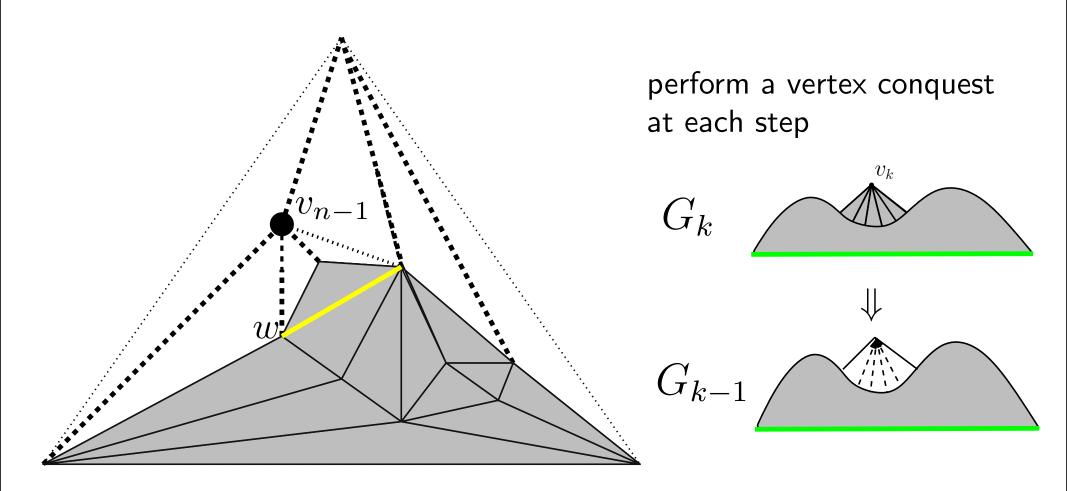


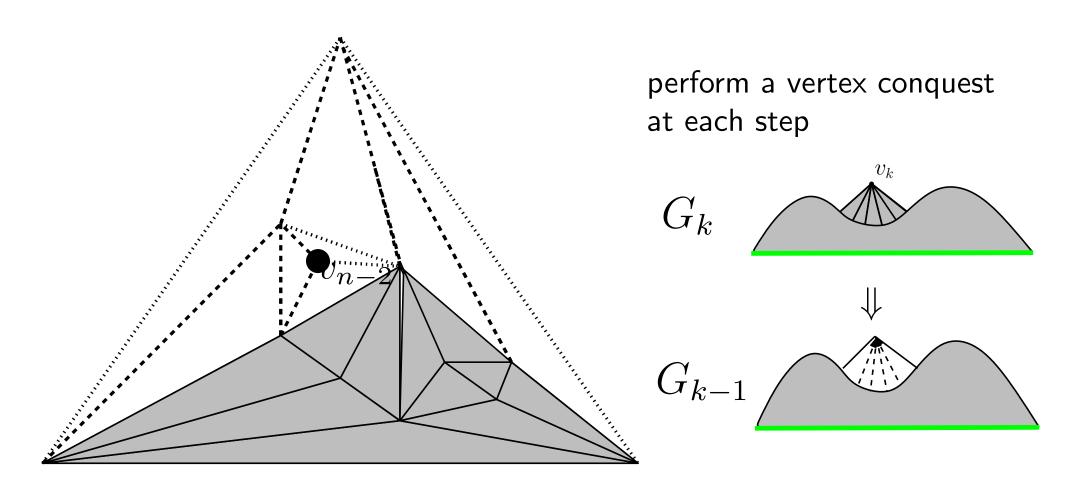
Theorem

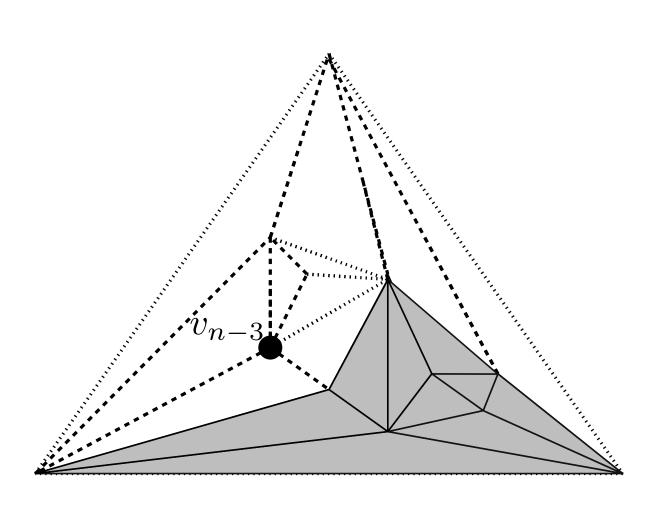
Every planar triangulation admits a **Canonical Ordering**, which can be computed in linear time.

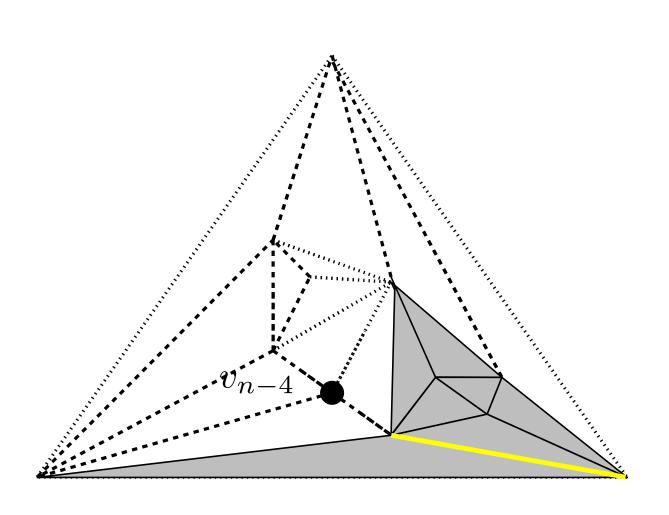


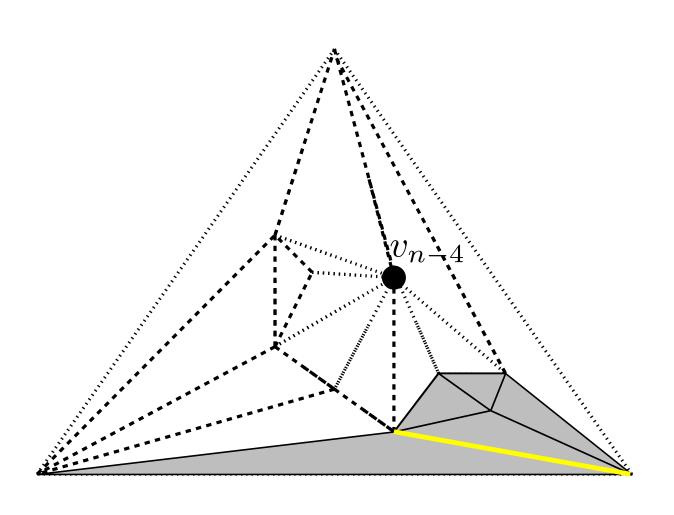


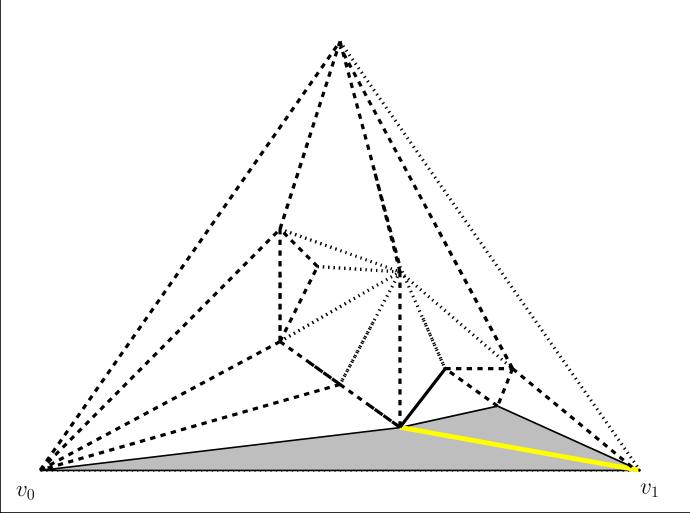








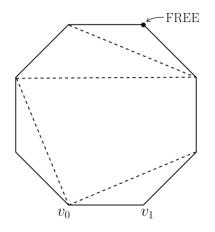




The traversal starts from the root face

Claim (correctness): the shelling procedure terminates computing a canonical ordering

There must be a free vertex v (not V_0 nor V_1) without chords



Claim (complexity): the canonical ordering can be computed in O(n) time

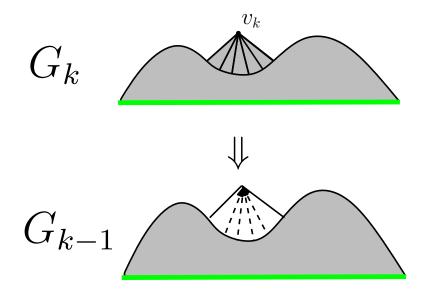
 V_0

Canonical orderings: exercices

exercice 1

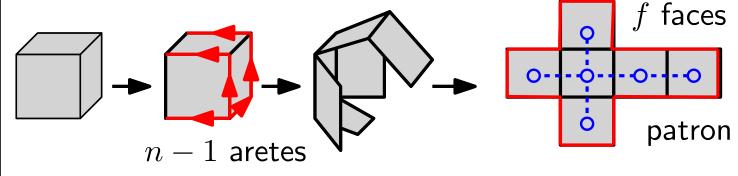
Give a proof of Euler formula using vertex shellings

$$n - e + f = 2$$

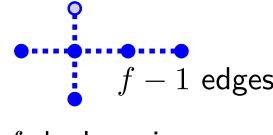


Famous proof of Euler formula

primal spanning tree



$$e = (n-1) + (f-1)$$

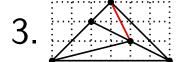


f dual vertices

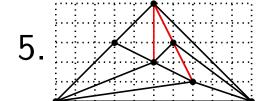
Planar straight-line drawings

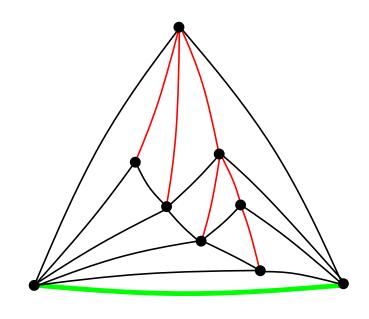
(FPP algorithm)

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]



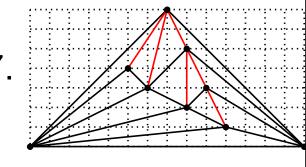






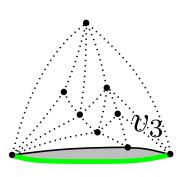
6.

Grid size of G_k : $2k \times k$

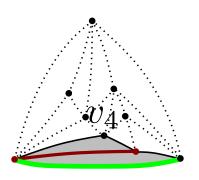


Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

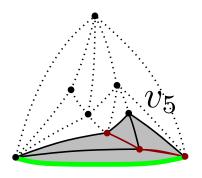
Idea: add vertices incrementally (according to the canonical ordering) together with their incident faces (in the outer face)



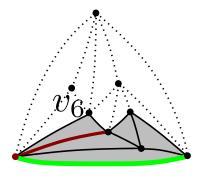
Step 1: Add first face



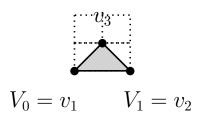
Step 2: Add v_4

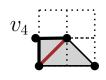


Step 3: Add v_5

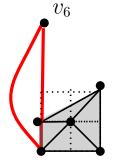


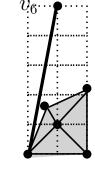
Step 4: Add v_6





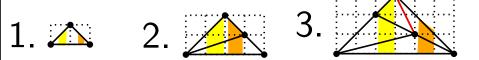


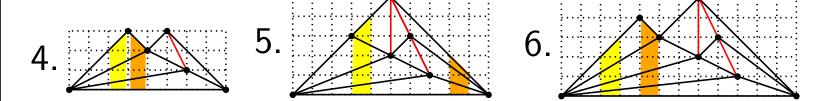




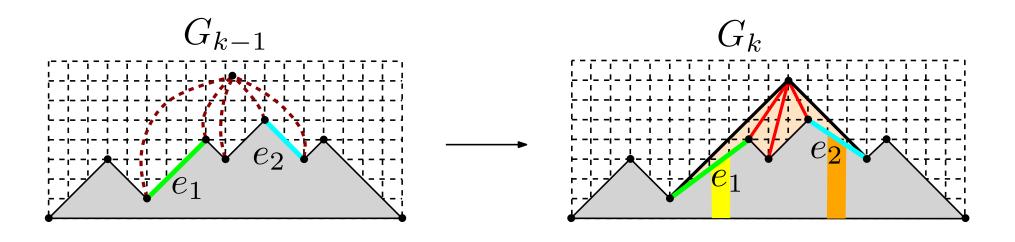
Step 4: problems: either the vertices are not visible, or the grid becomes too big

incremental shift algorithm (original FPP)



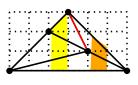


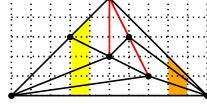
- 1. Make the grid large enough: add two vertical strips (of width 1)
- 2. Add the edges incident to v_k (leftmost and rightmost) of slope +1 and -1 stretch horizontally edges e_1 and e_2 of 1



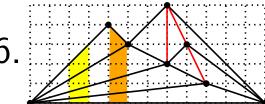
use the canonical ordering

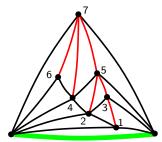
1. 🔼 2. 🦯





6.

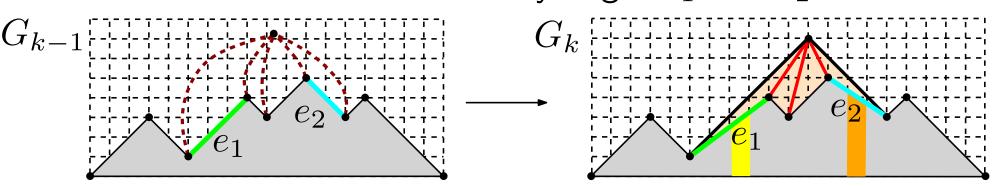




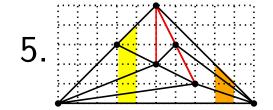
Claims:

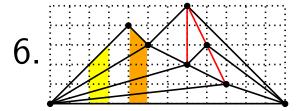
- 1. Vertices are drawn as grid points
- 2. the grid is polynomial: $O(n) \times O(n)$
- 3. the execution takes O(n) time
- 4. the drawing is planar: no edge crossings

stretch horizontally edges e_1 and e_2 of 1

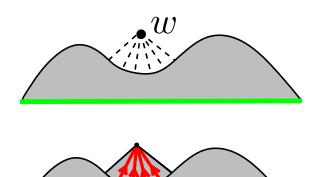


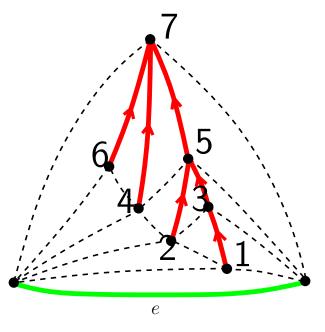
Let us make things more precise

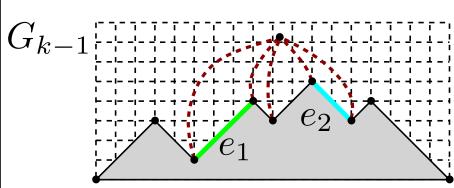


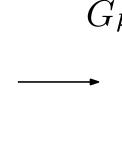


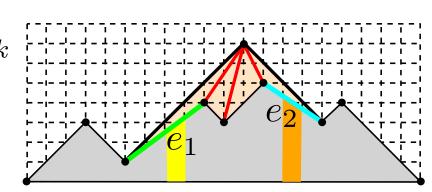
1. Consider the following primal (red) tree: connect v to its largest neighbor w



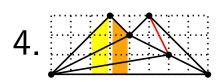


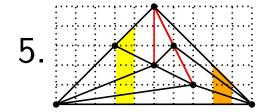


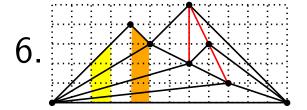


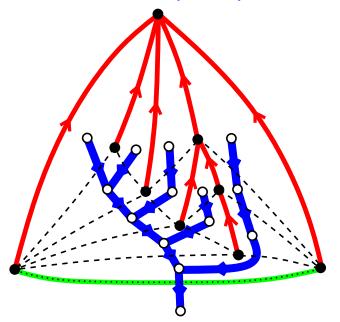


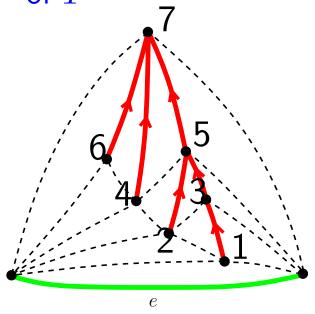
Let us make things more precise

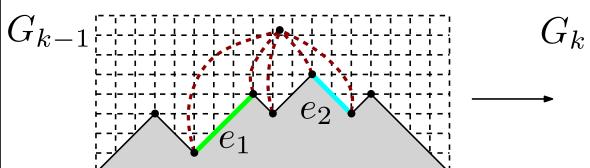


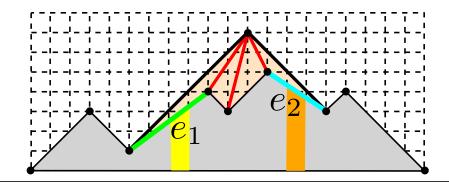




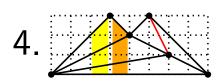


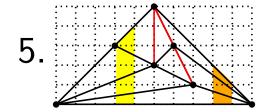


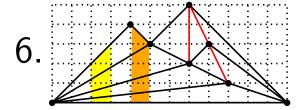


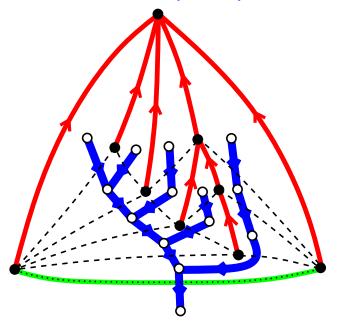


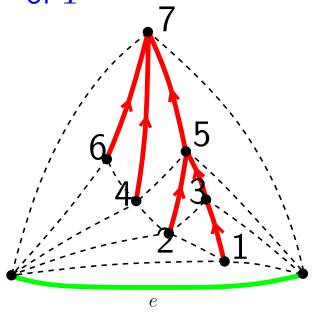
Let us make things more precise

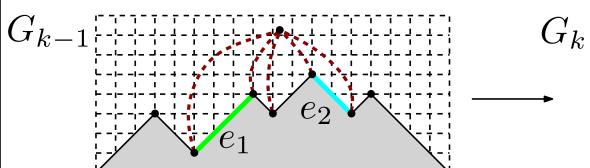


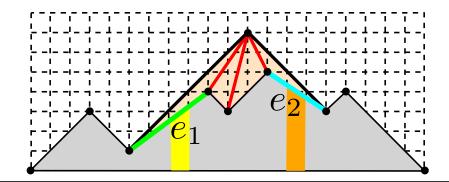




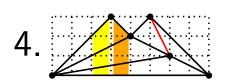


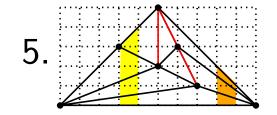


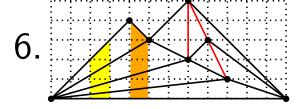




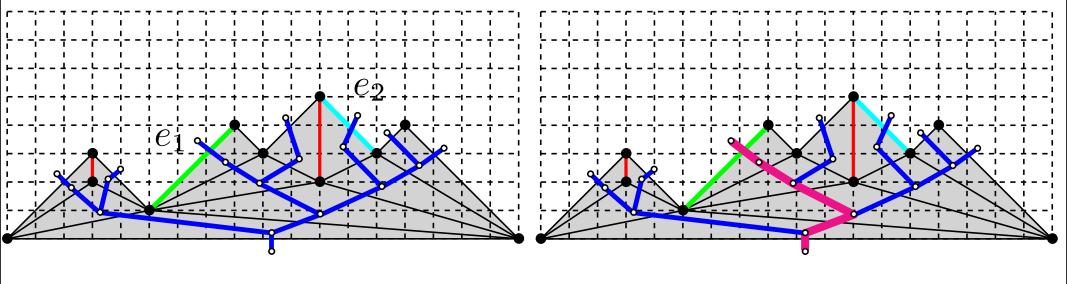
Let us make things more precise

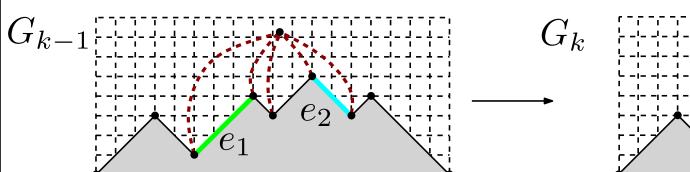


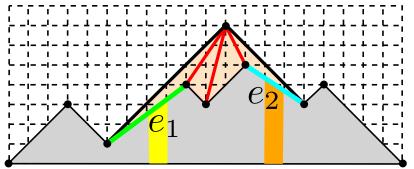




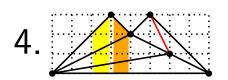
3. Stretch e_1 and e_2 and all edges which are "below" (e_1, e_2) := leftmost and rightmost edges incident to v_k)

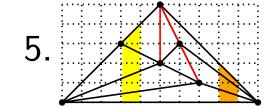


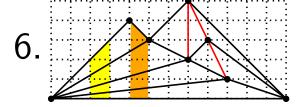




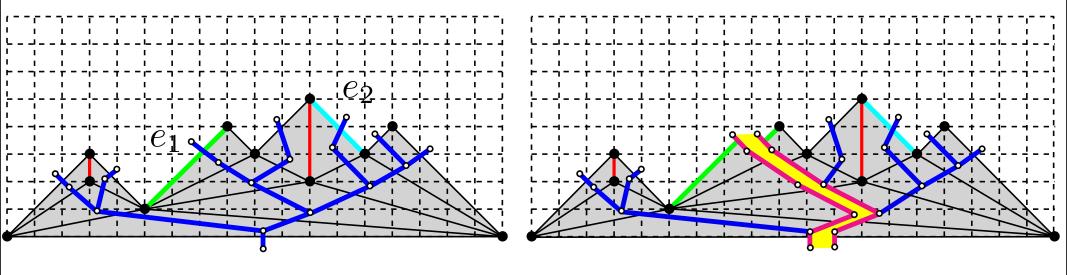
Let us make things more precise

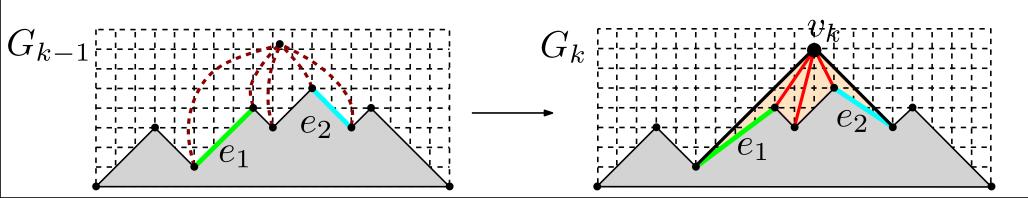




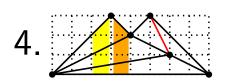


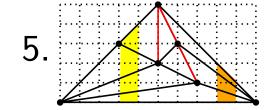
3. Stretch e_1 and e_2 and all edges which are "below" (e_1, e_2) := leftmost and rightmost edges incident to v_k)

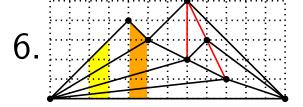




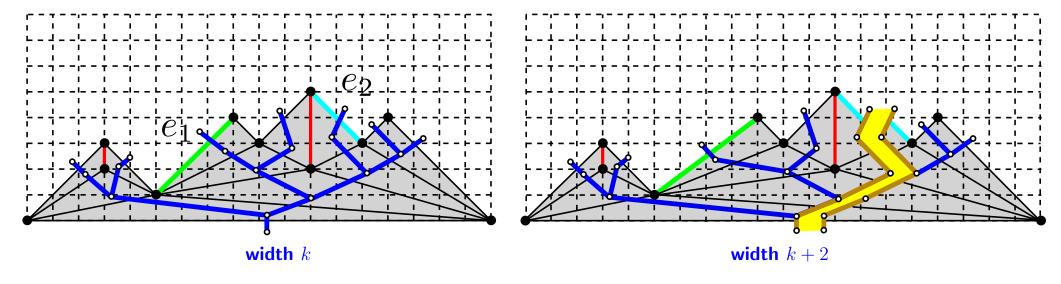
Let us make things more precise

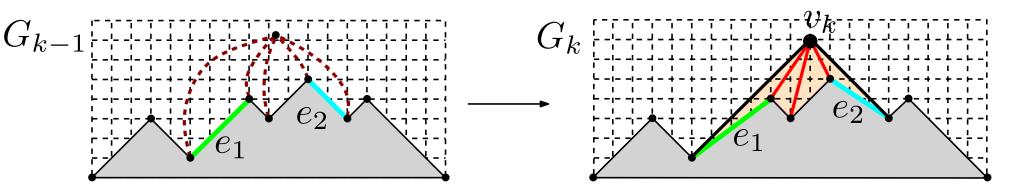






3. Stretch e_1 and e_2 and all edges which are "below" $(e_1, e_2) := \text{leftmost}$ and rightmost edges incident to v_k)





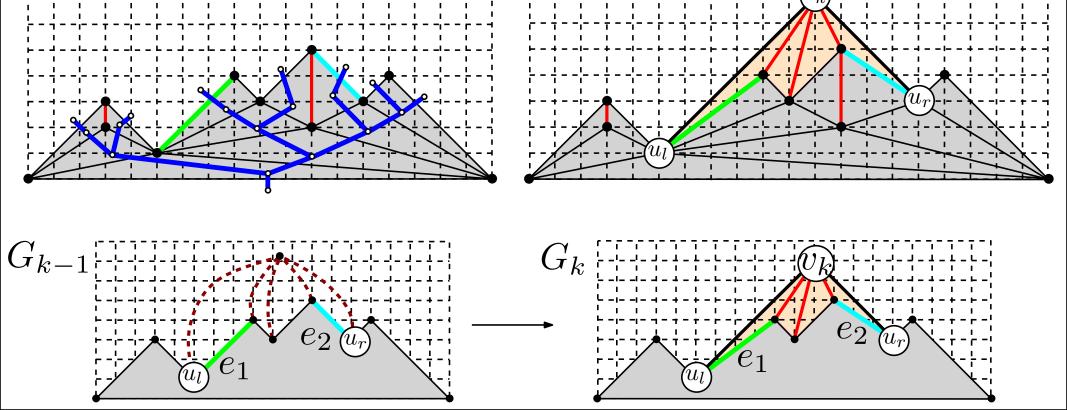
4. add v_k at the crossing of the edges with slopes +1 and -1

Claim: vertex v_k is a grid point

width k, outer edges have slopes +1 or -1

Proof: the manhattan distance between u_l and u_r is even

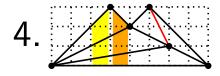
(since the slopes of outer edges are always +1 or -1)

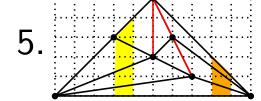


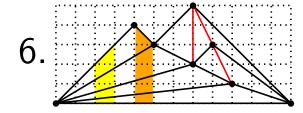
width k+2, the slope of outer edges is still +1 or -1

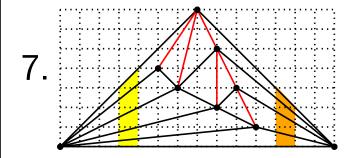
incremental shift algorithm (original FPP)

- 1.
- 2.
- 3.









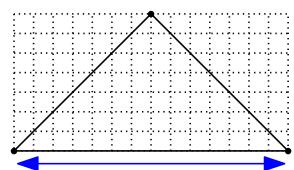
Theorem [de Fraysseix, Pollack, Pach'89]

The FPP algorithm computes in linear time a straight-line grid drawing of T, on a grid of size $2n\times n$

Grid size of G_k : $2k \times k$

Vertex coordinates are integers, because the Manhattan distance between vertices on the outer boundary is even: at each step the edges on the outer face have slopes +1 or -1

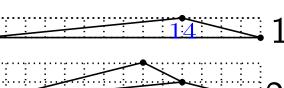
2. the grid is polynomial: $2n \times n$ for every vertex we stretch by 2 horizontally

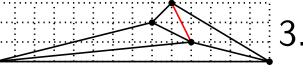


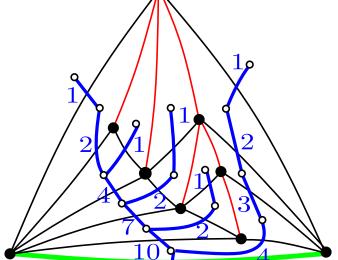
Two-passes implementation: linear-time

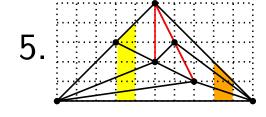
Second pass

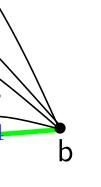
First pass: compute for each edge (not in T) the x-span, defined by sub-tree size in the dual spanning tree

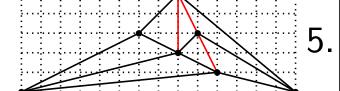


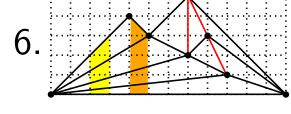


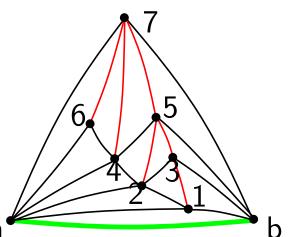


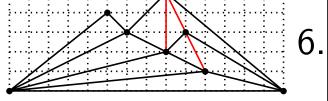


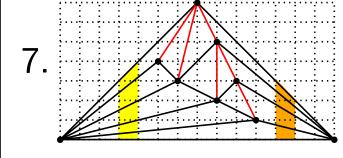


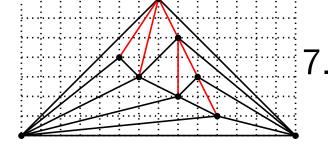








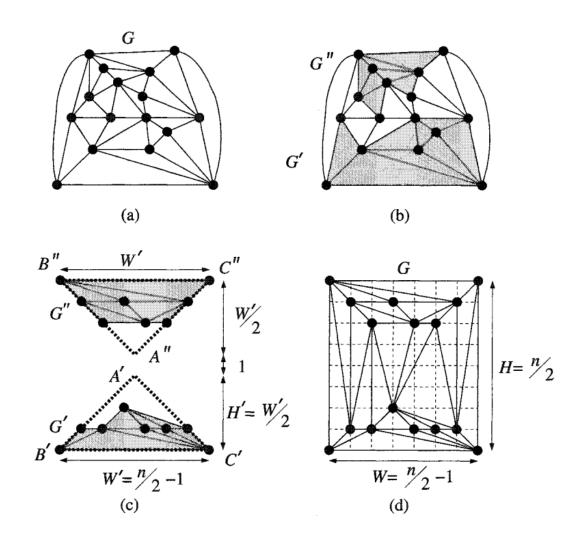




Again on Canonical Orderings

(variants and applications)

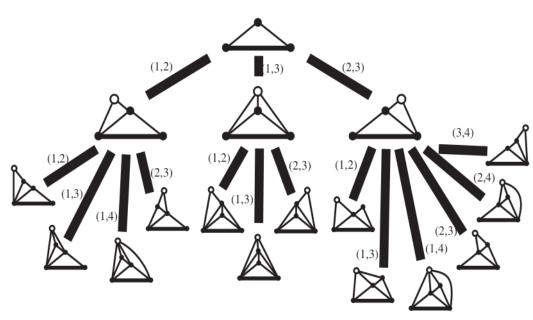
Drawing 4-connected planar triangulations



Theorem

A planar 4-connected triangulation (with at least four vertices on the bounday), admits a straight-line on a grid of size $\frac{n}{2} \times \frac{n}{2}$

Fast enumeration of planar triangulations



[Nakano et al.]

```
Procedure find-all-child-triangulations (G)
begin
 output G { Output the difference from the previous triangulation}
 if G has exactly n vertices then return
 for i = 1 to s - 1
   for j = i + 1 to s
     find-all-child-triangulations(G(i, j))
                                                   { Case 1}
 for i = 1 to s - 1
   for j = s + 1 to q(i)
     find-all-child-triangulations(G(i, j))
                                                   { Case 2}
 find-all-child-triangulations (G(s, s + 1))
                                                   { Case 3}
end
Algorithm find-all-triangulations (T_3)
begin
 output K_3
 G = K_3
 find-all-child-triangulations (G(1,2))
 find-all-child-triangulations (G(2,3))
 find-all-child-triangulations (G(1,3))
end
```

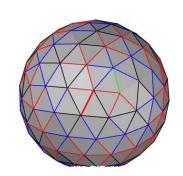
Algorithms and combinatorics for geometric graphs (Geomgraphs)

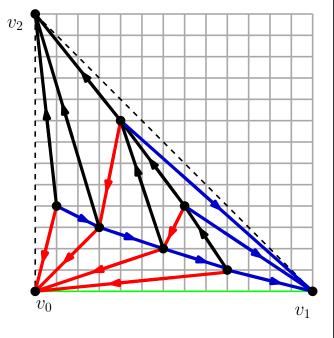
Lecture 3

Chapter II: Schnyder woods

october 2, 2025

Luca Castelli Aleardi





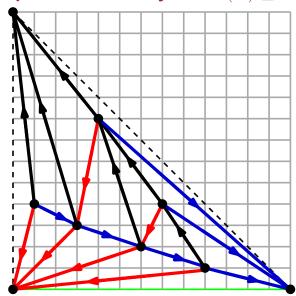
Some facts about planar graphs

("As I have known them")

Some facts about planar graphs

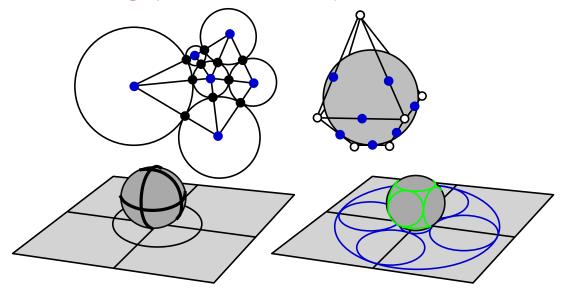
Thm (Schnyder, Trotter, Felsner)

G planar if and only if $dim(G) \leq 3$



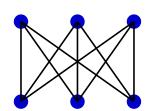
Thm (Koebe-Andreev-Thurston)

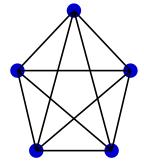
Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.



Thm (Kuratowski, excluded minors)

G planar if and only if G contains neither K_5 nor $K_{3,3}$ as minors

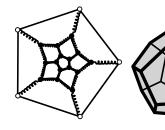




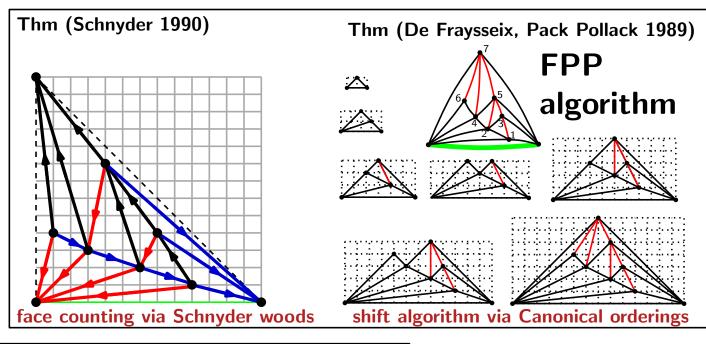
Thm (Tutte)

$$E(\rho) := \sum_{(i,j)\in E} |\mathbf{x}(v_i) - \mathbf{x}(v_j)|^2 = \sum_{(i,j)\in E} (x_i - x_j)^2 + (y_i - y_j)^2$$

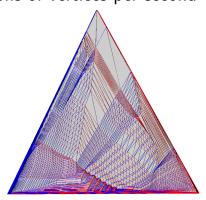
$$\mathbf{x}(v_i) = \sum_{j \in \mathcal{N}(i)} \frac{1}{deg(v_i)} \mathbf{x}(v_j)$$



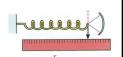
Straight-line planar drawings of planar graphs



linear time algorithms $O(n) \times O(n)$ grid drawings not trivial to implement extremey fast: they can process millions of vertices per second



Spring embedder (Eades, 1984) (Fruchterman and Reingold, 1991)



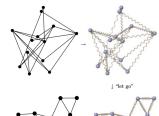
force-directed paradigm

easy to implement

pretty slow: $O(n^2)$ or $O(n \log n)$ time per iteration

$$\mathbf{F}_a(v) = c_1 \cdot \sum_{(u,v) \in E} \log(dist(u,v)/c_2)$$

$$\mathbf{F}_r(v) = c_3 \cdot \sum_{u \in V} \frac{1}{\sqrt{dist(u,v)}}$$





images from Kaufman Wagner (Springer, 2001)

[Tutte'63] Tutte barycentric embedding

minimize the spring energy

$$E(\rho) := \sum_{(i,j)\in E} |\mathbf{x}(v_i) - \mathbf{x}(v_j)|^2 = \sum_{(i,j)\in E} (x_i - x_j)^2 + (y_i - y_j)^2$$

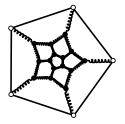
solve large sparse linear systems

$$\mathbf{x}(v_i) = \sum_{j \in \mathcal{N}(i)} \frac{1}{deg(v_i)} \mathbf{x}(v_j)$$

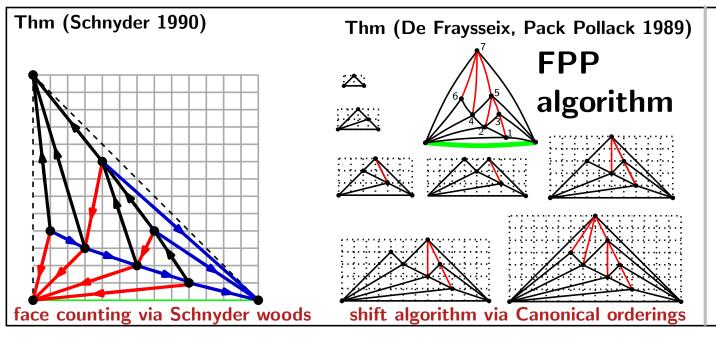
easy to implement

not very fast: they can process $\approx 10^4$

vertices per second



Straight-line planar drawings of planar graphs



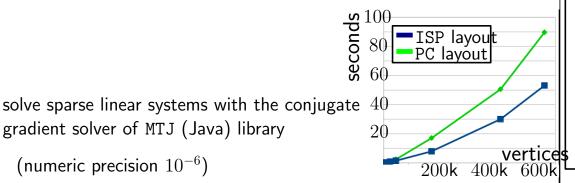
linear time algorithms $O(n) \times O(n)$ grid drawings not trivial to implement extremey fast: they can process millions of vertices per second

Timing performances

Schnyder drawing or FPP algorithm:

less than 1 second (Java, 2.66GHz Intel i7 CPU)

Chinese dragon (655k vert.)



[Tutte'63] Tutte barycentric embedding

minimize the spring energy

$$E(\rho) := \sum_{(i,j)\in E} |\mathbf{x}(v_i) - \mathbf{x}(v_j)|^2 = \sum_{(i,j)\in E} (x_i - x_j)^2 + (y_i - y_j)^2$$

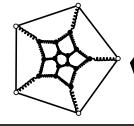
solve large sparse linear systems

$$\mathbf{x}(v_i) = \sum_{j \in \mathcal{N}(i)} \frac{1}{deg(v_i)} \mathbf{x}(v_j)$$

easy to implement

not very fast: they can process $\approx 10^4$

vertices per second

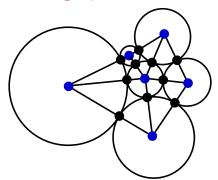


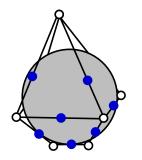
gradient solver of MTJ (Java) library (numeric precision 10^{-6})

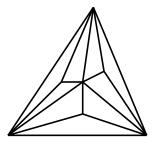
Using circles to measure distances

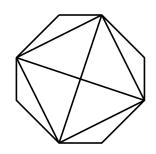
Thm (Koebe-Andreev-Thurston)

Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

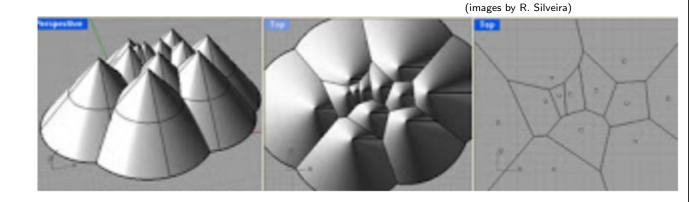








Not every planar triangulation is Delaunay realizable



Voronoï cell:

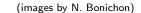
$$C(s_i) = \{x/d(s_i, x) \le d(s_i, x) \forall i \ne j\}$$

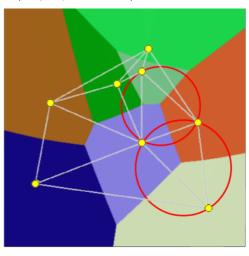
Delaunay Triangulation:

 s_i is a neighbour s_j if f $C(s_i) \cap C(s_j) \neq \emptyset$

General Position:

No 3 points collinear No 4 points co_circular.



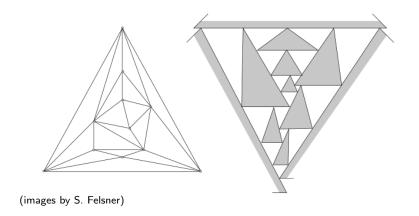


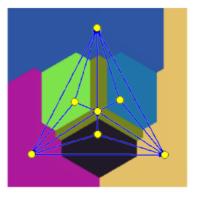
Alternative def: There is an edge (s_i, s_j) iif there is an empty circle supporting s_i and s_j .

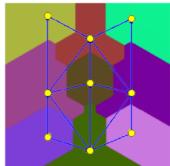
⇒: each face is supported by an empty circle.

Using triangles to measure distances

Thm (de Fraysseix, Ossona de Mendez, Rosenstiehl, '94)



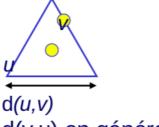




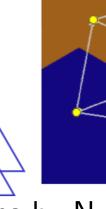
Chew, '89

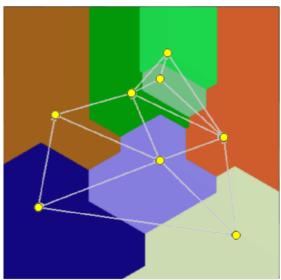
TD-Delaunay: triangular distance Delaunay triangulations

Distance triangulaire: d(u,v) = taille du plus petit triangle équilatérale à base horizontale centré en u contenant v.



Rq : $d(u,v) \neq d(v,u)$ en général

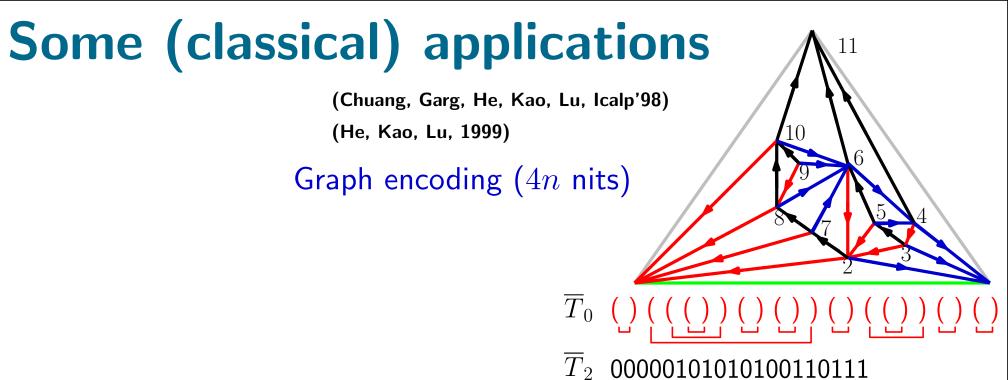




(images by N. Bonichon)

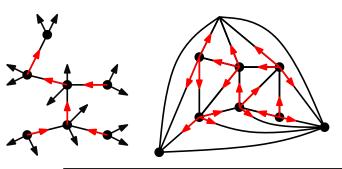
Schnyder woods and canonical orderings: overview of applications

(**graph drawing**, **graph encoding**, succinct representations, compact data structures, exhaustive graph enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing, untangling of planar graphs, Steinitz representations of polyhedra, . . .)



(Poulalhon-Schaeffer, Icalp 03)

bijective counting, random generation

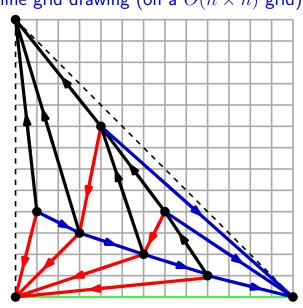


$$c_n = \frac{2(4n+1)!}{(3n+2)!(n+1)!}$$

 \Rightarrow optimal encoding ≈ 3.24 bits/vertex

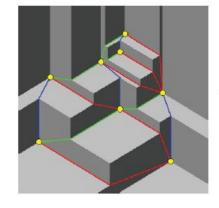
Thm (Schnyder '90)

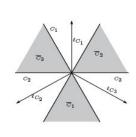
Planar straight-line grid drawing (on a $O(n \times n)$ grid)



More ("recent") applications

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces and Half- Θ_6 -graphs [Bonichon et al., WG'10, Icalp '10, ...]





(a)

p₁
p₂
p₅
p₆
p₇
p₇

Figure 2: A coplanar orthogonal surface with its geodesic embedding.

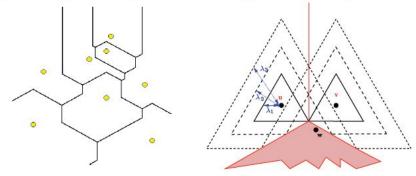
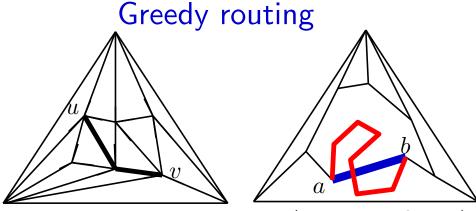


Figure 3: (a) TD-Voronoi diagram. (b) $\lambda_1 < \lambda_2 < \lambda_3$ stand for three triangular distances. Set $\{u,v\}$ is an ambiguous point set, however $\{u,v,w\}$ is non-ambiguous.



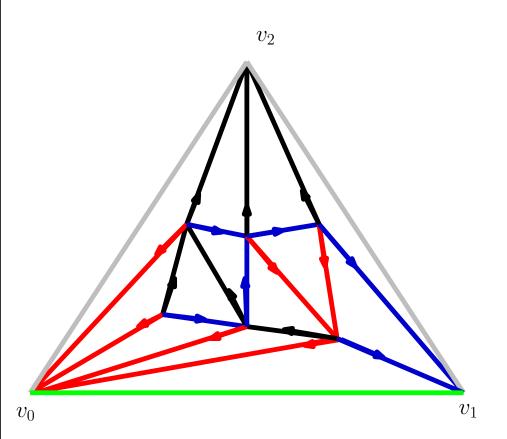
Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

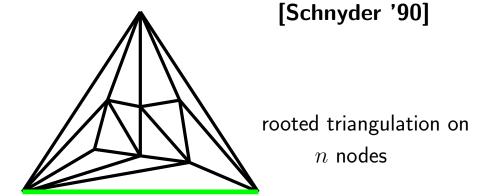
(conjectured by Papadimitriou and Ratajczak for 3-connected planar graphs)

Schnyder woods

(definitions)

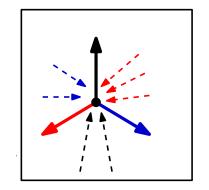
Schnyder woods (for triangulations): definition





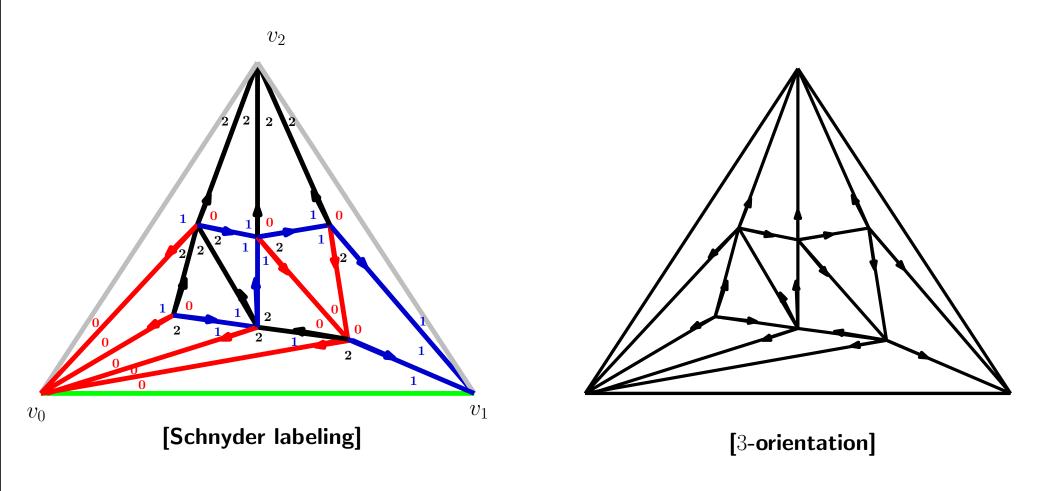
A Schnyder wood of a (rooted) planar triangulation is partition of all inner edges into three sets T_0 , T_1 and T_2 such that

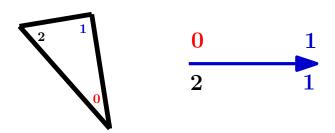
i) edge are colored and oriented in such a way that each inner nodes has exactty one outgoing edge of each color



ii) colors and orientations around each inner node must respect the local Schnyder condition

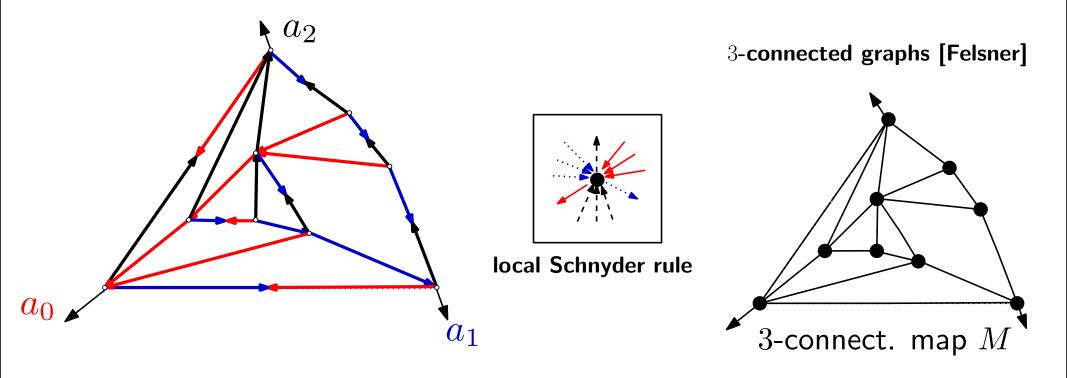
Schnyder woods: equivalent formulations





Schnyder woods (3-connected maps): definition

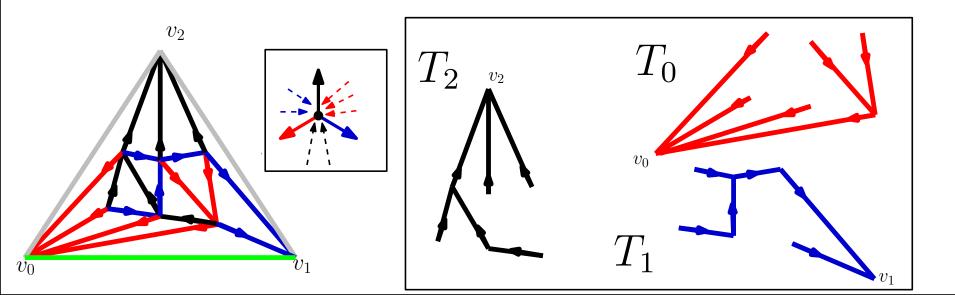
More details: next Lecture



Schnyder woods: spanning property

Theorem [Schnyder '90] $T_i := \text{digraph defined by directed edges of color } i$ The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of $\mathcal T$ (each rooted at vertex v_i)

Remark Planar graphs have arboricity at most 3 (minimum number of edge-disjoint spanning forests) T_0



Spanning property for triangulations

local Schnyder rule

 u_3

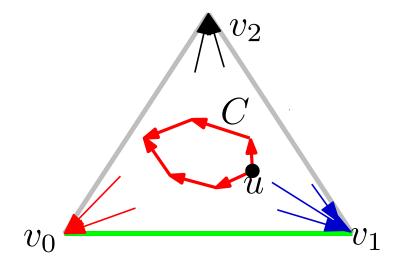
Theorem [Schnyder '90]

The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of \mathcal{T} (each rooted at vertex v_i)

proof (use a counting argument)

Claim 1: T_i does not contain cycles

(assume there are monochromatic cycles, by contradiction)



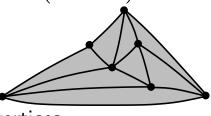
Case 1: C:=non oriented monochromatic cycle of size k

there is a vertex u violating Schnyder rule

Triangulations with a boundary

$$f_i = 2n_i + k - 2$$

$$e_i = 3n_i + (k-3)$$



 u_3

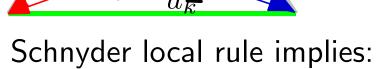
 $n_i := \# \text{inner vertices}$

 $e_i := \#$ inner edges

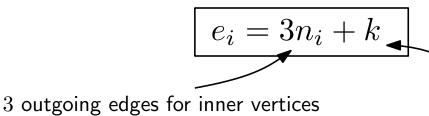
 $k := \# \mathsf{boundary} \ \mathsf{edges} = \# \mathsf{boundary} \ \mathsf{vertices}$

Case 2:

C:=monochromatic cycle of size k (cw or ccw) oriented



(count edges in the triangulation bounded by the cycle) $ec{u}_k$



1 outgoing edges for boundary vertices

Spanning property for triangulations

Theorem [Schnyder '90]

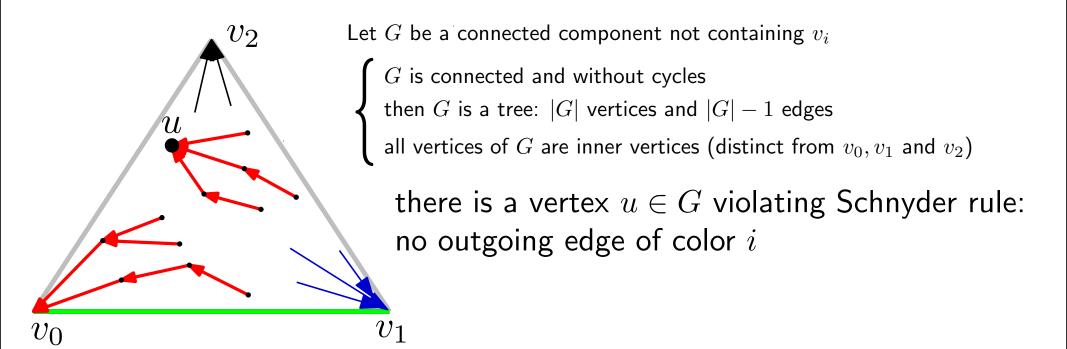
The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of \mathcal{T} (each rooted at vertex v_i)

proof (use a counting argument)

local Schnyder rule

Claim 2: T_i is connected

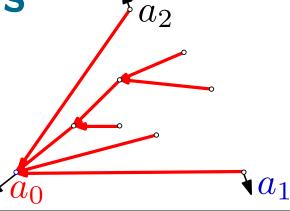
(by contradiction, assume there are several disjoint components)



Non crossing paths

Corollary:

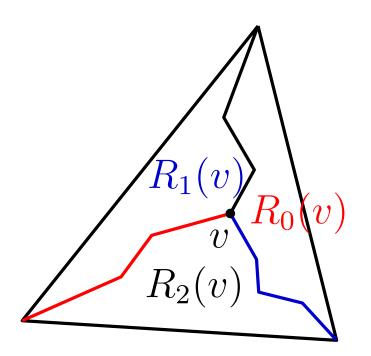
Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)

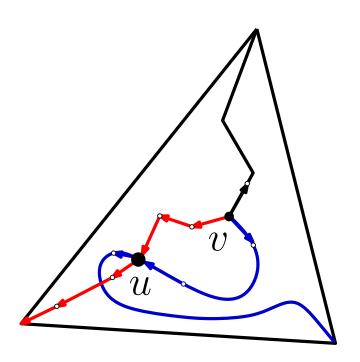


Corollary

For each inner vertex v the three monochromatic paths P_0 , P_1 , P_2 directed from v toward each vertex a_i are vertex disjoint (except at v) and partition the inner faces into three sets $R_0(v)$, $R_1(v)$, $R_2(v)$

proof: (by contradiction)

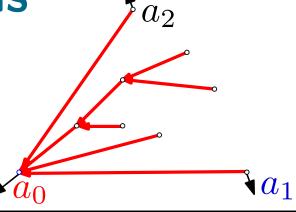




Non crossing paths

Corollary:

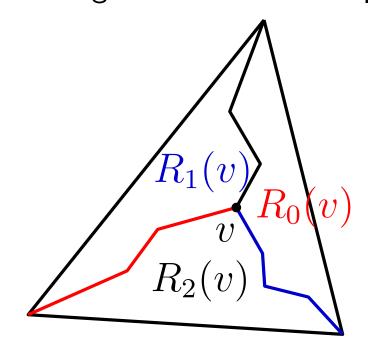
Each sets T_i is spanning tree \mathcal{M} (rooted at vertex a_i)



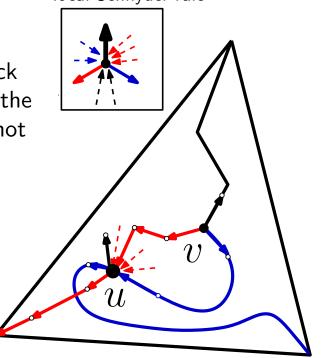
Corollary

For each inner vertex v the three monochromatic paths P_0 , P_1 , P_2 directed from v toward each vertex a_i are vertex disjoint (except at v) and partition the inner faces into three sets $R_0(v)$, $R_1(v)$, $R_2(v)$

proof: the existence of two paths $P_i(v)$ and $P_{i+1}(v)$ which are crossing would contradicts previous theorem



Remark: the outgoing black is just after (in ccw order) the last ingoing red and it cannot be followed by an outgoing blue edge



Number and structure of Schnyder woods

Counting Schnyder woods: (there are grahs admitting an exponential number)

[Bonichon '05]

Schnyder woods of triangulations of size n: $\approx 16^n$ (all Schnyder woods over all distinct triangulations of size n)

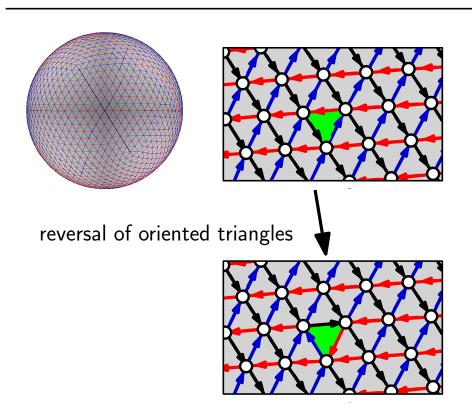
[Felsner Zickfeld '08]

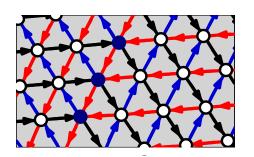
(count of Schnyder woods of a fixed triangulation)

$$2.37^n \le \max_{T \in \mathcal{T}_n} |SW(T)| \le 3.56^n$$

 $\mathcal{T}_n := \mathsf{class}$ of planar triangulations of size n

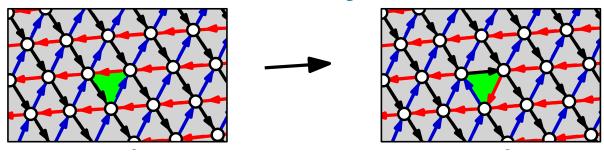
 $SW(T):=\mbox{set}$ of all Schnyder woods of the triangulation T





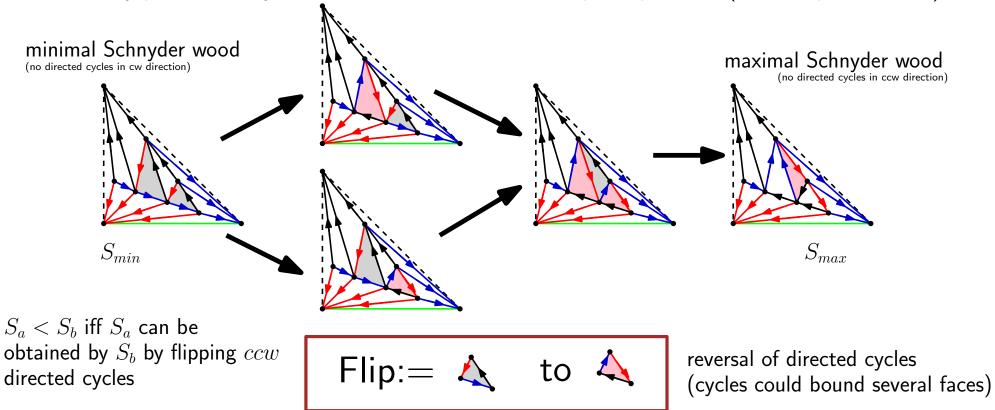
Exercice: there exists a class of planar triangulations admitting a unique Schnyder wood. Which one?

Structure of Schnyder woods: distributive lattice



Thm: [Ossona de Mendez'94], [Felsner'03]

The set S(T) of all distinct Schnyder woods of a given triangulation T defines a connected graph with respect to the **flip** operation. Furthermore, this set has a **lattice** structure: a partial order such that for every pair of Schnyder woods of T there is an unique supremum (and unique infimum).



The min is the unique $S_{min} \in \mathcal{S}(T)$ with no clockwise circuit

Via Canonical orderings

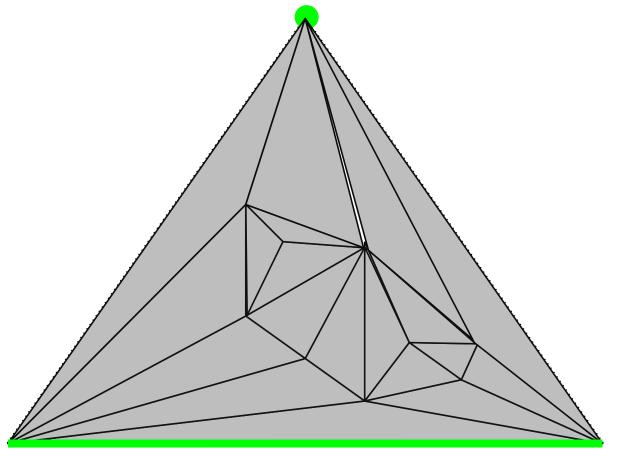
 v_0

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.



*)*1

Via Canonical orderings (see Lecture 2)

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

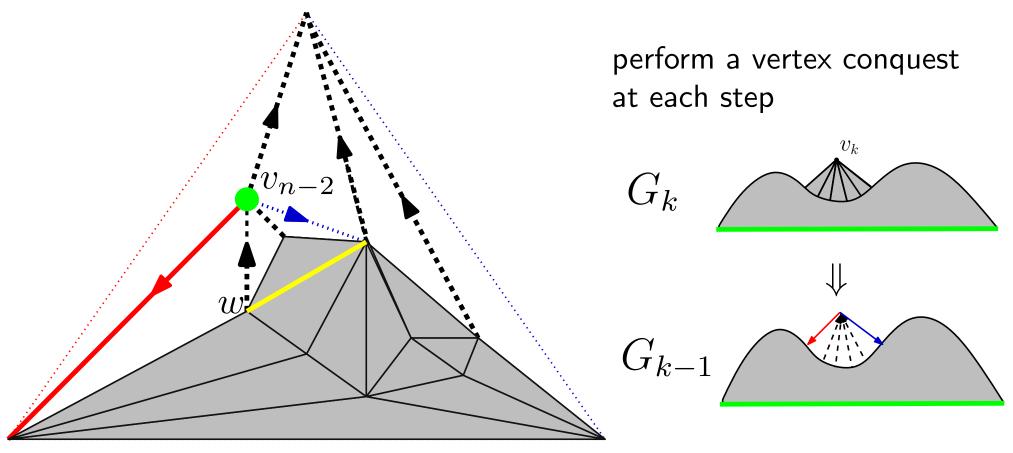


Via **Canonical orderings** (see Lecture 4)

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

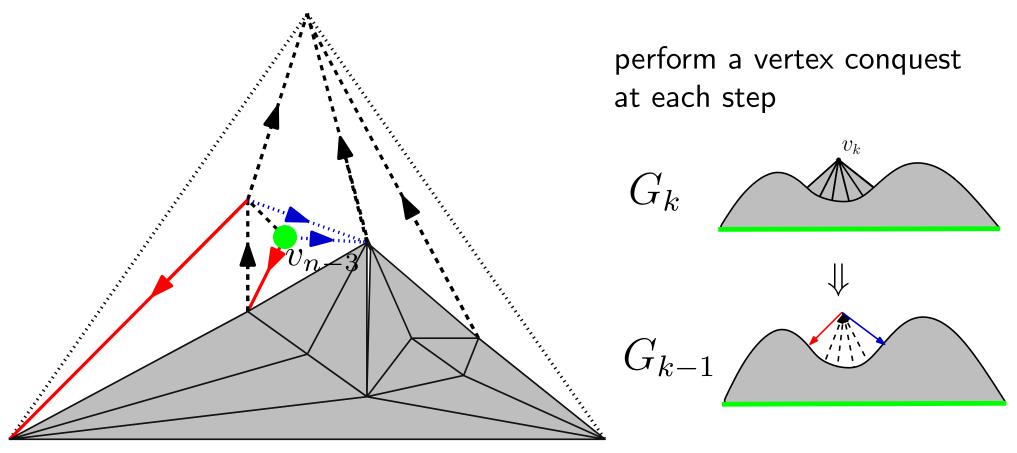
Theorem



The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

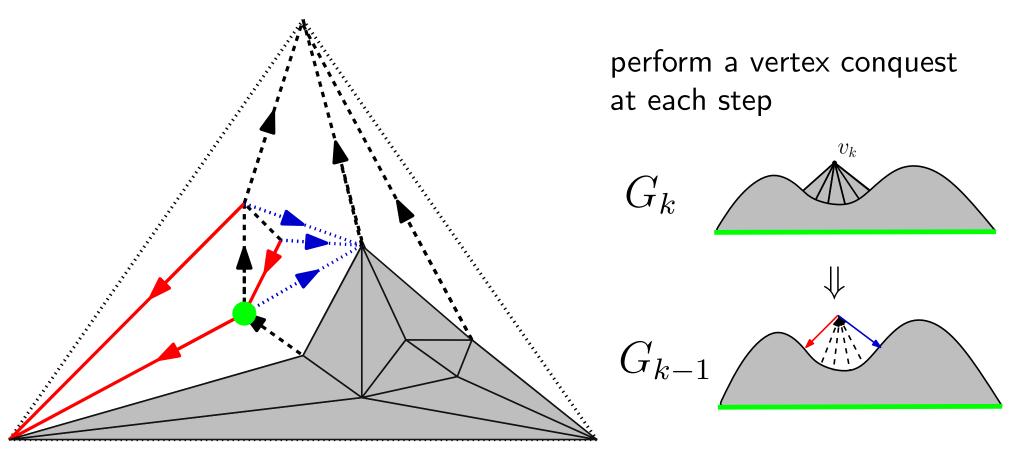
Theorem



The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

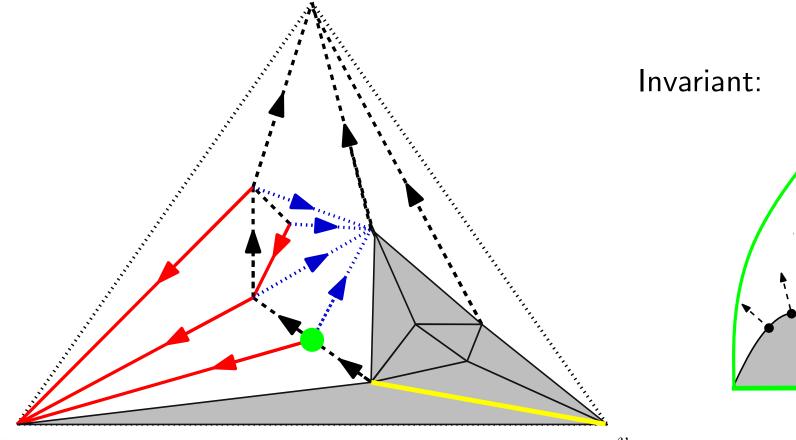


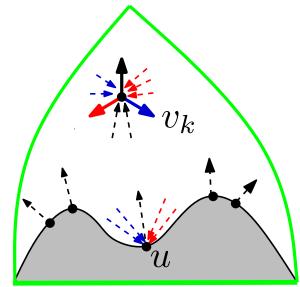
The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.



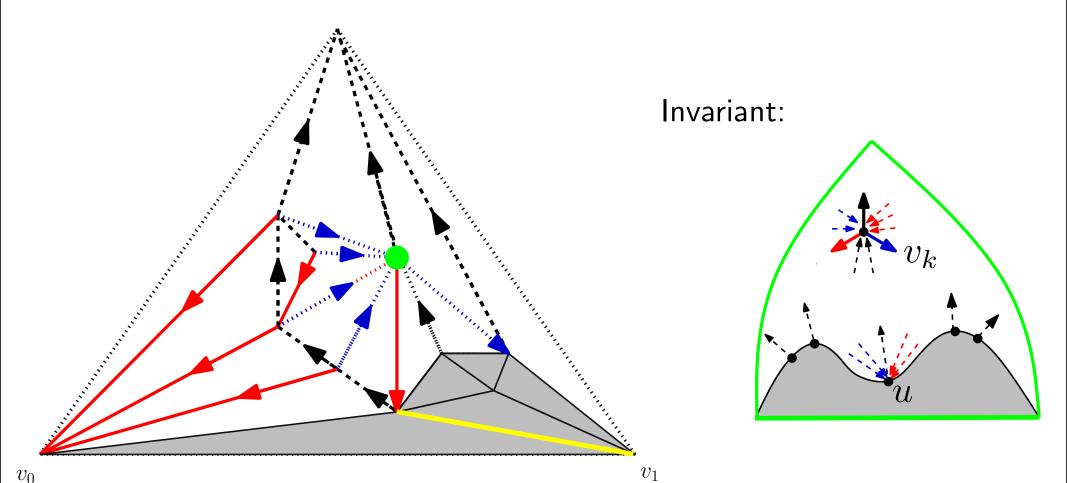


*)*1

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

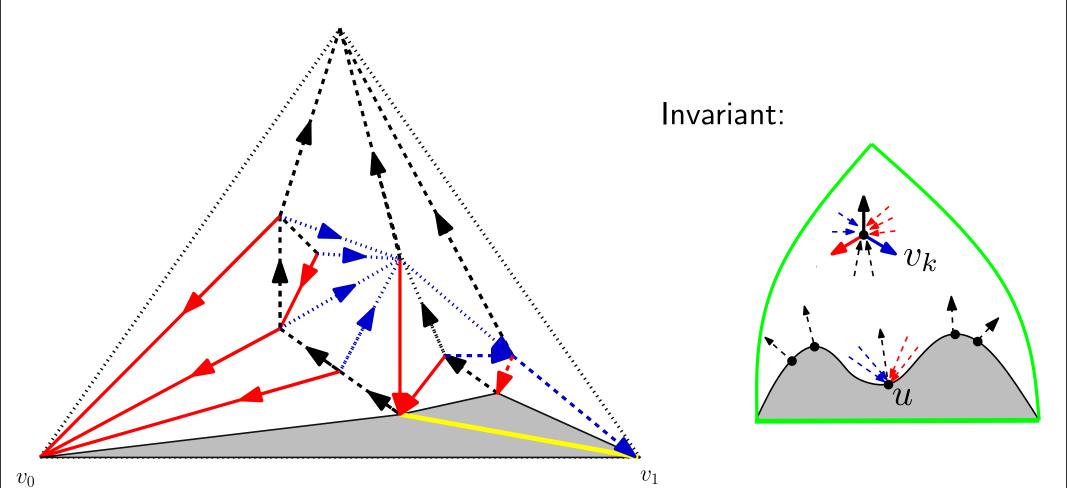
Theorem



The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

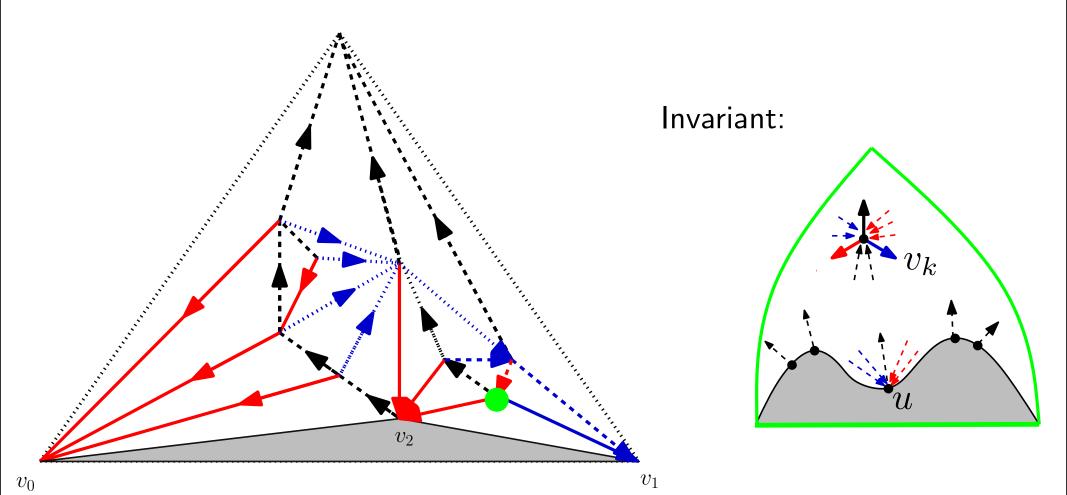
Theorem



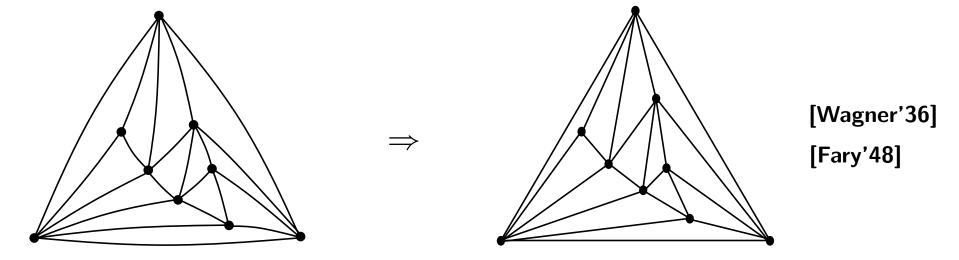
The traversal starts from the root face

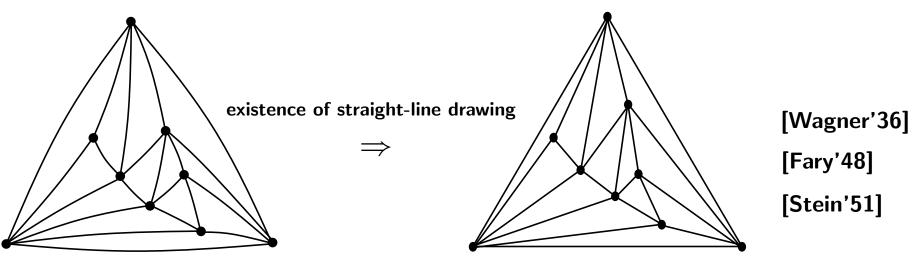
[incremental vertex shelling, Brehm's thesis]

Theorem

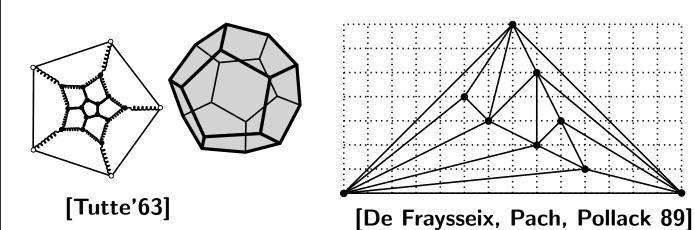


(of planar graphs)



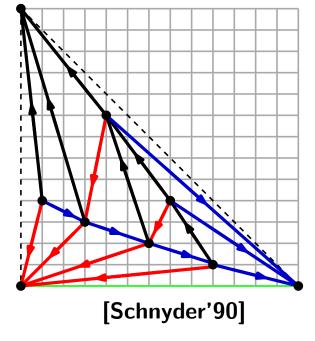


Classical algorithms:

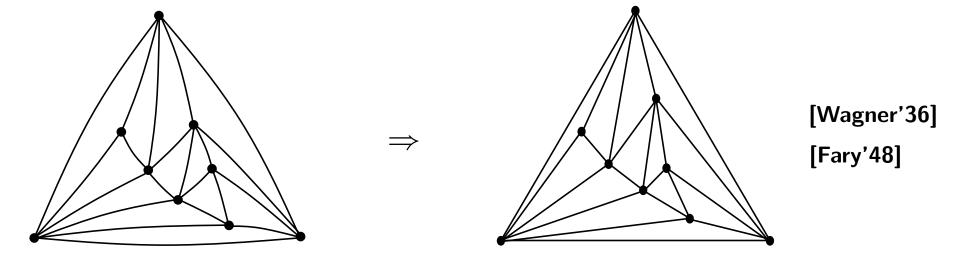


spring-embedding

incremental (Shift-algorithm)



face-counting principle

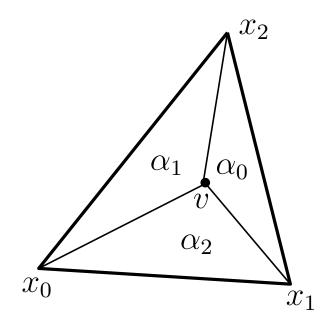


Face counting algorithm

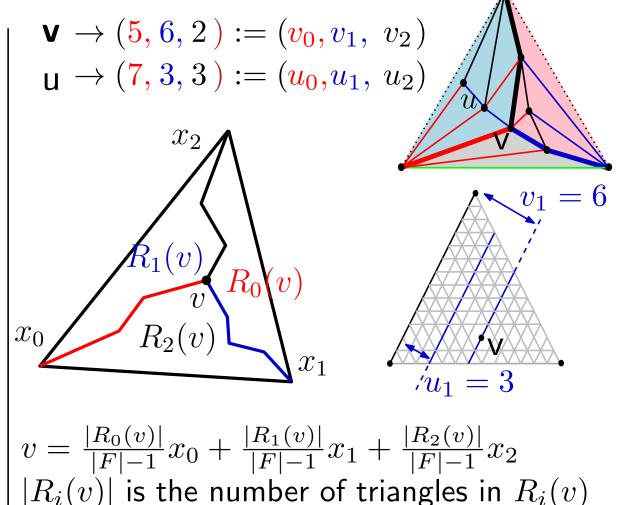
(Schnyder algorithm, 1990)

Face counting algorithm

Geometric interpretation



 $v = \alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2$ where α_i is the normalized area



Theorem

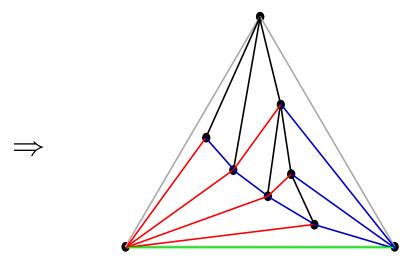
For a 3-connected planar map $\mathcal M$ having f vertices, there is drawing on a grid of size $(f-1)\times (f-1)$

Theorem (Schnyder, Soda '90)

For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2n-5)\times(2n-5)$, by setting $x_0=(2n-5,0)$, $x_1=(0,0)$ and $x_2=(0,2n-5)$.

Face counting algorithm: example

Input: \mathcal{T}



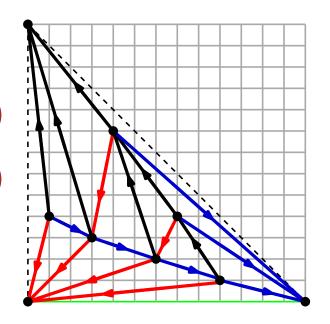
 ${\mathcal T}$ endowed with a Schnyder wood

$$a \to (0,0) \quad b \to (0,1) \quad i \to (1,0)$$

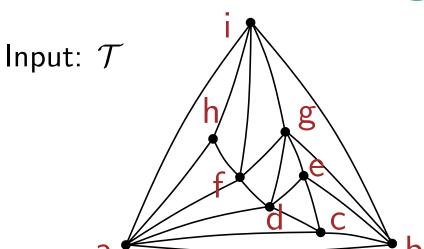
$$c \to (\frac{9}{13}, \frac{1}{13}) \quad d \to (\frac{5}{13}, \frac{6}{13})$$

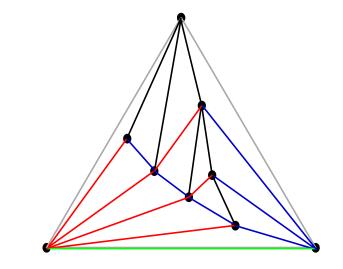
$$e \rightarrow (\frac{7}{13}, \frac{4}{13}) f \rightarrow (\frac{3}{13}, \frac{3}{13})$$

$$g \to (\frac{4}{13}, \frac{8}{13}) \quad h \to (\frac{1}{13}, \frac{4}{13})$$

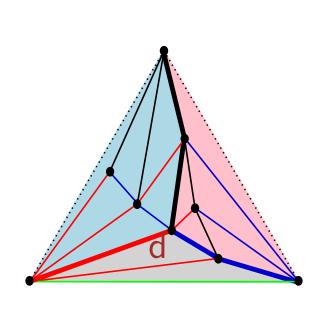


Face counting algorithm: example





 ${\mathcal T}$ endowed with a Schnyder wood



$$a \to (13, 0, 0)$$

$$\begin{array}{l} \mathbf{b} \rightarrow (0,13,0) \\ \mathbf{c} \rightarrow (9,3,1) \end{array}$$

$$c \to (9,3,1)$$

$$d \to (5, 6, 2)$$

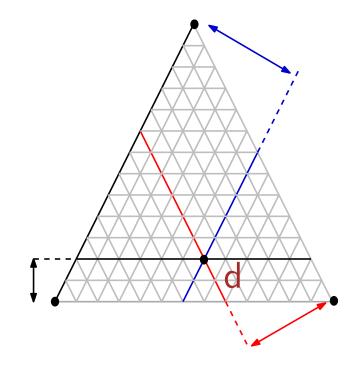
$$e \to (2,7,4)$$

$$f \to (7,3,3)$$

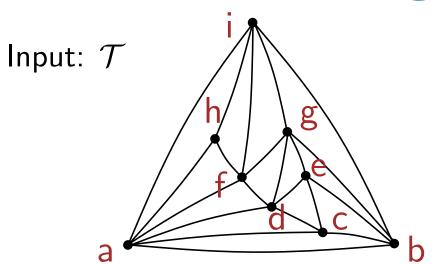
$$g \to (1,4,8)$$

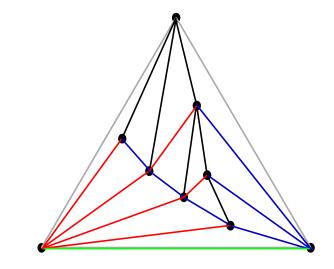
$$h \to (8,1,4)$$

$$i \to (0,0,13)$$

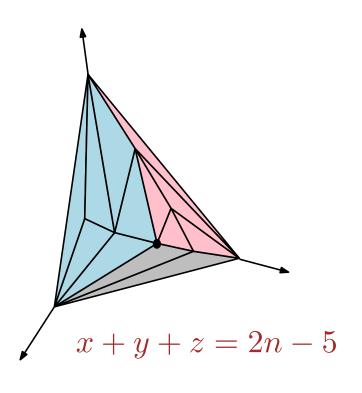


Face counting algorithm: example

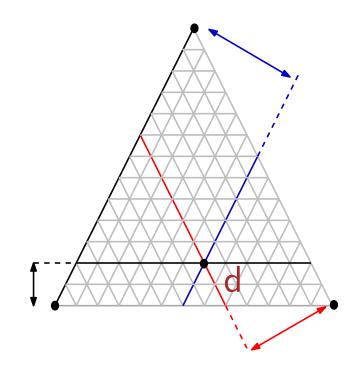




 ${\mathcal T}$ endowed with a Schnyder wood



$$\begin{array}{l} \textbf{a} \to (13,0,0) \\ \textbf{b} \to (0,13,0) \\ \textbf{c} \to (9,3,1) \\ \textbf{d} \to (5,6,2) \\ \textbf{e} \to (2,7,4) \\ \textbf{f} \to (7,3,3) \\ \textbf{g} \to (1,4,8) \\ \textbf{h} \to (8,1,4) \\ \textbf{i} \to (0,0,13) \end{array}$$

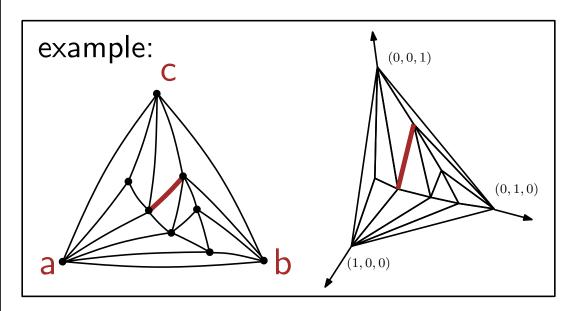


(validity of the Schnyder layout)

Definition: A barycentric representation of a graph G is defined by a mapping $f(v) \longrightarrow (v_0, v_1, v_2) \in \mathbb{R}^3$ satisfying:

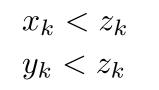
- $v_0 + v_1 + v_2 = 1$, for each vertex v
- for each edge $(x,y) \in E$ and each vertex $z \notin \{x,y\}$ there is an index $k \in \{0,1,2\}$ such that

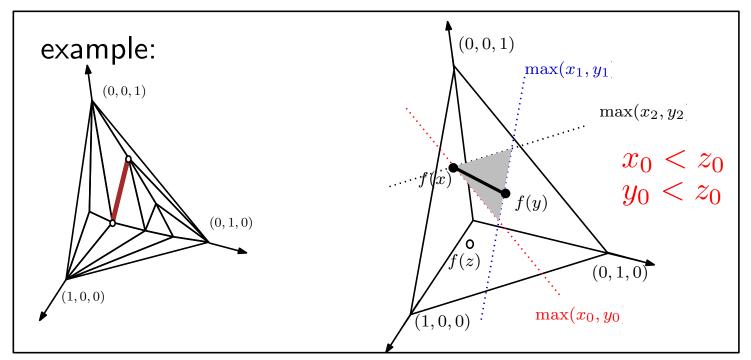
$$x_k < z_k$$
$$y_k < z_k$$



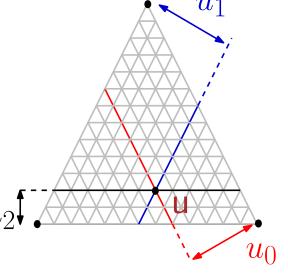
Definition: A barycentric representation of a graph G is defined by a mapping $f(v) \longrightarrow (v_0, v_1, v_2) \in \mathbb{R}^3$ satisfying:

- $v_0 + v_1 + v_2 = 1$, for each vertex v
- for each edge $(x,y) \in E$ and each vertex $z \notin \{x,y\}$ there is an index $k \in \{0,1,2\}$ such that





Intuition: no vertex z in the gray triangle defined by f(x), f(y)



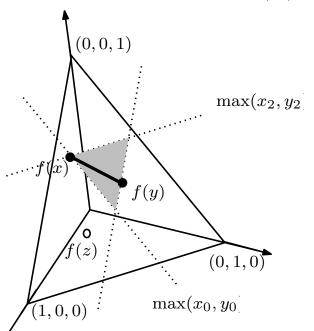
Theorem

A barycentric representation defines a planar straight-line (crossing-free) drawing of G, in the plane spanned by (1,0,0),(0,1,0) and (0,0,1).

Claim 1: for each edge $(x,y) \in E$ and each vertex $z \notin \{x,y\}$ the image f(z) cannot lie on the segment (f(x),f(y))

proof: by contradiction: assume $f(z) \in (f(x), f(y))$, so we can write

$$f(z) = tf(x) + (1-t)f(y)$$
 , for some $t \in [0,1]$



f is a barycentric representation, so there is $k \in \{0, 1, 2\}$ s. t.

$$\begin{aligned} x_k &< z_k \\ y_k &< z_k \end{aligned}$$

so get a contradiction

$$z_k = tx_k + (1-t)y_k < tz_k + (1-t)z_k = z_k$$

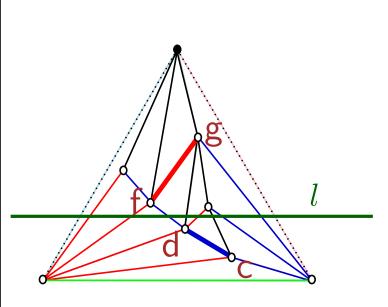
Theorem

A barycentric representation defines a planar straight-line (crossing-free) drawing of G, in the plane spanned by (1,0,0),(0,1,0) and (0,0,1).

Claim 2: given two edges (x,y), (u,v) of G they cannot cross

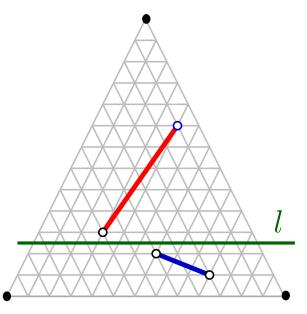
proof (intuition): we can find a straight-line l (parallel to

one of the 3 axis) separating the two edges



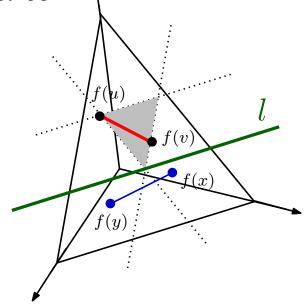
$$c \to (3, 9, 1) \quad f \to (7, 3, 3)$$

$$\mathbf{d} \to (5, 6, 2) \ \mathbf{g} \to (1, 4, 8)$$



$$c_2, d_2 < f_2$$

$$d_2, c_2 < g_2$$



Theorem

A barycentric representation defines a planar straight-line drawing of G, in the plane spanned by (1,0,0),(0,1,0) and (0,0,1).

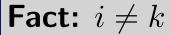
Claim 2: given two edges (x,y), (u,v) of G they cannot cross

proof:

by definition there are four indices $i, j, k, l \in \{0, 1, 2\}$

$$u_i, v_i < x_i \qquad x_k, y_k < u_k$$

$$u_j, v_j < y_j \qquad x_l, y_l < v_l$$



if i = k we would have $u_k < x_k$

$$v_k < x_k$$

contradicting

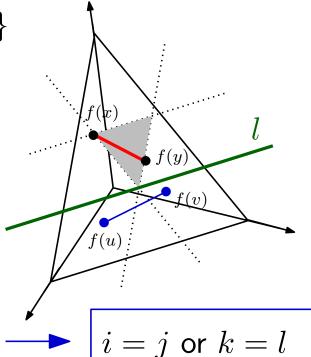
$$x_k, y_k < u_k$$

 $i \neq k, l \text{ and } j \neq k, l$

In the example above we have i = j = 2

there exists a separating line l parallel to one of the sides of the outer triangle, that separates (u,v) and (x,y)

the line l parallel to [(1,0,0),(0,1,0)] separates (u,v) and (x,y)



The Schnyder layout defines a barycentric representation

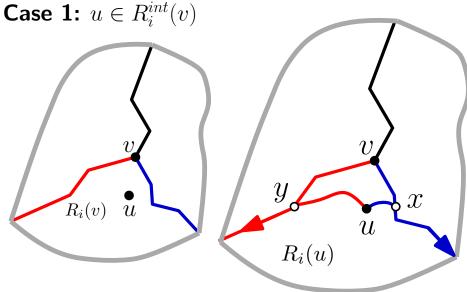
(validity of the Schnyder layout)

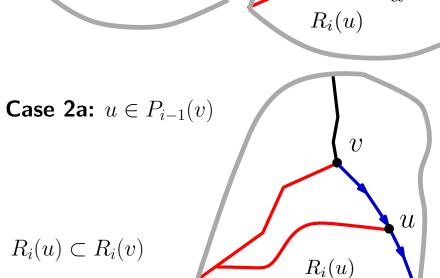
Paths and regions

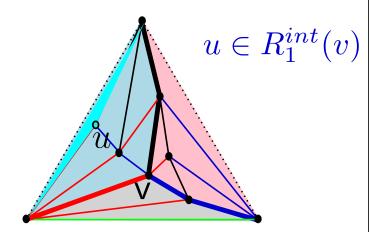
Lemma Let (T_0, T_1, T_2) a Schnyder wood of \mathcal{M} .

If
$$u \in R_i(v)$$
 then $R_i(u) \subseteq R_i(v)$
If $u \in R_i^{int}(v)$ then $R_i(u) \subset R_i(v)$

proof:



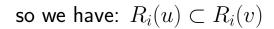




first step: compute the paths $P_{i+1}(u)$ and $P_{i-1}(u)$

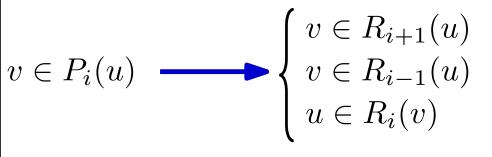
They must intersect the boundary of $R_i(v)$ at x and y

Remark: x and y are different from v and we have $y \in P_{i+1}(u)$ and $x \in P_{i-1}(u)$ (because of Schnyder rule)



Paths and regions

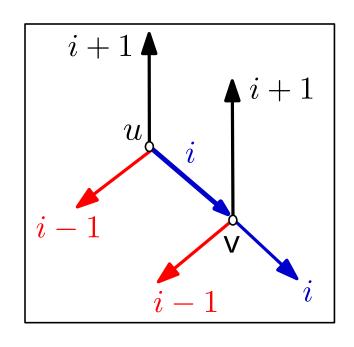
Remarks: Let (u, v) be an edge of color i oriented from u to v

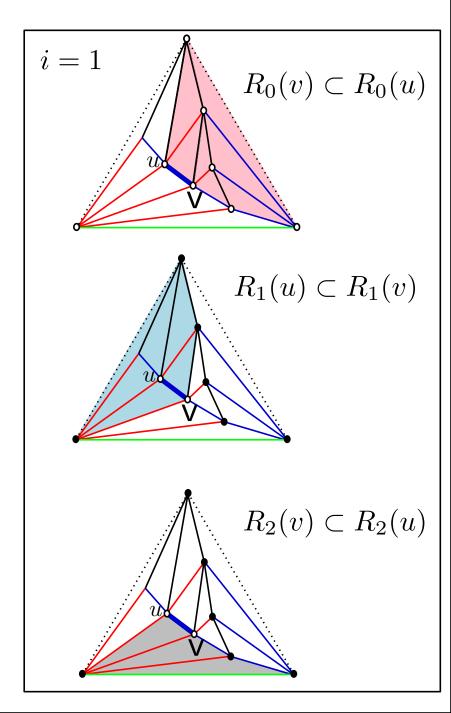


$$R_{i}(u) \subset R_{i}(v)$$

$$R_{i+1}(v) \subset R_{i+1}(u)$$

$$R_{i-1}(v) \subset R_{i-1}(u)$$





Regions and coordinates

$$v =: \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2 =$$

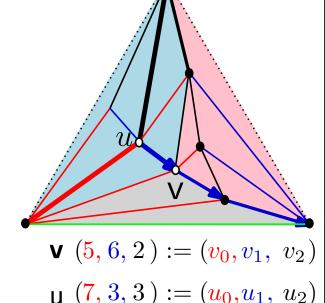
$$= \frac{v_0}{|F|-1}x_0 + \frac{v_1}{|F|-1}x_1 + \frac{v_2}{|F|-1}x_2$$

Given (u, v) of color i oriented from u to v we have:

•
$$R_i(u) \subseteq R_i(v) \longrightarrow |R_i(u)| \le |R_i(v)| \longrightarrow u_i \le v_i$$

$$\begin{array}{c}
R_{i}(u) \subset R_{i}(v) \\
\bullet R_{i+1}(v) \subset R_{i+1}(u) \\
R_{i-1}(v) \subset R_{i-1}(u)
\end{array}
\longrightarrow
\begin{cases}
u_{i} < v_{i} \\
u_{i+1} > v_{i+1} \\
u_{i-1} > v_{i+1}
\end{cases}$$

$$\begin{cases} u_{i} < v_{i} \\ u_{i+1} > v_{i+1} \\ u_{i-1} > v_{i-1} \end{cases}$$



•
$$v_0 + v_1 + v_2 = f - 1$$

• For every edge (u, v) there are some indices $i, j \in \{0, 1, 2\}$ s.t.

$$u_i < v_i$$

$$u_j > v_j$$

Lemma: The Schnyder layout is a barycentric representation

Corollary: The Schnyder layout is crossing free

Regions and coordinates

Remarks: Let (u, v) of color i oriented from u to v

$$v =: \frac{|R_0(v)|}{|F|-1}x_0 + \frac{|R_1(v)|}{|F|-1}x_1 + \frac{|R_2(v)|}{|F|-1}x_2 =$$

$$= \frac{v_0}{|F|-1}x_0 + \frac{v_1}{|F|-1}x_1 + \frac{v_2}{|F|-1}x_2$$

•
$$R_i(u) \subseteq R_i(v) \longrightarrow |R_i(u)| \le |R_i(v)| \longrightarrow u_i \le v_i$$

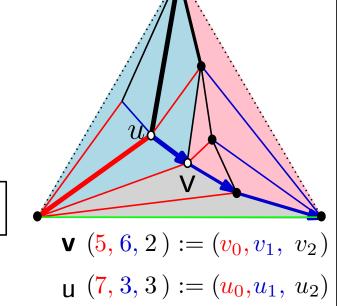
•
$$v_0 + v_1 + v_2 = f - 1$$

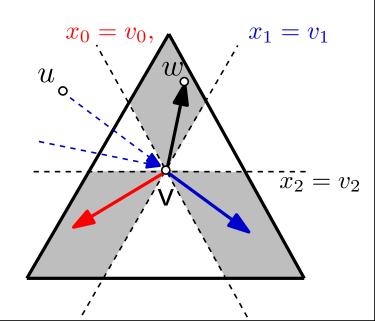
$$R_{i}(u) \subset R_{i}(v) \longrightarrow \begin{cases} u_{i} < v_{i} \\ u_{i+1} > v_{i+1} \\ R_{i-1}(v) \subset R_{i-1}(u) \end{cases}$$

$$u_{i+1} > v_{i+1} \\ u_{i-1} > v_{i-1}$$

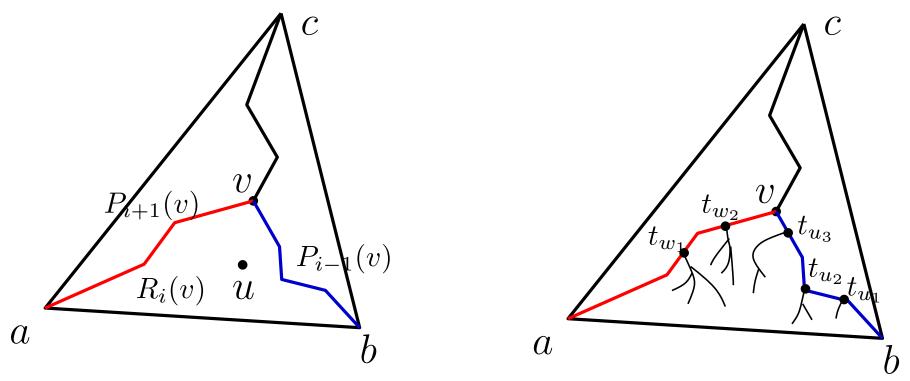
Remark:

is $u_i < v_i$ the u lies in the white sector $\begin{cases} x_{i+1} > u_{i+1} \\ x_{i-1} > v_{i-1} \end{cases}$ the outgoing edges (v, w) lie in the gray sectors



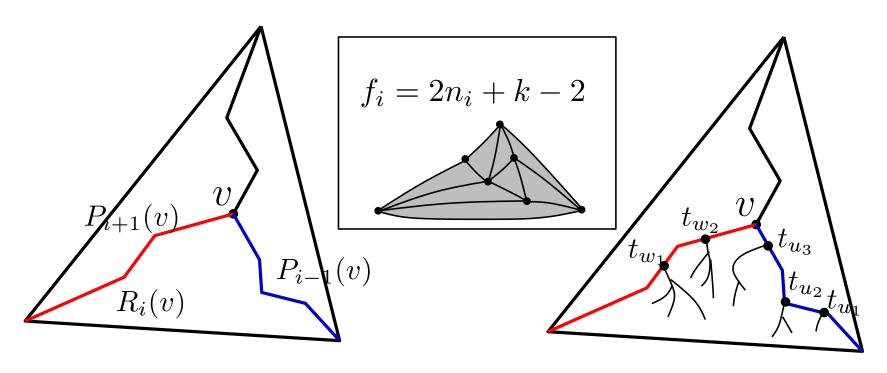


(how to efficiently perform region counting)



Problem: how to efficiently compute $|R_i(v)|$ (for all $v \in V$)?

Remark: the number of faces $|R_i(v)|$ can be retrieved from: the number of inner vertices and the number of vertices on the path $P_{i+1}(v)$ and $P_{i-1}(v)$

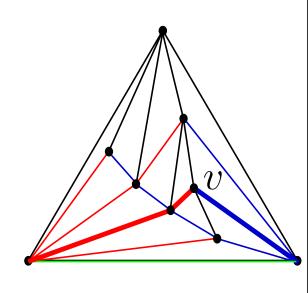


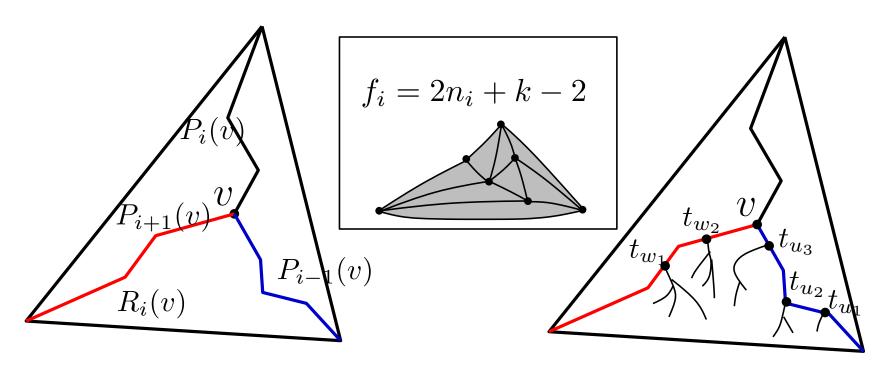
Problem: how to efficiently compute $|R_i(v)|$ (for all $v \in V$)?

Remark: the number of faces $|R_i(v)|$ can be retrieved from: the number of inner vertices and the number of vertices on the path $P_{i+1}(v)$ and $P_{i-1}(v)$

$$\partial R_i(v) := (P_{i+1}(v) + P_{i-1}(v)) - 1 = 4$$

$$R_i(v) = 4$$
 (outer vertices)
$$\sum_{w \in P_{i+1}} |t_w| + \sum_u |t_u| = 1$$
 (inner vertices)

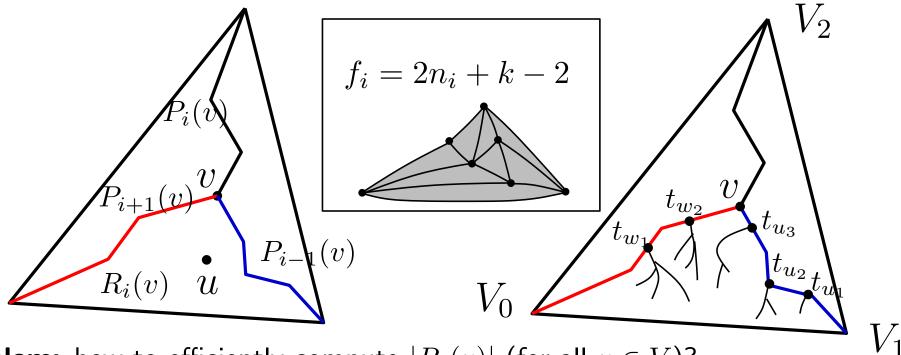




Problem: how to efficiently compute $|R_i(v)|$ (for all $v \in V$)?

```
/* computes number of nodes in tree */
int size(Node node)
{
   if (node == null)
       return 0;
   else
      return (size(node.left) + 1 + size(node.right));
}
```

- Compute and store for each vertex v the subtree size of $T_0(v), T_1(v), T_2(v)$
- ullet Compute the length of the paths $P_0(v), P_1(v), P_2(v)$
- cumulate the size of sub-trees for all vertices w_k, u_j on the paths $P_{i+1}(v), P_{i-1}(v)$



Problem: how to efficiently compute $|R_i(v)|$ (for all $v \in V$)?

```
private static int finalSum = 0;
public static int nodeDepths(BinaryTree root) {
    // Write your code here.
    int runningSum = 0;
    depthHelper(root.left, runningSum);
    depthHelper(root.right, runningSum);
    return finalSum;
}

private static void depthHelper(BinaryTree node, int runningSum) {
    if(node == null) return;
    runningSum++;
    finalSum += runningSum;
    depthHelper(node.left, runningSum);
    depthHelper(node.right, runningSum);
}
```

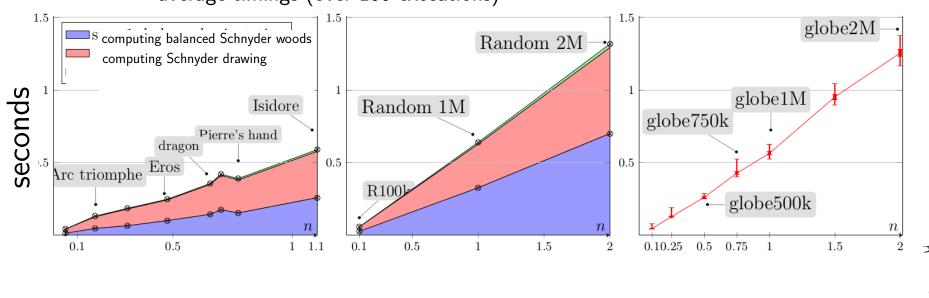
$$P_0(v) = \{V_0, w_1, w_2, \dots v\}$$

$$P_1(v) = \{V_1, u_1, u_2, \dots v\}$$

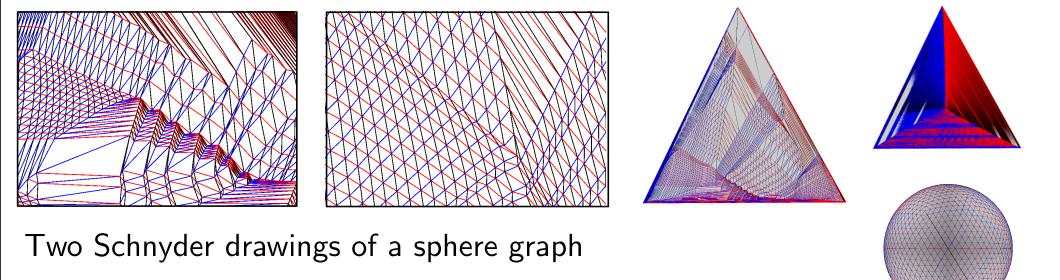
- ullet Compute and store for each vertex v the subtree size of $T_0(v), T_1(v), T_2(v)$
- Compute the length of the paths $P_0(v), P_1(v), P_2(v)$
- cumulate the size of sub-trees for all vertices w_k, u_i on the paths $P_{i+1}(v), P_{i-1}(v)$

Practical performances

average timings (over 100 executions)



Timing performances (pure **Java**, on a core i7-5600 U, 2.60GHz, 1GB Ram): Schnyder woods can process $\approx 1.43M-1.92M$ vertices/seconds



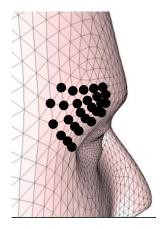
Schnyder woods: applications

Graph encoding

(practical) motivation

Geometric v.s combinatorial information

Geometry



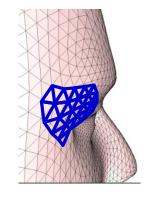
vertex coordinates

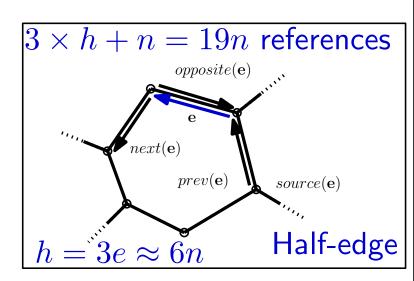
between 30 et 96 bits/vertex

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons32 Giga bytes (without compression)

"Connectivity": the underlying triangulation (incidence relations between triangles, vertices, edges)





 $19n \log n$ or 608n bits

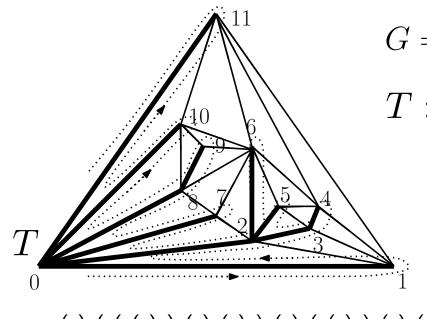
$$\#\{\text{triangulations}\} = \frac{2(4n+1)!}{(3n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2\pi}} n^{-5/2} \left(\frac{256}{27}\right)^n$$

$$\Rightarrow$$
 entropy = $\log_2 \frac{256}{27} \approx 3.24$ bit/vertex.

A simple encoding scheme

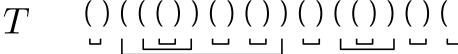
Turan encoding of planar map (1984)

12n bits encoding scheme



$$G = (V, E)$$
 $|V| = n$ $|E| = e$

T := (any) vertex spanning tree of G



parenthesis word of size 2n

$$G \setminus T$$
 [[[[]]][[[[]]][[[[]]]]]

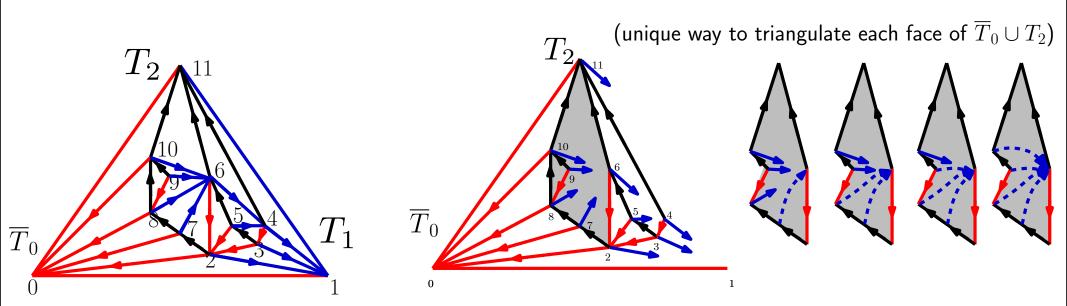
parenthesis word of size 2n

$$S(G)$$
 ([[[)(](][[]))(]][)...

length(S) = 2e symbols $(2\log_2 4)e = 4e = 12n$ bits

A more efficient encoding

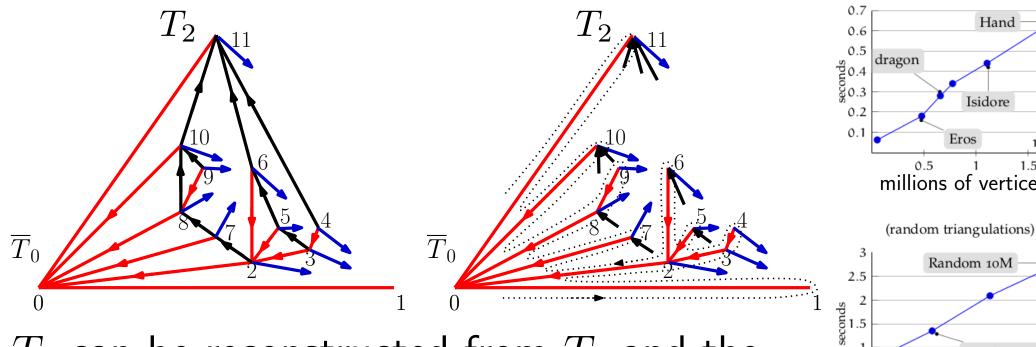
Canonical orderings - Schnyder woods (He, Kao, Lu '99)



 T_1 is redundant: reconstruct from T_0 , T_2

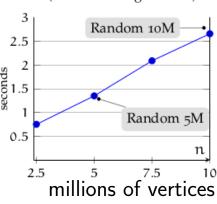
A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99) 4n bits (for triangulations)



Hand dragon Isidore 0.5 millions of vertices

(real-world graphs)



 T_2 can be reconstructed from T_0 and the number of ingoing edges (for each node)

$$\overline{T}_0$$
 () ((())()())()()

$$2(n-1)$$
 symbols= $2(n-1)$ bits

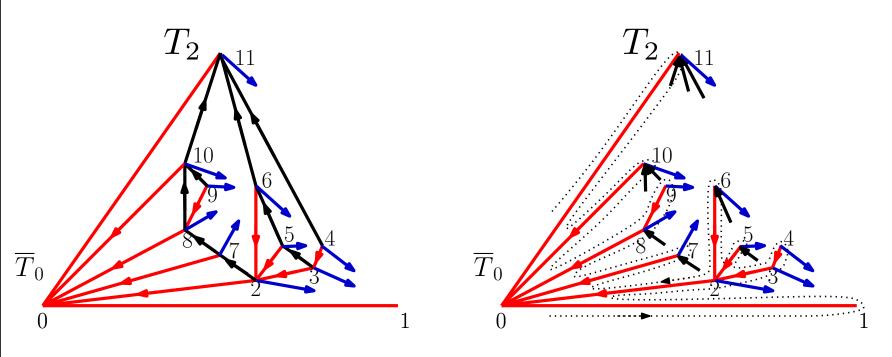
 $\approx 4n$ bits

$$\overline{T}_2$$
 00000101010101111

$$(n-1) + (n-3) = 2n-4$$
 bits

A more efficient encoding

Canonical orderings - Schnyder woods (He, Kao, Lu '99) 4n bits (for triangulations)



$$\overline{T}_0$$
 () ((())()())()(())()

$$2(n-1)$$
 symbols= $2(n-1)$ bits

$$\overline{T}_2$$
 000001010101011111

$$(n-1) + (n-3) = 2n-4$$
 bits