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Part 0

Introduction and historical background

(a short digression on planar graphs and their applications)
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Origins of Graph Theory (back to Euler)

(from Wikipedia)
(Königsberg, Prussia)

Theorem (Euler 1735, Hierholzer 1873)
A graph G contains an Eulerian walk (path) if and
only if G is connected and the number of vertices of
odd degree is 0 or 2.

Solutio problematis ad geometriam situs pertinentis
(1735, presented to the St. Petersburg Academy)

Theorem
A connected graph contains an Eulerian circuit if and
only if there are no vertices of odd degree.

Eulerian path: it visits every edge exactly once
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Planar graphs

Design of integrated circuits (VLSI)

french roads network
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Planar graphs in computational geometry and geometric modeling
(Delaunay triangulations, Voronoi diagrams, 3D meshes, ...)

Terrain modellingDelaunay triangulation

GIS Technology

Voronoi diagram

triangulations were already
used in 18th century: approxi-
mation of the meridian
(Delambre et Méchain, 1792)

3D Geometric modeling

3D paper sculpture (DT Workshop)

Pixar characters (image by De Goes et al.)
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Major results (on planar graphs) in graph theory
Kuratowski theorem (1930)
(cfr Wagner’s theorem, 1937)

• G contains neither K5 nor K3,3 as minors

Thm (Steinitz, 1916)

Every planar graph with n vertices is isomorphic to
the intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

(dimension of partial orders)

• G planar iff dim(G) ≤ 3

Thm (Schnyder ’90)

3-connected planar graphs are
skeletons of convex polyhedra
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Efficient algorithms on planar graphs
Tutte barycentric layout Schnyder layout FPP layout
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Graph drawing

Planarity testing

Minimum spanning tree

Minimum cut

Planar Separators
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Part I

What is a planar graph?

(some terminology: embedded graphs, topological and
combinatorial maps)
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Graphs
A graph G = (V,E) is a pair of:

• a set of vertices V = (v1, . . . , vn)

• a collection of E = (e1, . . . , em) elements of the cartesian
product V × V = {(u, v) | u ∈ V, v ∈ V } (called edges).
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. . . . . .
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circuit: a closed walk without repeated vertices
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Planar drawings: some basic notion of topology

Π : S2 \N −→ R2

z = 0

S2
R2

topological space: a set X with a collection of open
sets (subsets of X) satisfying:
X itself and the empty set are open
the union of open sets is open
any finite intersection of open sets is open

f : X → Y is continuous: the inverse image of an
open set of Y is open

f : X → Y is homeorphism: f, f−1 are bijective and continuous

Remark:
we consider topological spaces which are Haussdorff (any two distinct points have disjoint neighborhoods)

a path is a continuous map p : [0, 1] → X
(the path is simple if p is 1-to-1)

X
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Planar drawings of planar graphs
an embedding of G into R2 is a 1-to-1 continuous map satisfying:

(i) graph vertices are represented as points ;

(ii) edges are represented as paths (curves);

(iii) the images of vertices are distinct points

(iv) the images of edges simple (no self-intersections at the interior)

(v) the interior of the images of edges are disjoint (no crossings)

(vI) edges cannot pass trough a vertex (except at its extremities)

two cellular embeddings defining the same planar graph

cellular embedding: the faces are homeomorphic to open disks

faces of a graph embedding: connected component of the image
of the vertices/edges of G

plane graph: a planar graph + a cellular embedding

planar graph: a graph admitting an
embedding in the plane
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Planar drawings of planar graphs

two different embeddings of the same graph

cellular embeddings of a graph defining the same (planar) map

an embedding of G into R2 is a 1-to-1 continuous map
satisfying:

(i) graph vertices are represented as points ;

(ii) edges are represented as paths (curves);

(iii) the images of vertices are distinct points

(iv) the images of edges simple (no self-intersections
at the interior)

(v) the interior of the images of edges are disjoint (no
crossings)

(vI) edges cannot pass through a vertex (except at its
extremities)

(topological) map: cellular embedding up to
homeomorphism (equivalence class)

two cellular embeddings defining the same planar map

plane graph: a planar graph + a cellular embedding
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The Jordan curve theorem
Theorem
Any simple closed curve C in the plane partitions R2 into two disjoint
arcwise-connected open sets.

C

Ext(C)

Int(C)

Ext(C) ∩ Int(C) = C

(Ext(C) and Int(C) are closed sets)

Jordan curve Theorem (reformulation)
Let G a graph embedded on S2. Then G disconnets S2
if and only if it contains a circuit

G

Remark:
Any arc joining a point p in the (open) interior to a point q
in the (open) exterior must meet C at least once.

q

p
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The Jordan curve theorem: application
Theorem
Any simple closed curve C in the plane partitions R2 into two disjoint arcwise-connected open sets.

Theorem
The graph K5 is not planar

Proof (topological)

K5 K5 \ e

e

(by contradiction) Let G be a planar embedding of K5

C
v3

v1

v2

v4

G planar f(C) simple closed curve (separating the plane)

w.l.o.g. assume v4 ∈ Int(C)
(G planar,no edge crossings)

(v4, v1) ∈ Int(C)

(v4, v2) ∈ Int(C)

(v4, v3) ∈ Int(C)

C := {v1, v2, v3, v1} (simple cycle)K5 is complete it contains
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The Jordan curve theorem: application
Theorem
Any simple closed curve C in the plane partitions R2 into two disjoint arcwise-connected open sets.

Theorem
The graph K5 is not planar

Proof (topological)

K5 K5 \ e

e

C2
v3

v1

v2

v4

vi ∈ ext(Ci) (i ∈ {1, 2, 3} C3

C1C1 := {v2, v3, v4, v2}
C2 := {v3, v1, v4, v3}
C3 := {v1, v2, v4, v1}

Consider 3 cycles

(v5, v1), (v5, v2), (v5, v3)K5 is complete it contains v5 ∈ ext(Ci) (i ∈ {1, 2, 3}
(Jordan curve theorem)

v5 ∈ ext(C)
(Jordan curve theorem)

v5

(v5, v4) meets C somewhere (edge crossing, contradicting the
planarity of G)
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Planar graphs and graphs embeddable on the sphere are the same

Theorem
A graph G is embeddable on the sphere S2 if and
only if it is embeddable on the plane
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Planar graphs and graphs embeddable on the sphere are the same

Proof

Π : S2 \N −→ R2

Stereographic projection Π : S2 \N −→ R2

(homemorphism: Π and its inverse are bijective and continuous)

2x/χ

( )2y/χ

1− 2/χ

Π−1(x, y) :=

x
1−z( )y
1−z

Π(x, y, z) :=

χ := x2 + y2 + 1

N = (0, 0, 1)

z = 0

Theorem
A graph G is embeddable on the sphere S2 if and
only if it is embeddable on the plane

Remark
To get a planar embedding of a graph G, just take a point N
in the interior of a face of G on S2, and project on R2
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Combinatorial maps: representations and data structures
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Cellularly embedded planar graphs as combinatorial maps

1
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ϕ = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12) . . .

α = (2, 18)(3, 5)(4, 7)(12, 13)(9, 15) . . .

σ = (1, 20, 18)(4, 5, 13)(3, 12, 7) . . .

13

7

9
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19

15

3 −→ 4 −→ 5 −→ 3
ϕ σ α

Let G a cellular graph embedding
The combinatorial map associated to G is the set of closed walks, obtained walking around
the boundary of each face (in our example in cw direction)

(*) ασϕ = Id;

(*) the group generated by σ, α et ϕ transitively on H .

2 permutations on the set H of the 2m darts

(i) α involution without fixed point;

(ii) ϕ gives the cyclic ordering of the darts
(edges) around each face

2 permutations on the set H of the 2m darts

(i) α involution without fixed point;

(ii) σ gives the cyclic ordering of the darts
(edges) around each vertex

α = (2, 18)(3, 5)(4, 7)(12, 13)(9, 15) . . .

13

7

9

12

8

5

15

4

3

21

16

14

10

23

The two representations are dual to each other
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Cellularly embedded planar graphs as combinatorial maps
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Let G a cellular graph embedding
The combinatorial map associated to G is the set of closed walks, obtained walking around
the boundary of each face (in our example in cw direction)

2 permutations on the set H of the 2m darts

(i) α involution without fixed point;

(ii) ϕ gives the cyclic ordering of the darts
(edges) around each face

2 permutations on the set H of the 2m darts

(i) α involution without fixed point;

(ii) σ gives the cyclic ordering of the darts
(edges) around each vertex
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Graph: adjacency lists representation

class Point{
double x;
double y;

}

class Vertex{
Point p;
List<Vertex> neighbors;

}

combinatorial information

geometric information

vertex locations
(x0, y0, z0)
(x1, y1, z1)

. . .

. . .

for each face (of degree d), store:
• d references to adjacent vertices

for each vertex, store:
• 1 reference to its coordinates

∑
i deg(vi) = 2× e

Size (number of references)

quite compact
not efficient for traversal

Queries/Operations

Find the 3 neighboring faces of f

Memory cost

List the neighbors of vertex v

easy to implement

Test adjacency between u and v

List all vertices

0 6

1
2

5
4

3

7

8

6 1 25
0
0
54
6 35

0 3
04

8
7

6
4

v0

v1

v2

v3
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Half-edge data structure: polygonal (orientable) meshes

opposite(e)
class Halfedge{
Halfedge prev, next, opposite;
Vertex v;
Face f;

}

class Point{
double x;
double y;

}

class Vertex{
Halfedge e;
Point p;

}

combinatorial information

geometric information

class Face{
Halfedge e;

}

vertex(e)
e

prev(e)

next(e)

face(e)

f + 5× h + n ≈ 2n + 5× (2e) + n

Size (number of references)

2 half-edges per edge
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Flag representation

u

4 flags per edge

0 ≤ v ≤ n− 1

0 ≤ f ≤ 4 ∗ e− 1

=source(f)

class Flag{
Flag ei, fi, vi;
Vertex u;

}

class Vertex{
Flag f;
Point p;

}

combinatorial information

vi

fi

ei

vertexDegree(Flag f) {
int j=0;
Flag g=f;
do {
++j;
g=g.ei().fi();
} while (g!=f);
return j;

}

faceDegree(Flag f) {
int j=0;
Flag g=f;
do {
++j;
g=g.ei().vi();
} while (g!=f);
return j;

}

navigation around vertices navigation around faces

13

7

9

12

8

5

15

4

3

21

16

14

10

23
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Duality
Definition
Given a cellular graph embedding G on the sphere, its dual graph G∗ is a graph embedding
for which: we put a (dual) vertex f ∗ in the inteior of a face f ∈ G; and create a dual edge e∗

crossing an edge e ∈ G

f1
f2

e∗
e

Remarks:
The dual of a plane graph is connected (exercise)
A dual graph embedding is also cellular
The combinatorial map of the dual graph is uniquely defined
(G∗)∗ ∼= G
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Duality
Definition
Given a cellular graph embedding G on the sphere, its dual graph G∗ is a graph embedding
for which: we put a (dual) vertex f ∗ in the inteior of a face f ∈ G; and create a dual edge e∗

crossing an dedge e ∈ G

Remark:
A simple connected plane graph is a planar triangulation if and
only if its dual is a cubic graph

(genus 0) triangle mesh
planar triangulation

(simple connected plane graph, with all faces of degree 3)
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Duality
Exercice:
Given a plane graph G with m edges show that:∑

f∈F

degree(f ) = 2m

∑
v∈V

degree(v) = 2m



27

Duality: edge contractions and deletions

u v
z

e

contract(e)

split(z)

edge contraction and vertex split

G G/e

Remark:
Edge contractions and edge dele-
tions preserve some properties

Property
Let G be a connected cellularly embedded graph, and e and non cut edge.
Then

(G \ e)∗ ∼= G∗/e∗

e

e∗ f ∗
1

f ∗
2

f ∗

Remark:
What happens if e belongs
to a separating triangle?

e
u v

G/e?
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Duality
Lemma
Let us consider a graph embedding G = (V,E) and its dual G∗ = (F ∗, E∗),
and a subset of edges E ′ ⊂ E. Then we have

(V,E ′) is acyclic if and only if (F ∗, (E \ E ′)∗) is connected

E ′

(F ∗, (E \ E ′)∗) is connected

(G∗)
G

Corollary:
(V,E ′) is a spanning tree if and only if
(F ∗, (E \ E ′)∗) is a spanning tree.

(V,E ′) is acyclic Remove the (dual) blue edges which
are crossing the (red) edges in E ′
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Duality
Lemma
Let us consider a graph embedding G = (V,E) and its dual G∗(F ∗, E∗), and
a subset of edges E ′ ⊂ E. Then we have

(V,E ′) is acyclic if and only if (F ∗, (E \ E ′)∗) is connected.

E ′

(F ∗, (E \ E ′)∗)

Proof
(V,E ′) is acyclic ⇔ (S2 \ E ′) is connected

(Jordan curve theorem)

Claim: (S2 \E ′) is connected ⇔ (F ∗, (E \E ′)∗) is connected

x
x′

⇔ f ∗ and f ′∗ are adjacent in (F ∗, (E \ E ′)∗)

Consider points x ∈ f and x′ ∈ f ′ (in the embedding G)

⇔ f∗ and f ′∗ are adjacent by some edge not in E′

There is a path Pxx′

avoiding the edges in E′ and

Pxx′ is lying only in f and f ′{
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Part II
Euler formula and its consequences
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Euler-Poincaré characteristic: topological invariant

planar map

n− e + f = 2
Euler’s relation

χ := n− e + f One of the (11) world’s most beautiful equations
(according to livescience.com)
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Euler-Poincaré characteristic: topological invariant

planar map (convex) polyhedron

n− e + f = 2
Euler’s relation

χ := n− e + f

n− e + f = 2− 2g

χ = 0 χ = −4
n = 1660

e = 4992

f = 3328

g = 3

n = 364

e = 675

f = 302

b = 11

g = 0

n− e + f = 2− b
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Euler’s relation: first proof (induction on the faces)
Theorem (Euler’s relation)
Given a connected plane graph G we have:

v(G)− e(G) + f(G) = 2

Lemma
If G is a tree then we have: e(G) = v(G)− 1

Let us first prove a preliminary result

proof: (induction on the nodes)

x

v(G \ x) = v(G)− 1

e(G \ x) = e(G)− 1

(remove one leaf)

base case of the induction

v(G) = 1

e(G) = 0

Claim
Any tree contains at least one leaf

(exercise)
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Euler’s relation: first proof (induction on the faces)
Theorem (Euler’s relation)
Given a connected plane graph G we have:

v(G)− e(G) + f(G) = 2

Lemma
If G is a tree then we have: e(G) = v(G)− 1

Let us first prove a preliminary result

proof: (induction on the nodes)

x

v(G \ x) = v(G)− 1

e(G \ x) = e(G)− 1

(remove one leaf)

base case of the induction

v(G) = 1

e(G) = 0

Claim
Any tree contains at least one leaf

(exercise)

Claim 2
If a graph G all vertices have degree at least 2, then
G contains a cycle.
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Euler’s relation: first proof (induction on the faces)
Theorem (Euler’s relation)
Given a connected plane graph G we have:

v(G)− e(G) + f(G) = 2

Lemma
If G is a tree then we have: e(G) = v(G)− 1

Let us first prove a preliminary result

proof: (induction on the nodes)

x

v(G \ x) = v(G)− 1

e(G \ x) = e(G)− 1

(remove one leaf)

base case of the induction

v(G) = 1

e(G) = 0

Claim
Any tree contains at least one leaf

(solution)

Claim 2
If a graph G all vertices have degree at least 2, then
G contains a cycle.

assume G is simple
(otherwise the statement is trivial)

let P := v0, v1 . . . vk−1vk (path of maximal length in G)
v0

v1

vk

degree(vk) ≥ 2

vk−1

u

u /∈ P

u ∈ P u = vi (i ≤ k − 2)

it defines a cycle

P ∪ {u} is longer
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Euler’s relation: first proof (induction on the faces)
Theorem (Euler’s relation)
Given a connected plane graph G we have:

v(G)− e(G) + f (G) = 2
proof: (induction on the faces)

(base case) f(G) = 1

(general case) f(G) ≥ 2

G is a tree (use previous Lemma)

e(G) = v(G)− 1

remove an arbitrary
non cut edge e

There is a non cut edge e
G \ e is connected
f(G \ e) = f(G)− 1

v(G \ e)− e(G \ e) + f(G \ e) = 2
(induction hypothesis)

v(G)− e(G) + f(G) = 2

f(G \ e) = f(G)− 1

e(G \ e) = e(G)− 1

v(G \ e) = v(G)
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Euler’s relation: by induction (variation)
Theorem (Euler’s relation)
Given a connected plane graph G we have:

v(G)− e(G) + f (G) = 2
proof: (induction on the faces)

M t

χ(M) = χ(M t)

M t

e′ = e− 1 f ′ = f − 1

invariant: the boundary (exterior) is a simple cycle

e′′ = e′ − 1 f ′′ = f ′ − 1

e′′′ = e′′ − 2

f ′′′ = f ′′ − 1

remove a boundary edge remove a boundary edge remove a triangle

n′′′ = n′′ − 1

perform the removal according to a shelling order

χ := n− e+ f

t
χ(t) = 3− 3 + 2 = 2M

base case: f = 1

exercise: prove the following invariant
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Euler’s relation: second proof (via the dual)

n− e + f = 2

Pepakura software for unfolding polyhedral surfaces

patron

f faces
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Euler’s relation for polyhedral surfaces

Overview of the proof

patron

n− e + f = 2

dual spanning tree T ∗ avoiding the edges of T

f − 1 edges
e = (n− 1) + (f − 1)

f faces

f vertices

planar graph G

take any spanning tree T

n− 1 edges

n− e + f = 2

e = (n− 1) + (f − 1)

take the dual graph T ∗ avoiding the edges of T : this is a spanning tree of G∗
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Exercise 1: give a proof of Euler formula (using spherical geometry)

O

p

q

Geodesic: arc of great cir-
cle (between p and q)

A B

C

Girard Theorem

α β

γ

α + β + γ = π + area(A,B,C)
r2

Spherical drawing of an octahedron

α
βγ

δ

α+β+γ+δ = 2π

∑
j≤k αij = (ki − 2)π + area(Pi)

r2

Theorem (Girard)
Given a spherical polygon Pi of size ki, the sum
of internal angles αij satisfy

∑
i≤f

area(Pi) = 4πr2

(since faces are non overlapping)
edges are drawn as non crossing geodesic arcs

Exercise 2 (soccer ball theorem)
Given a plane graph, where every face is a pentagon or a
hexagon, and such that every vertex has degree 3, show
that there must be exactly twelve pentagonal faces.

Hints:
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Euler’s relation: consequences
Corollary: linear dependence between edges, vertices and faces

e ≤ 3n− 6
f ≤ 2n− 4

f = f1 + f2 + f3 + . . .
n = n1 + n2 + n3 + . . .

all faces have degree at least 3 (G simple simple), then we get
f = f3 + f4 + . . .

proof (double counting argument)

every edge appears twice
2e = 3 · f3 + 4 · f4 + . . .

then we get
2e− 3f ≥ 0
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Corollary: linear dependence between edges, vertices and faces

e ≤ 3n− 6
f ≤ 2n− 4

by applying Euler formula, we obtain
3n− 6 = 3(e− f + 2)− 6 = 3e− 3f

given 2e− 3f ≥ 0

3n− 6 = e + (2e− 3f ) ≥ e
3n− 6 ≥ e

Euler’s relation: consequences
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Euler’s relation: consequences

furthermore, assume all faces have
degree at least 3, then we get

f = f3 + f4 + . . .

every edge appears twice
2e = 3 · f3 + 4 · f4 + . . .

then we get
2e− 3f ≥ 0

assume G is a simple planar graph: no multiple edges, no loops

by applying Euler formula, we obtain
3n− 6 = 3(e− f + 2) = 3e− 3f ≥ 0

e ≤ 3n− 6

furthermore, assume there are no cycles
of length 3, then we get

f = f4 + f5 + . . .

every edge appears twice
2e = 4 · f4 + 5 · f5 + . . .

then we get
2e− 4f ≥ 0

e ≤ 2n− 4

use again Euler formula
3n− 6 = 3(e− f + 2) = 3e− 3f ≥ 0
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Euler’s relation for polyhedral surfaces

can we construct a regular
(genus 0) mesh, where every
vertex has degree 6?
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Euler’s relation for polyhedral surfaces

we just showed 2e− 3f ≥ 0

proof (double counting argument)

Assume all the vertices have degrees ≥ 6:

the total number of vertices is: n = n6 + n7 + n8 + . . .

using a double counting of edges: 2e = 6 · n6 + 7 · n7 + 8 · n8 + . . .

2e− 6 · n ≥ 0

2e− 6 · n ≥ 0

2e− 3f ≥ 0
}

e− n− f ≥ 0

6(e− n− f ) = (2e− 6n) + 2(2e− 3f ) ≥ 0

e ≥ n + f

condtradicting Euler formula: e = n+ f − 2
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Euler’s relation and Kuratowski theorem (easy direction)

K3,3 bipartite:

theorem (Kuratowski 1930)
G is planar iff it contains no subdivision of K5 nor K3,3

theorem (Wagner, 1937)
G is planar iff it does not contain K5 nor K3,3 as minors

Lemma
The graphs K5 and K3,3 are not planar

Exercise: give a combinatorial proof
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Euler’s relation and Kuratowski theorem (easy direction)

no cycle of length 3: faces have degree ≥ 4

K3,3 bipartite:

e ≤ 3n− 6 = 9

but we have e(K5) =
(
5
2

)
= 10

Lemma
The graphs K5 and K3,3 are not planar
Proof: (combinatorial)

4f (G) ≤
∑

f∈F deg(f ) = 2e(G) = 18

so the number of faces is f(G) ≤ 4

2 = v(G)− e(G) + f (G) ≤ 6− 9 + 4 = 1
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Euler’s relation and Kuratowski theorem (easy direction)

theorem (Wagner, 1937)
G is planar iff it does not contain K5 nor K3,3 as minors

theorem (Kuratowski 1930)
G is planar iff it contains no subdivision of K5 nor K3,3

Remark
Minors of planar graphs are planar

Remark
A graph G is planar if and only if every
subdivision of G is planar

K5 is a minor of the Petersen graph

A graph G′ is a minor of a graph G it can
be obtained from G with a sequence of ver-
tex/edge deletions and edge contractions

Subdivisions of K5 and K3,3

A graph G′ is a subdivision of a graph G
if it can be obtained from G with a se-
quence of edge subdivisions
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Part III
3-connectedness and planar graphs
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3-connectedness
is connected andDefinition

the removal of one or two vertices
does not disconnect G

at least 3 vertices are required to
disconnect the graph

G is 3-connected if {

Menger Theorem
if G is 3-connected then for every pair of vertices u and v there
exist 3 vertex disjoint paths (intersecting only at u and v)
(see Lecture 5, for a simple proof in the triangulated planar case)

cut-vertex cut-pair
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3-connected planar graphs: Whitney theorem

3-connected planar graphs admit an unique embedding (up to homeomorphism and
inversion of the sphere S2).

Thm (Whitney, 1933)

Remark: why 3-connectedness is important?

S2

0 1

2
2

1

0
01

2
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3-connected planar graphs: Whitney theorem

3-connected planar graphs admit an unique embedding (up to homeomorphism and
inversion of the sphere S2).

Thm (Whitney, 1933)

S2

0 1

2
2

1

0
01

2

two different (non equivalent) embeddings of the same graph

f3 = 4

f4 = 2

f5 = 1

f7 = 1

f3 = 4

f4 = 2

f6 = 2

f7 = 0

f6 = 0

f5 = 0

fi := number of faces of degree i

|F | = 9
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Bridges: some terminology

Bridges:= subgraphs induced by the edges of E(G) \ E(C)

B1

B2

B3

B4

B5

B6

Remarks
bridges can only intersect at the vertices of C

trivial bridges do not have inner vertices: loops, chords

if G is non-separable then there are two vertices of attachment

k-bridge is a bridge with k vertices of attachment

forn any two vertices of a bridge there exists one path internally disjoint
from C

equivalent bridges: same point of attachment (B1 and B2, which are 3-
bridges)

B2 and B4 are said to avoid each other
B3 and B4 are said to be overlapping

B3 and B4 are skew
B1 and B2 are not skew

Two bridges B and B′ are skew if there exist 4 vertices of
attachment u, v (on B) and u′, v′ on B′ which are listed con-
secutively on C: u, u′, v, v′

u

u′ v
v′

G a connected graph
C a cycle
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Bridges of cycles: properties

Given a cycle in a graph G the overlapping bridges are either skew or else equivalent 3-bridges.
Lemma 1

proof:
B1

B2

Case 1 either B or B′ is a chord (2-bridge)
they must be skew (as B3 and B4)

Case 2
B and B′ are not equivalent

both B andB′ have at least 3 points of attachment

Case 3a B and B′ are equivalent
both B and B′ are 3-bridges (as B4 and B5)

Case 3b B and B′ are equivalent
both B and B′ are k-bridges (k ≥ 4)

B4

B5

B3

B4

u

u′ v v′

they must be skew (as B1 and B2)

they must be skew



55

Bridges (in planar graphs): properties

Given a cycle C in a plane graph G the inner (outer) bridges avoid each other.
Lemma 2

proof:

Case 1 B and B′ are skew

Case 2 B and B′ are equivalent 3-bridges

u′

v′

u v

P ′
P

there are u, u′, v, v′ consecutive on C

take the two disjoint paths P and P ′ (included in B and B′)

The graph H = P ∪ C ∪ P ′ is planar (subgraph of G)

H

P ′
P

K

The graph K should be planar by construction

But K is also a subdivision of K5 (non planar)

(contradiction)

exercise

(they are not overlapping)

Define a graph K adding a vertex on the outer face
(and connecting it to vertices on C)
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3-connected planar graphs: Whitney theorem

A cycle in a 3-connected planar graph is a facial cycle
(bounding a face) if and only if is non-separating.

Thm (Tutte, 1963)

C

a cycle is non-separating if it has no chords and at most one non trivial bridge
Def:

non-separating cyclecycles which are not non-separating

C

CC
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3-connected planar graphs: Whitney theorem

A cycle in a 3-connected planar graph is a facial cycle (bounding a face) if and only if is non-
separating.

Thm (Tutte, 1963)

proof:

Let C a facial cycle (assume it is bounding the outer face)
All bridges are in the interior of C and avoid each other (previous Lemma)

C

x

y

the chord defines a 2-cut {x, y}

contradicting 3-connectedness

C

x

y

the pair {x, y} is a vertex cut of the
inner vertices of the bridges

contradicting 3-connectedness

there are at least two briges (avoiding
each other: their segments are inter-
nally disjoint)

Assume C is not a facial cycle

C

There is at least one inner and
one outer bridge (not loops)

both bridges are non trivial

C

bridge is a chord

C cannot be a non-
separating cycle
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Part IV
Exercices

Exercise 2 (soccer ball theorem)
Given a plane graph, where every face is a pen-
tagon or a hexagon, and such that every vertex
has degree 3, show that there must be exactly
twelve pentagonal faces.

Give an alternative geometric proof of Euler Formula, using Girard theorem

Exercise 1 (Euler formula via spherical geometry)

A B

C

Girard Theorem

α β

γ

α + β + γ = π + area(A,B,C)
r2

n− e + f = 2
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Using spherical geometry
An alternative geometric proof of Euler Formula

n− e + f = 2n− e + f = 2

O

p

q

Geodesic: arc of great
circle (between p and
q)

A B

C

Girard Theorem

α β

γ

α + β + γ = π + area(A,B,C)
r2

Spherical drawing of an octahedron

α
βγ

δ

α+β+γ+δ = 2π

∑
i≤f

area(Pi) = 4πr2

central projection
(since faces are non overlapping)

edges are drawn as non crossing geodesic arcs
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O

p

q

Geodesic: arc of great
circle (between p and
q)

A B

C

Girard Theorem

α β

γ

α + β + γ = π + area(A,B,C)
r2

Spherical drawing of an octahe-
dron

α
βγ

δ

α+β+γ+δ = 2π

∑
j≤ki

αij = (ki − 2)π +
area(Pi)

r2

deg(v)∑
r=1

αv
r = 2π

∑
i≤f

area(Pi) = 4πr2

∑
i≤f

∑
j≤k

αij =
∑
i≤f

(ki − 2)π +
∑
i≤f

area(Pi)

r2

(around each vertex v)

∑
v≤n

deg(v)∑
r=1

αv
r =

∑
i≤f

∑
j

αij 2eπ − 2fπ + 4π = n2π

(r = 1)

sum of angles
take the unit sphere

compute the sum of angles in 2 ways

Using spherical geometry
An alternative geometric proof of Euler Formula
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Exercise 2 (soccer ball theorem)
Given a plane graph, where every face is a pen-
tagon or a hexagon, and such that every vertex
has degree 3, show that there must be exactly
twelve pentagonal faces.

fi := number of faces of degree i

Use a double counting argument (edges around vertices): 3v = 2e

Count edges around faces): 5f5 + 6f6 = 2e = 3v

Use Euler relation: (5f5 + 6f6)− e + v = 2

from previous relation (using 3v − 2e): −v + 2f5 + 2f6 = 4

combining with: 5f5 + 6f6 = 3v we get f5 = 12
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Graph drawing: introduction and applications
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Graph drawing and data visualization
Global transportation system

Roads, railways, ...
Social networks

Parameterization problem
(known in Geometry Processing)

Compute a crossing-free drawing of planar graphs
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00



4 - 2

Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00

adjacency matrix

AG[i, j] ={ 0

1 if vi is adjacent to vj

otherwise
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1
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1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00



4 - 7

Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00
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Graph drawing: motivation

0 1 1 10

1 1 10

0

0

AG =

Challenge: what kind of graph does AG represent?
1

0 1

1 1 1 1 0

0 1 1 1 1

1 1 1 10 0

1 1 1 1 00
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Major results in Graph Drawing (for planar graphs)

v1
v4

v5

v2

v3

planar drawing

v2

v3

v1

Fáry theorem (1947)

• Every (simple) planar graph admits a straight
line planar embedding (no edge crossings)

straight-line planar drawing

Thm (Steinitz, 1916)

3-connected planar graphs are the 1-skeletons
of convex polyhedra

Every planar graph with n vertices is isomorphic to the
intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

ρ(vi) =
∑

j∈N(i)

wijρ(vj) (
∑

j wij = 1 and wij > 0

Thm (Tutte barycentric method, 1963)
Every 3-connected planar graph G admits a
barycentric representation ρ in R2.

(exercise)

(Lecture 1)

(not covered)



6

Thm (Schnyder 1990) O(n)×O(n) grid drawings

12 34

56

7
Thm (De Fraysseix, Pack Pollack 1989)

shift algorithm via Canonical orderings

linear time algorithms

not trivial to implement

extremey fast: they can process
millions of vertices per second

FPP algorithm

[Tutte’63] Tutte barycentric embedding
Spring embedder (Eades, 1984)
(Fruchterman and Reingold, 1991)
force-directed paradigm

E(ρ) :=
∑

(i,j)∈E

|x(vi)− x(vj)|2 =
∑

(i,j)∈E

(xi − xj)
2 + (yi − yj)

2

solve large sparse linear systems

images from Kaufman Wagner (Springer, 2001)

easy to implement
not very fast: they can process ≈ 104 vertices per second

easy to implement
pretty slow: O(n2) or O(n log n) time per iteration

minimize the spring energy

x(vi) =
∑

j∈N (i)

1

deg(vi)
x(vj)Fa(v) = c1 ·

∑
(u,v)∈E log(dist(u, v)/c2)

Fr(v) = c3 ·
∑

u∈V
1√

dist(u,v)

Graph drawing paradigms

(Lecture 2)

(Lecture 5)
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Straight-line planar drawings of planar graphs

Problem definition (Planarity testing, Embedding a planar graph)
Input: a planar graph
Output: the planar map (cellulaly embedded graph)

Problem definition (drawing in the plane)
Input: a planar graph (or planar map)
Output: a straight-line planar drawing
(crossing-free)

(a, b, c)

(a, c, d)

(d, c, e)

(c, b, e)

(a, d, f)

(f, d, g)

(d, e, g)

(e, b, g)

(a, f, h)

(a, h, i)

(i, h, f)

(i, f, g)

(i, g, b)

(i, b, a)

a b

cd

e
f

gh

i
A

B

C

D

E

G F

Input of the problem: planar map

straight-line crossing-free drawing straight-line grid drawing
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Computing a planar embedding
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3-connectedness
is connected andDefinition

the removal of one or two vertices
does not disconnect G

at least 3 vertices are required to
disconnect the graph

G is 3-connected if {

Menger Theorem
if G is 3-connected then for every pair of vertices u and v there
exist 3 vertex disjoint paths (intersecting only at u and v)

cut-vertex cut-pair

(see Lecture on Schnyder woods, for a simple proof in the triangulated planar case)
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3-connected planar graphs: Whitney theorem

3-connected planar graphs admit an unique embedding (up to homeomorphism and
inversion of the sphere S2).

Thm (Whitney, 1933)

S2

0 1

2
2

1

0
01

2

Remark: why 3-connectedness is important?



11

3-connected planar graphs: Whitney theorem

3-connected planar graphs admit an unique embedding (up to homeomorphism and
inversion of the sphere S2).

Thm (Whitney, 1933)

S2

0 1

2
2

1

0
01

2

two different (non equivalent) embeddings of the same graph

f3 = 4

f4 = 2

f5 = 1

f7 = 1

f3 = 4

f4 = 2

f6 = 2

f7 = 0

f6 = 0

f5 = 0

fi := number of faces of degree i

|F | = 9
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Bridges

Bridges:= subgraphs induced by the edges of E(G) \ E(C)B1

B2

B3

B4

B5

B6

Remarks
bridges can only intersect at the vertices of C

trivial bridges do not have inner vertices: loops, chords

if G is non-separable then there are two vertices of attachment

k-bridge is a bridge with k vertices of attachment

from any two vertices of a bridge there exists one path internally disjoint
from C

equivalent bridges: same point of attachment (B1 and B2, which are 3-
bridges)

B2 and B4 are said to avoid each other
B3 and B4 are said to be overlapping

B3 and B4 are skew
B1 and B2 are not skew

Two bridges B and B′ are skew if there exist 4 vertices of
attachment u, v (on B) and u′, v′ on B′ which are listed con-
secutively on C: u, u′, v, v′

u

u′ v
v′

G a connected graph
C a cycle

B2

B4
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Block decomposition

Given a graph G all its blocks can be computed in linear time.
Lemma

proof:

cut-vertex

A graph G is planar if and only if all its blocks are planar.
Remark

case 1: v = r

Compute a DFS tree from an arbitrary vertex r

case 2: v ̸= r

r

v

w

For each vertex v compute:
depth(v)
lowpoint(v)

lowpoint(v) := smallest depth of the extremity of a back (red) edge
(w, z) (where w is a descendant of v)

z

(process vertices in post-order)

Ablock is a maximal sub-graph (with respect to inclusion)
that has no cut vertex

Definition

back edge
r

check deg(v) ≥ 2
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Bridges

Given a 2-connected graph G we can in linear time either compute a circuit of
G having at least two bridges, or certify that G is planar.

Lemma

proof:

B1

v1

v2

C

Compute an arbitrary cycle C

v3

v4

P

v1

v2

C

v3

v4

computhe a path P := in B1 from v1 and v2

v1

C ′

v3

v4

B′′

B′

assuming P ̸= B1

otherwise G = C ∪ P is planar

v2

Assume there is a single bridge B1 (otherwise we are already done)

B′′′
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Bridges

Let C a circuit of G. The graph G is planar if and only if:
Lemma

proof:

The conflict graph of the bridges of C is bipartite (bridges are either outside or inside)

For every bridge B (with respect to C), the graph H = B ∪ C is planar

One direction: assume G is planar
Two bridges B and B′ drawn both inside (or outside) cannot be overlapping
(no edge in the conflict graph between them)

B3

B4

u

u′ v
v′

v1

v2 v3
v4

v5K5

The original graph would be non planar
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Bridges

Let C a circuit of G. The graph G is planar if and only if:
Lemma

proof:

The conflict graph of the bridges of C is bipartite

For every bridge B (with respect to C), the graph H = B ∪ C is planar

Other direction (we want to embed the graph, without crossings)

Solution: since (inner) bridges are without conflict, we
can add all (inner) bridges iteratively one by one

B1

B1

B2

B3

B3 is not overlapping with B1 and B2

B1

B2
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Embedding algorithm

Compute the bridges of G with respect to C

Embed(G, C)

if the conflict graph is not bipartite, return non-planar

For each bridge B of G (not a path):

Compute the conflict graph of B1, B2, B3, . . .

let G′ := C ∪B

let C ′ := extract(G′, C) (apply previous Lemma)

embed(G′, C ′) (recursive call)

if G′ is non-planar, return non-planar

return planar
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Embedding algorithm

Compute the bridges of G with respect to C

Embed(G, C)

if the conflict graph is not bipartite, return non-planar

For each bridge B of G (not a path):

Compute the conflict graph of B1, B2, B3, . . .

let G′ := C ∪B

let C ′ := extract(G′, C) (apply previous Lemma)

embed(G′, C ′) (recursive call)

if G′ is non-planar, return non-planar

return planar

O(n)

O(n2)

O(n)

O(n′)

O(n) recursive calls

O(n3)
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Triangulating a planar graph

Let G be a simple plane graph (celullarly embedded). Then it is possible to triangulate G in linear
time obtaining a simple triangulation T (super graph of G).

Lemma

proof:

Any idea?
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Triangulating a planar graph

Let G be a simple plane graph (celullarly embedded). Then it is possible to triangulate G in linear
time obtaining a simple triangulation T (super graph of G).

Lemma

proof:

Problem: eliminate loops and multiple edgesSolution: triangulate faces
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Triangulating a planar graph

Let G be a simple plane graph (celullarly embedded). Then it is possible to triangulate G in linear
time obtaining a simple triangulation T (super graph of G).

Lemma

proof:

Idea: eliminate loops and multiple edges (via edge flipping)

flip

flip

?
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Triangulating a planar graph

Let G be a simple plane graph (celullarly embedded). Then it is possible to triangulate G in linear
time obtaining a simple triangulation T (super graph of G).

Lemma

proof:

Idea: eliminate loops and multiple edges (via edge flipping)

flip

flip
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Triangulating a planar graph

Let G be a simple plane graph (celullarly embedded). Then it is possible to triangulate G in linear
time obtaining a simple triangulation T (super graph of G).

Lemma

proof:

Idea: eliminate loops and multiple edges (via edge flipping)

Problem

flip

flip

Solution: flip first inner loops

loop
loop
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Tutte’s planar embedding
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Preliminaries: barycentric coordinates

q
(u, v, w) = (0, 1, 0)

u > 0, v < 0, w > 0

u < 0, v > 0, w > 0

v = 0

u = 0

w = 0

(0, 0, 1) (1, 0, 0)

q =
∑n

i αivi (avec
∑

iαi = 1)

coefficients (α1, . . . , αn) are called barycentric coordinates of q
(relative to v1, . . . , vn)

v0 v1

v2

q
α1

α0

α2

q = α0v0 + α1v1 + α2v2

Geometric interpretation
of barycentric coordinates

q = area(v,v1,v2)v0+area(v0,v,v2)v1+area(v0,v1,v)v2
area(v0,v1,v2)

v2

v0 v1
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Tutte’s theorem
Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex representation
ρ in R2.
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Tutte’s theorem
Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex representation
ρ in R2.

ρ : (VG) −→ R2

ρ is convex the images of the faces of G are convex polygons
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Tutte’s theorem
Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex representation
ρ in R2.

ρ : (VG) −→ R2

ρ is barycentric the images of interior vertices are barycenters of their neighbors

ρ(vi) =
∑

j∈N(i)

wijρ(vj)
where wij satisfy

∑
j wij = 1, and wij > 0

according to Tutte: wij =
1

deg(vi)
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Tutte’s theorem: main steps
chose a cycle F (the outer face of G) in the right way

a cycle such that G \ F is connected
(deletion of vertices and edges)
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Tutte’s theorem: main steps
chose a cycle F (the outer face of G) in the right way

a cycle such that G \ F is connected
(deletion of vertices and edges)

choose a convex polygon P of size k = |F |
such that ρ(F ) = P

v1

v4

v5

v2

v3
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Tutte’s theorem: main steps
chose a cycle F (the outer face of G) in the right way

a cycle such that G \ F is connected
(deletion of vertices and edges)

choose a convex polygon P of size k = |F |
such that ρ(F ) = P

solve equations for images of inner vertices ρ(vi):

ρ(vi) =
∑

j∈N(i)

wijρ(vj)

ρ(vi)−
∑

j∈N(i)

wijρ(vj) = 0
according to Tutte: wij =

1
deg(vi)

v1

v4

v5

v2

v3

v1

v4

v5

v2

v3
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Tutte’s theorem: main steps
chose a cycle F (the outer face of G) in the right way

a cycle such that G \ F is connected
(deletion of vertices and edges)

choose a convex polygon P of size k = |F |
such that ρ(F ) = P

solve two linear systems:
ρx(vi)−

∑
j∈N(i)

wijρx(vj) = 0
(I −W ) · x = bx
(I −W ) · y = by{

ρy(vi)−
∑

j∈N(i)

wijρy(vj) = 0{
v1

v4

v5

v2

v3
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Tutte’s theorem: main steps
chose a cycle F (the outer face of G) in the right way

a cycle such that G \ F is connected
(deletion of vertices and edges)

choose a convex polygon P of size k = |F |
such that ρ(F ) = P

solve a linear system:

v1

v4

v5

v2

v3
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Validity of Tutte’s theorem: main results

v1

v4

v5

v2

v3

show that the linear system admit a (unique) solution:

matrix (I −W ) is inversible

a barycentric drawing is planar: no edge crossing

a 3-connected planar graph G has a non-separating cycle

In a 3-connected planar graph peripheral cycles are
exactly the faces (of the embedding)

Claim (existence of no-separating cycles)

(I −W ) · x = bx
(I −W ) · y = by{
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Validity of Tutte’s theorem: main results

why 3-connectness and peripheral cycles are important:

v1

v4

v5

v2

v3
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Advantages of Tutte’s drawing
the drawing is guaranteed to be planar (no edge crossing)

very easy to implement: no need of sophisticated data structure or preprocessing

v1
v4

v5

v2

v3

linear systems to solves

nice drawings
(detection of symmetries)

no need of the map structure
graph structure + a peripheral cycle
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Drawbacks of Tutte’s drawing

requires to solve linear systems of equations (of size n)

complexity O(n3)

or O(n3/2) with methods more involved

drawings are not always
”nice”

exponential size of the resulting vertex coordinates (with respect to n)

(I −W ) · x = bx
(I −W ) · y = by{
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Tutte’s spring embedder: iterative version

put exterior vertices v ∈ F on the polygon
repeat (until convergence)

for each inner vertex v ∈ Vi compute

xv =
1

deg(v)

∑
(u,v)∈E xu

yv =
1

deg(v)

∑
(u,v)∈E yu

choose an outer face F , and a convex polygon P

Vi inner vertices
(u, v) edge connecting v and u
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Tutte’s spring embedder: several interpretations

put exterior vertices v ∈ F on the polygon
repeat (until convergence)

for each inner vertex v ∈ Vi compute

xv =
1

deg(v)

∑
(u,v)∈E xu

yv =
1

deg(v)

∑
(u,v)∈E yu

choose an outer face F , and a convex polygon P

ρ(vi) =
1

di

∑
j∈N(i)

ρ(vj)

(I −W ) · x = bx
(I −W ) · y = by{F(v) = Fa(v) + Fr(v) =

∑
(u,v)∈E(pu − pv)

Force directed method, with total force:

Resolution of linear systems

E(ρ) :=
∑

(i,j)∈E

|ρ(vi)−ρ(vj)|2 =
∑

(i,j)∈E

(xi−xj)
2+(yi−yj)

2

find ρ minimizing

E(ρ)

subject to ρ(vk) = pk = (xk, yk) (for exterior vertices vk)
{

Energy minimization
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Related drawing paradigm: force-directed algorithms

ash85

Spring electrical model (Fruchterman and Reingold, 1991) (not covered)
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v1
v4

v5

v2

v3

LG[i, j] = {
−AG[i, j]

deg(vi) si i = j

otherwise
3 −1−1−1 0
−1
−1
−1
0

−1−1−14
−1 4 −1−1
−1 4 −1−1
−1−1 3−1

E(ρ) :=
∑

(ij)∈E ∥ρ(vi)− ρ(vj)∥2

minxE(x) := xLG x

constraint: xT · x = 1{
xM =

∑
i xi = 0 xT · 1n = 0

Optimal solution

(x1, . . . , xd) = (v2[i]√
λ2
, v3[i]√

λ3
, . . . , vd+1[i]√

λd+1

)

(image from Koren, 2005)

(4elt graph, force-directed layout)
(4elt graph, spectral layout)

minxE(x) := xT LG x

xT∆x

(degree-normalized (Koren))

(images from TD, INF562)

Related drawing paradigm: spectral drawing
(not covered)
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Tutte’s theorem: the proof

First: existence and uniqueness of barycentric representations

Second: the barycentric representation defines a planar drawing (no edge crossing)

Third: characterization of non-separating cycles
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(Some notions of) Spectral graph theory

v2

v3

v1

G

5 −3 −2

4 −1−3

−2 3−1

4 −1
3−1

det(QG[1]) =

Let QG be the laplacian of a graph G, with n vertices.
Then the number of distinct spannig trees of G is:

τ (G) = det(QG[i])(i ≤ n)

Lemma (Laplacian and the number of spanning trees)

= 11

· · ·

5 −2
3−2

det(QG[2]) = = 11

QG[1] =

5 −3 −2

4 −1−3

−2 3−1

QG[2] =

T1 T2 T3 T4

(proof not covered) QG[i] :=laplacian of QG, after
removing the i-th row and
column

5 −3
4−3

det(QG[3]) = = 11

5 −3 −2

4 −1−3

−2 3−1

QG[3] =
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First: existence and uniqueness of barycentric representations

Let G be a 3-connected planar graph with n vertices, and F a peripheral cycle
(such that G \ F is connected). Let P be a convex polygon, such that ρ(F ) = P .
Then the barycentric representation ρ exists (and is unique)

Theorem (Tutte)

ρ(vi) =
∑

j∈N(i)

wijρ(vj)

Goal: show that the two systems above admit a solution (unique)

(I −W ) · x = bx
(I −W ) · y = by{

x = [x1, x2, . . . , xn−k]

y = [y1, y2, . . . , yn−k]

(coordinates of inner vertices)

ρ(vi) =

n∑
1

wijρ(vj) i = 1, . . . , (n− k)

(one equation for
each inner vertex)

Let us denote ρ(vi) := (xi, yi) = xi the coordinates of vertex vi
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Let G be a 3-connected planar graph with n vertices, and F a peripheral cycle (such that G \ F is
connected). Let P be a convex polygon, such that ρ(F ) = P . Then the barycentric representation
ρ exists (and is unique)

Theorem (Tutte)

Example (to help intuition)

(I −W ) · x = bx
(I −W ) · y = by{
x = [x1, x2, . . . , xn−k]

y = [y1, y2, . . . , yn−k]

(coordinates of inner vertices)

ρ(vi) =

n∑
1

wijρ(vj) i = 1, . . . , (n− k)

(one equation for
each inner vertex)

1 −1
4

−1
3 1

x4
x5

=
b4x
b5x

1 −1
4

−1
3 1

y4
y5

=
b4y
b5y

v1
v4

v5

v2

v3

v1

v2

v3

N(v4) = {v1, v2, v3, v5}
N(v5) = {v2, v3, v4}

ρ(v4)− 1
4
ρ(v5) =

1
4
ρ(v1) +

1
4
ρ(v2) +

1
4
ρ(v3)

−1
3
ρ(v4) + ρ(v5) =

1
3
ρ(v2) +

1
3
ρ(v3)

{

(I −W is not symmetric)

ρ(v4) =
1
4
ρ(v1) +

1
4
ρ(v2) +

1
4
ρ(v3) +

1
4
ρ(v5)

ρ(v5) =
1
3
ρ(v2) +

1
3
ρ(v3) +

1
3
ρ(v4){
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Let G be a 3-connected planar graph with n vertices, and F a peripheral cycle (such that G \ F is
connected). Let P be a convex polygon, such that ρ(F ) = P . Then the barycentric representation
ρ exists (and is unique)

Theorem (Tutte)

ρ(vi) =
∑

j∈N(i)

wijρ(vj)

(I −W ) · x = bx
(I −W ) · y = by{

x = [x1, x2, . . . , xn−k]

y = [y1, y2, . . . , yn−k]

(coordinates of inner vertices)

i = 1, . . . , (n− k)

v1
v4

v5

v2

v3

v1

v2

v3

N(v4) = {v1, v2, v3, v5}
N(v5) = {v2, v3, v4}

(I −W is not symmetric)

3 −1 −1 −1 0

−1

−1

−1

0

−1 −1 −14

−1 4 −1 −1

−1 4 −1−1

−1 −1 3−1
(k constraints, for the k outer vertices) (n− k) equations for inner vertices

4 −1
3−1

M =

deg(vi)ρ(vi)−
∑

j∈N(i)

ρ(vj) = 0

M · x = ax
M · y = ay{

(M is symmetric)

4ρ(v4)− ρ(v5) = ρ(v1) + ρ(v2) + ρ(v3)

−ρ(v4) + 3ρ(v5) = ρ(v2) + ρ(v3){
ρ(v4)− 1

4ρ(v5) =
1
4ρ(v1) +

1
4ρ(v2) +

1
4ρ(v3)

−1
3ρ(v4) + ρ(v5) =

1
3ρ(v2) +

1
3ρ(v3)

{
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Existence and uniqueness of barycentric representations

ρ(v4)− 1
4ρ(v5) =

1
4ρ(v1) +

1
4ρ(v2) +

1
4ρ(v3)

−1
3ρ(v4) + ρ(v5) =

1
3ρ(v2) +

1
3ρ(v3)

{
4 −1

3−1M =

3 −1 −1 −1 0

−1

−1

−1

0

−1 −1 −14

−1 4 −1 −1

−1 4 −1−1

−1 −1 3−1

QG =

deg(vi)ρ(vi)−
∑

j∈N(i)

ρ(vj) = 0
M · x = ax
M · y = ay{

τ (G/F ) > 0

v1
v4

v5

v2

v3 G/F = G/{v1, v2, v3}

v4

v5

v123

5−3 −2

4 −1−3

−2 3−1

QG/F =

(k constraints, for the k outer vertices)

(n− k) equations for inner vertices

det(M) = τ (QG/F ) > 0
(G after the contraction of F is still connected) G \ F has at least one spanning tree

F := {v1, v2, v3}

4ρ(v4)− ρ(v5) = ρ(v1) + ρ(v2) + ρ(v3)

−ρ(v4) + 3ρ(v5) = ρ(v2) + ρ(v3){
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Existence and uniqueness of barycentric representations

ρ(v4)− 1
4ρ(v5) =

1
4ρ(v1) +

1
4ρ(v2) +

1
4ρ(v3)

−1
3ρ(v4) + ρ(v5) =

1
3ρ(v2) +

1
3ρ(v3)

{
4 −1

3−1QG[1, 2, 3] := M =

3 −1 −1 −1 0

−1

−1

−1

0

−1 −1 −14

−1 4 −1 −1

−1 4 −1−1

−1 −1 3−1

QG =

deg(vi)ρ(vi)−
∑

j∈N(i)

ρ(vj) = 0
M · x = ax
M · y = ay{

τ (G \ F ) > 0 τ (G/F ) > 0
since G \ F is connected

v1
v4

v5

v2

v3

G/F = G/{v1, v2, v3} v4

v5

v123

5−3 −2

4 −1−3

−2 3−1

QG/F

(k constraints, for the k outer vertices)

(n− k) equations for inner vertices

det(M) = τ (QG/F ) > 0
(G after the contraction of F is still connected)

G \ F has at least one spanning tree

the outer face F is not separating

M admits inverse
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First: existence and uniqueness of barycentric representations
The barycentric representation ρ exists (and is unique)Lemma

Second proof: (via energy minimization)

E(ρ) :=
∑

e=(i,j)∈E

Dij∥ρ(vi)− ρ(vj)∥2 =
∑

(i,j)∈E

Dij[(xi − xj)
2 + (yi − yj)

2]

Consider the spring energy of the whole system (of all inner edges):

E(x) =
1

2
kx2

E(ρ) :=
1

2

∑
vi∈V

∑
j∈Ni

Dij∥xi − xj∥2

to find the coordinates xi minimizing the energy, compute the gradient of E:

∂E
∂xi

= 0
∑
j∈Ni

Dij(xi − xj) =
∑
j∈Ni

Dijxi −
∑
j∈Ni

Dijxj = 0 xi =
∑
j∈Ni

[
Dij∑

j∈Ni
Dij

]xj =
∑
j∈Ni

wijxj

Remark: the solution is not degenarate, because of boundary constraints
(to be proved... later)

F (x) = kx

(spring energy)

Let us denote ρ(vi) := (xi, yi) = xi

Rewrite the sum:

barycentric coordinates

E(vi, vj) := Dij∥ρ(vi)− ρ(vj)∥2

physical analogy

spring energy for edge (vi, vj)

wij := [
Dij∑

j∈Ni
Dij

]
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Second: the barycentric representation defines a planar drawing

Let G be a 3-connected planar graph with n vertices, and F a non-separating cycle
(such that G \ F is connected). Let P be a convex polygon, such that ρ(F ) = P .
Then the barycentric representation defines a planar drawing (no edge crossing)

Theorem (Tutte)

Proof: (we follow the presentation given by Jeff Erickson)
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Second: the barycentric representation defines a planar drawing

In any Tutte embedding the image of every inner vertex v is a point lying in the
interior of the outer face (the convex polygon)

Lemma (outer face)

3-connectedness is important

Proof:
Remark: (every inner vertex v is a barycentric combination of its neighbors ui)

v

u1

u2

v := farthest point

v

u1

u2

v

u1

z1z2

z3

G is connected, then (by induction)
there is a path P = {z1, z2, . . .}

v

v

v is on a boundary edge

x

y

there is a cut-pair x, y
contradicting the 3-conn.

v is in the interior of C
then we are done

v
x

y

All the neighbors of v should lie on the same line

All the neighbors of v should lie
on the same boundary between x
and y, and also all the inner ver-
tices reachable from v
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Second: the barycentric representation defines a planar drawing

Given an inner vertex v and a line l passing through its image ρ(v) either all
neighbors of v lie on l, or there are neighbors on both sides of l.

Lemma (both sides)

Proof:

v

u1

u2

v

u1

u2

v

impossible (v must be in the interior or the convex hull)

Every face in the Tutte embedding is a convex polygon.
Lemma (convexity)

Proof:

v

By contradiction, assume f is not convex

There must be a reflex angle at v

u

w

All neighbors of v must lie in the concave
region between (u, v) and (w, v)

v

u

wz1

z2

z3

z1

z2

z3

H+

all neighbors must lie in
the half-plane H+

contradicting previous
Lemma

Remark: the drawing could be still degenrate (to be proved)
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Second: the barycentric representation defines a planar drawing

Let H+ be an half-plane containig at least one vertex of G. Then the sub-graph of
G induced by all the vertices lying in H+ is connected.

Lemma (half-plane)

Proof:

u lv

t

w

H+

t := vertex with larget y-coord

claim: there is a path from u to t
(with non-decreasing y-coordinates)

assume uy < ty (otherwise the claim is trivial)

(remark: t must lie on the convex hull)

U

G is connected, then there is v ∈ U with neighbors in both H+ and H−

(because previous Lemma)
apply induction to the vertex w neighbor of v: since wy > vy we can
find a path from v to the boundary

Let u be an arbitrary vertex in H+
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Second: the barycentric representation defines a planar drawing

No vertex is collinear with all its neighbors.
Lemma (non-degeneracy)

Proof: (by contradiction u has all its neighbors on l)

w1 w2 w3

V +

V −

w1 w2 w3

K3,3

Uu
U := set of vertices reachable from u and
whose neighbors all lie on l

l

W := set of vertices lying on l having at least
one neighbor not in U

G is 3-connected, so |W | ≥ 3

contract all edges in G(V +) and G(V −)

(edge contraction preserve planarity)

The induced graphs G(V +) and G(V −) are
connected (previous lemma)

(K3,3 contradicts the planarity of G)
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The Jordan curve theorem
Theorem
Any simple closed curve C in the plane partitions R2 into two disjoint
arcwise-connected open sets.

C

Ext(C)

Int(C)

Ext(C) ∩ Int(C) = C

(Ext(C) and Int(C) are closed sets)

Jordan curve Theorem (reformulation)
Let G a graph embedded on S2. Then G disconnets S2
if and only if it contains a circuit

G

Remark:
Any arc joining a point p in the (open) interior to a point q
in the (open) exterior must meet C at least once.

q

p
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Second: the barycentric representation defines a planar drawing

Let us consider an edge e = (u, v) incident to two faces f and f ′, whose remaining
vertices are in two sets S and S ′. Consider an arbitraty path P from one vertex
in S to one vertex in S ′. Then every path from u to v either consists of the edge
(u, v) or contains a vertex of the path P .

Lemma (Geelen)

Proof:

u
v

s′

s
s2

s1

s0

s′0

P

u
v

s′

s
s2

s1

s0

s′0

PP ′
f

f ′

The closed curve C = P ∪ P ′ separates u from v

P ′ := a curve crossing (u, v), lying inside f ∪ f ′

Then every path from u to v must cross C (by Jordan curve thm)

Consider an arbitrary planar embedding of G
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Second: the barycentric representation defines a planar drawing
Lemma (Split Faces)

Proof: (by contradiction: assume there is s, s′ ∈ H−)

Let us consider an edge e = (u, v) incident to two faces f and f ′, whose remaining
vertices are in two sets S and S ′. Consider a line l passing through u and v. Then
the vertices in S and S ′ lie on opposite sides with respect to l (and there is no
vertex on l).

u lv s

H+

u′
v′

s′ s1

f

f ′
P

∃s1, s′ are strictly below l (degeneracy Lemma)

The graph included in H− is connected (half-
space Lemma): then there exists a path P from s
to s′

∃u′, v′ ∈ H+ above l (degeneracy Lemma)

Q′

there exists a path Q′ from u′ to v′ (above l)

consider the path Q := Q′ ∪ (u, u′)∪ (v, v′) (above l)

Apply Geelen’s Lemma: path Q should cross P (impossible)

contradiction: the path Q does not cross P , and avoids the arc (u, v)
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Second: the barycentric representation defines a planar drawing
Final Lemma (no edge crossings)

Proof:
The Tutte embedding of G is crossing-free (faces are non-overlapping).

p

p

p

Claim: a generic point cannot lie into
two different faces f1 and f2

Strategy: draw a (generic) line from p to infin-
ity (crossing edges only at their interior)

f1

f2


