Computations and Applications of Minimal Absent Words

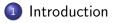
Carl Barton¹, Alice Heliou^{2,3}, Laurent Mouchard⁴ and Solon P. Pissis⁵

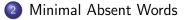
 ¹ The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
² Inria Saclay-Île de France, AMIB, Bâtiment Alan Turing, France
³ Laboratoire d'Informatique de l'École Polytechnique (LIX), CNRS UMR 7161, France
⁴ University of Rouen, LITIS EA 4108, TIBS, Rouen, France
⁵ Department of Informatics, King's College London, London, UK

SeaBio

Innin -

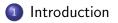
Minimal Absent Words





3 Computations

Outline



2) Minimal Absent Words

3 Computations

Applications

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Example

In a random sequence S, we expect that every word of size less than $\log_{\sigma}(|S|)$ occurs in S.

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Example

In a random sequence S, we expect that every word of size less than $\log_{\sigma}(|S|)$ occurs in S. The human genome contains around 3G nucleotides (A, C, G, T). Yet some words of size 11, are absent ($11 < \log_4(3 * 10^9) = 15,7$)

Application

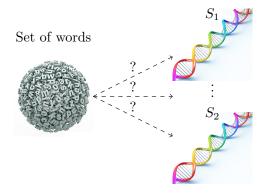
Three minimal sequences found in Ebola virus genomes and absent from human DNA, [Silva et al.], 2015

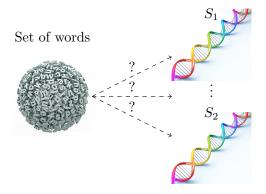
3 small sequences (TTTCGCCCGACT, TACGCCCTATCG, CCTACGCGCAAA) that appear in the Ebola genome as coding for proteins, are absent from the Human genome.

This was obtained by analyzing 99 virus and the Human genome reference GRC-38.

Unicity

Set of Absent Words

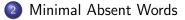




Property

For each set of words $\mathcal M$ if there exists a sequence $\mathcal S$ such that $\mathcal M$ is its set of absent words, then $\mathcal S$ is unique.

Outline



3 Computations

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

 $S = \stackrel{0}{A} \stackrel{1}{A} \stackrel{2}{C} \stackrel{3}{A} \stackrel{4}{C} \stackrel{5}{A} \stackrel{6}{C} \stackrel{7}{C}$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

 $S = \stackrel{0}{A} \stackrel{1}{A} \stackrel{2}{C} \stackrel{3}{A} \stackrel{4}{C} \stackrel{5}{A} \stackrel{6}{C} \stackrel{7}{C}$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

$S = \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A}$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

 $S = \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{C} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{A} \stackrel{\circ}{C} \stackrel{\circ}{C}$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

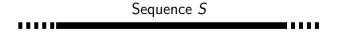
An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

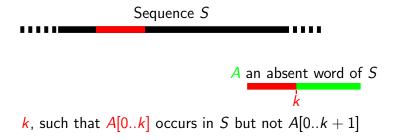
A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

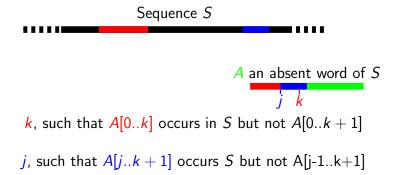
An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

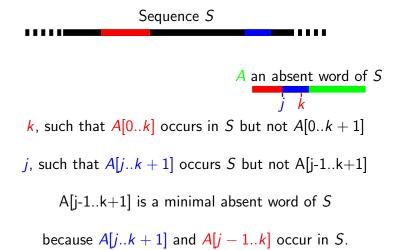
Crochemore et al. 1998, Mignosi et al. 2002



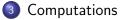
 \boldsymbol{A} an absent word of \boldsymbol{S}







Outline



Applications

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

• $S[i + |w|] \neq S[j + |w|]$

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

• $S[i + |w|] \neq S[j + |w|]$

Lemma

If *awb* is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

• $S[i + |w|] \neq S[j + |w|]$

Lemma

If *awb* is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

Sequence *S*

A a minimal absent word of S

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

•
$$S[i+|w|] \neq S[j+|w|]$$

Lemma

If *awb* is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

Sequence
$$S$$

A a minimal absent word of S

longest prefix of A

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

•
$$S[i+|w|] \neq S[j+|w|]$$

Lemma

If *awb* is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

A a minimal absent word of S

longest suffix of A

A maximal repeated pair in a S is a triple (i, j, w) such that:

• w occurs in S at positions i and j

•
$$S[i-1] \neq S[j-1]$$

•
$$S[i+|w|] \neq S[j+|w|]$$

Lemma

If *awb* is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

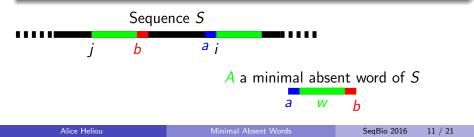


Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.

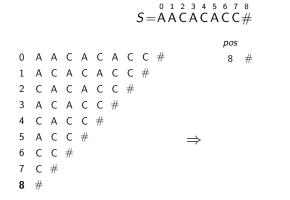
$S = \overset{0}{A} \overset{1}{C} \overset{2}{A} \overset{3}{C} \overset{4}{A} \overset{5}{C} \overset{6}{A} \overset{7}{C} \overset{8}{C} \overset{7}{\#}$

- 0 A A C A C A C C # 1 A C A C A C C #
- 2 C A C A C C #
- 3 A C A C C #
- 4 C A C C #
- 5 A C C #
- 6 C C #
- 7 C #
- 8 #

Suffixes of y

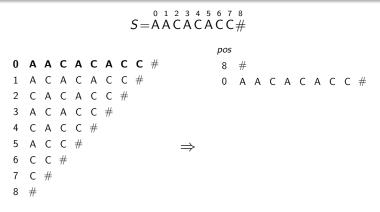
Ordered suffixes of ${\cal S}$

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



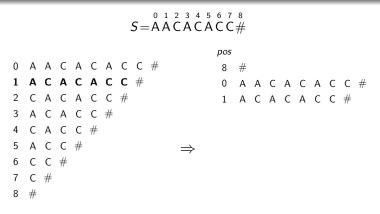
Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



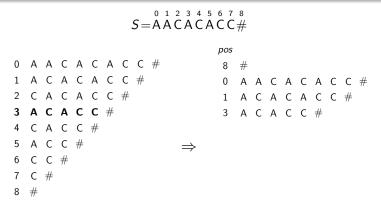
Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



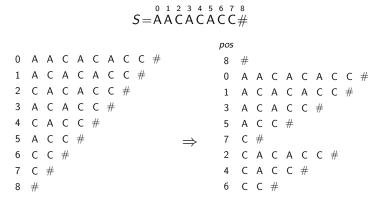
Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



Suffixes of y

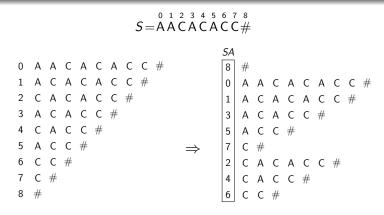
Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



Suffixes of y

Suffix Array by Manber& Myers in 1990

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of right maximal repeated pairs.



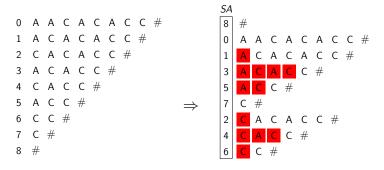
Suffixes of y

Ordered suffixes of ${\cal S}$

Suffix Array by Manber& Myers in 1990

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

 $S = \stackrel{\circ}{A} \stackrel{1}{A} \stackrel{2}{C} \stackrel{3}{A} \stackrel{4}{C} \stackrel{5}{A} \stackrel{6}{C} \stackrel{7}{C} \stackrel{8}{K}$



Ordered suffixes of S

Suffixes of y

Linear-time computation of minimal absent words using suffix array. BMC Bioinformatics, 2014

Pre-computation

Construction :

- Suffix Array, linear time and space since 2003
- Longest Common Prefix table, linear time and space with the SA and the sequence as input

Computation

- Travel twice through those tables, in order to construct the set of letters that occurs just before each right-maximal repetition.
- Deduce the set of minimal absent words.

Linear-time computation of minimal absent words using suffix array. BMC Bioinformatics, 2014

Pre-computation

Construction :

- Suffix Array, linear time and space since 2003
- Longest Common Prefix table, linear time and space with the SA and the sequence as input

Computation

- Travel twice through those tables, in order to construct the set of letters that occurs just before each right-maximal repetition.
- Deduce the set of minimal absent words.

Perfomances

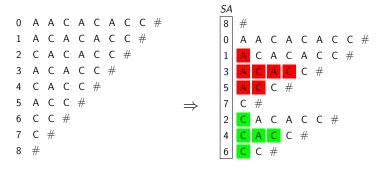
Computation for the whole human genome : \simeq 9000s with 130GB of RAM

Alice Heliou

Suffix Array by Manber& Myers in 1990

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

 $S = \stackrel{\circ}{A} \stackrel{1}{A} \stackrel{2}{C} \stackrel{3}{A} \stackrel{4}{C} \stackrel{5}{A} \stackrel{6}{C} \stackrel{7}{C} \stackrel{8}{K}$



Ordered suffixes of S

Suffixes of y

Improvements for the computation of minimal absent words

Parallelising the Computation of Minimal Absent Words, PPAM 2105

- High scalabilty of the computation
- $\bullet\,$ Computation for the whole human genome: \simeq 5000s with 4 cores and 130GB of RAM

Improvements for the computation of minimal absent words

Parallelising the Computation of Minimal Absent Words, PPAM 2105

- High scalabilty of the computation
- $\bullet\,$ Computation for the whole human genome: \simeq 5000s with 4 cores and 130GB of RAM

Using external memory

The precomputation step, is also done in external memory, using recent implementations by Karkkainen et al. Computation for the whole human genome:

- \simeq 8000s with 8GB of RAM
- ullet \simeq 12000s with 1GB of RAM

Improvements for the computation of minimal absent words

Parallelising the Computation of Minimal Absent Words, PPAM 2105

- High scalabilty of the computation
- $\bullet\,$ Computation for the whole human genome: \simeq 5000s with 4 cores and 130GB of RAM

Using external memory

The precomputation step, is also done in external memory, using recent implementations by Karkkainen et al. Computation for the whole human genome:

- \simeq 8000s with 8GB of RAM
- \simeq 12000s with 1GB of RAM

Implementations are available:

https://github.com/solonas13/maw

Computations of minimal absent words using different structures

References	Time	Space	Structure
	for fixed size alphabet		
Crochemore et al., Informa-	$\mathcal{O}(n)$	$\mathcal{O}(n)$	suffix
tion Processing Letters 1998			automata
Automata and forbidden words			
Belazzougui et al. Algo-	$\mathcal{O}(n)$	$\mathcal{O}(n)$	compact
rithms - ESA 2013			bidirectional
Versatile Succinct Representations of the Bidi-			BWT
rectional Burrows-Wheeler Transform			
Ota et al. TCS 2014	$\mathcal{O}(n)$	$\mathcal{O}(n)$	suffix tree,
Dynamic construction of an antidictionary with			dynamic
linear complexity			approach
Belazzougui et al. CPM	randomized	$\mathcal{O}(n)$	BWT & few
2015	$\mathcal{O}(n)$		additional
Space-efficient detection of unusual words			structures

Alice Heliou

Outline

2) Minimal Absent Words

3 Computations

Applications

Computational Biology

- Define a distance based on the of MAWs → mesure the difference between 2 sequences (Chairungsee and Crochemore, 2012)
- Alignment free sequence comparison, linear time and space (Crochemore et al, 2016)

Computer Science

• Data Compression Using Antidictionaries (Crochemore et al., 2000, Fiala and Holub, 2008)

Perspective

• Compute the minimal absent words inside a sliding window. \rightarrow Find the best match using a minimal absent words measure

Thank you

Thank you

Questions ?