

RNA Design

Designability and Structure-Approximating Algorithm in Watson-Crick and Nussinov-Jacobson Energy Models

RNA structures

RNA = Linear Polymer = Sequence in $\{A, C, G, U\}^*$

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGACCCUCUGGGAAA CCCGGUUCGCCACA

CC

Primary Structure

Secondary Structure

Tertiary Structure

5s rRNA (PDBID: 1K73:B)

Representations of Secondary Structures

Structure = Bunch of **non-crossing** base-pairs.

Representations of Secondary Structures

Structure = Bunch of **non-crossing** base-pairs.

arc diagram

Representations of Secondary Structures

Structure = Bunch of non-crossing base-pairs.

arc diagram

tree representation

• RNA structure S: Non-crossing base-pairs for positions in sequence w

Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ[−] ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

• Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$ **Free-Energy** $E_w(S)$: Sum over (independently contributing) motifs in *S*

$$E_{S} = 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 4 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot \Delta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

• Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$ **Free-Energy** $E_w(S)$: Sum over (independently contributing) motifs in *S*

$$\mathsf{E}_{\mathcal{S}} = \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \\ \mathsf{G}_{\mathsf{G}} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G}_{\mathsf{G}} \\ \mathsf{G} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G} \end{pmatrix} + \Delta \begin{pmatrix} \mathsf{G} \end{pmatrix} + \Delta$$

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)

• Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^- \cup \{+\infty\}$ **Free-Energy** $E_w(S)$: Sum over (independently contributing) motifs in *S*

$$\begin{split} E_{S} &= \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \Delta \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

- RNA structure S: Non-crossing base-pairs for positions in sequence w
- Motifs: Sequence/structure features (e.g. Base-pairs, Stacking pairs, Loops...)
- Energy model: Motif → Free-energy contribution Δ(·) ∈ ℝ⁻ ∪ {+∞} Free-Energy E_w(S): Sum over (independently contributing) motifs in S

Problem solved exactly in $O(n^3)$ time. [Nussinov Jacobson, PNAS 1980] [Zuker Stiegler, NAR 1981]....

RNA inverse folding

5s rRNA (PDBID: 1K73:B)

Positive structural design

Optimize **affinity** of designed sequences towards target structure **Examples:** Most stable sequence for given fold...

Negative structural design

Limit affinity of designed sequences towards **alternative structures Examples:** Lowest free-energy, High Boltzmann probability/Low entropy...

RNA Design Problem

Let $\ensuremath{\mathcal{M}}$ be an energy model.

Problem (INVERSE-FOLDING($\mathcal{M}, \Sigma, \Delta$) **problem)**

Input: Secondary structure S + Energy distance $\Delta > 0$ *Output:* RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$orall S' \in \mathcal{S}_{|w|} \setminus \{S\}: \ E_{\mathcal{M}}(w,S') \geq E_{\mathcal{M}}(w,S) + \Delta$$

or Ø if no such sequence exists.

Difficult problem: No obvious DP decomposition

- Existing algorithms: Heuristics or Exponential-time
- Complexity of problem unknown (despite [Schnall Levin et al (2008)]) Reason: Non locality, no theoretical frameworks, too many parameters..

\Rightarrow Stick to a simplified model!

RNA Design Problem

Let $\ensuremath{\mathcal{M}}$ be an energy model.

Problem (INVERSE-FOLDING($\mathcal{M}, \Sigma, \Delta$) **problem)**

Input: Secondary structure S + Energy distance $\Delta > 0$ *Output:* RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$orall S' \in \mathcal{S}_{|w|} \setminus \{S\}: E_{\mathcal{M}}(w,S') \geq E_{\mathcal{M}}(w,S) + \Delta$$

or \varnothing if no such sequence exists.

Difficult problem: No obvious DP decomposition

- Existing algorithms: Heuristics or Exponential-time
- Complexity of problem unknown (despite [Schnall Levin et al (2008)])
 Reason: Non locality, no theoretical frameworks, too many parameters...

\Rightarrow Stick to a simplified model!

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model \mathcal{W} and $\Delta = 1$:

Problem (INVERSE-FOLDING(Σ) **problem)**

Input: Secondary structure S *Output:* RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 $\mathsf{RNA}\operatorname{-FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

Designable(Σ): All designable structures

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model W and $\Delta = 1$:

Problem (INVERSE-FOLDING(Σ) **problem)**

Input: Secondary structure S *Output:* RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 $\mathsf{RNA}\operatorname{-FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

Designable (Σ) : All designable structures

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø.
 Saturated = Set of all saturated structures.
- **Paired degree of base-pair** = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø.
 Saturated = Set of all saturated structures.
- Paired degree of base-pair = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

Example

Alice Héliou (LIX, Polytechnique)

Our Results: Definitions and notations

Given a secondary structure S:

- Unpaired_S = Set of all unpaired positions of S.
- S is saturated ⇔ Unpaired_S = Ø.
 Saturated = Set of all saturated structures.
- Paired degree of base-pair = #Helices on the loop.
- D(S) = Maximal *paired degree* of nodes in the tree representation of S.

$\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;

R3 $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;

R3 $\Sigma_{1,1} \Rightarrow$ Designable = Degree ≤ 2 .

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

Question: Why not degree 3?

Proof.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

Question: Why not degree 3?

Proof. Within an internal node: ? ? ... ? ? ... ? ? ...

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

Question: Why not degree 3?

Proof. Within an internal node:

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

Question: Why not degree 3?

Proof.

Within an internal node:

... Either we get a repeat...

... à à ... c à ... or some parent/child have complementary pairs.

+ Same principle at the root level.

 $\Sigma_{c,u}$ = Alphabet with *c* pairs of complementary bases and *u* unpairable bases.

- **R1** $\Sigma_{0,u} \Rightarrow$ Designable = Empty (single-stranded) structures;
- **R2** $\Sigma_{1,0} \Rightarrow$ Designable = Saturated with degree $\leq 2 +$ empty structures ;
- **R3** $\Sigma_{1,1} \Rightarrow \text{Designable} = \text{Degree} \le 2.$

This can be easily generalized to:

Lemma

For any structure S in Designable($\Sigma_{c,u}$), $D(S) \leq 2c$.

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 $\Sigma_{2,0} \Rightarrow$ Saturated Designable = Degree ≤ 4 .

With unpaired positions ightarrow partial characterization:

- **R5** (Necessary) Designable structure cannot contain "*a multiloop of degree* \geq 5" (motif m_5) or "*a multiloop with unpaired position of degree* \geq 3" (motif $m_{3 \circ}$).
- **R6** (Sufficient) Separated = Structure that admit a separated (proper) coloring. Then any Separated **structure is Designable in** $\Sigma_{2,0}$.
- **R7** If $S \in \text{Designable}()$, then *k*-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 $\Sigma_{2,0} \Rightarrow$ Saturated Designable = Degree ≤ 4 .

With unpaired positions ightarrow partial characterization:

- **R5** (Necessary) Designable structure cannot contain "*a multiloop of degree* \geq 5" (motif m_5) or "*a multiloop with unpaired position of degree* \geq 3" (motif $m_{3 \circ}$).
- **R6** (Sufficient) Separated = Structure that admit a separated (proper) coloring. Then any Separated **structure is Designable in** $\Sigma_{2,0}$.
- **R7** If $S \in \text{Designable}()$, then *k*-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

 $\begin{array}{l} \mbox{Without unpaired position} \rightarrow \mbox{complete characterization:} \\ \mbox{R4} \ \ \Sigma_{2,0} \Rightarrow \mbox{Saturated Designable} = \mbox{Degree} \leq 4. \end{array}$

With unpaired positions \rightarrow partial characterization:

- **R5** (Necessary) Designable structure cannot contain "*a multiloop of degree* \geq 5" (motif m_5) or "*a multiloop with unpaired position of degree* \geq 3" (motif $m_{3\circ}$).
- **R6** (Sufficient) Separated = Structure that admit a separated (proper) coloring. Then any Separated **structure is Designable in** $\Sigma_{2,0}$.
- **R7** If $S \in \text{Designable}()$, then *k*-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

 $\Sigma_{2,0} = \{A,U,C,G\}$ + $\{G-C,A-U\}$ base pairs.

Without unpaired position \rightarrow complete characterization:

R4 $\Sigma_{2,0} \Rightarrow$ Saturated Designable = Degree ≤ 4 .

With unpaired positions \rightarrow partial characterization:

- **R5** (Necessary) Designable structure cannot contain "*a multiloop of degree* \geq 5" (motif m_5) or "*a multiloop with unpaired position of degree* \geq 3" (motif $m_{3\circ}$).
- **R6** (Sufficient) Separated = Structure that admit a separated (proper) coloring. Then any Separated structure is Designable in $\Sigma_{2,0}$.

R7 If $S \in \text{Designable}()$, then k-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- black \rightarrow G \cdot C;
- white $\rightarrow C \cdot G$;
- $\bullet \ \text{grey} \to A \cdot U \text{ or } U \cdot A.$

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes – #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes = \emptyset

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- black \rightarrow G \cdot C;
- white $\rightarrow C \cdot G$;
- $\bullet \ \text{grey} \to A \cdot U \text{ or } U \cdot A.$

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes - #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes = \emptyset

Our Results: Separated Coloring

From the tree representation T_S of structure S, color every paired node of T_S :

- black \rightarrow G \cdot C;
- white $\rightarrow C \cdot G$;
- $\bullet \ \, \text{grey} \to A \cdot U \ \, \text{or} \ \, U \cdot A.$

Proper coloring:

- each internal node has at most one black, one white and two grey children;
- 2 a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Level of a node = #black nodes – #white nodes on the path to the root.

Separated coloring: Levels of grey nodes \cap Levels of unpaired nodes $= \emptyset$

Levels of grey nodes: 0,1 Levels of leaves: 2,4 Separated coloring

Levels of grey nodes: 0,1 Levels of leaves: 2,4 Separated coloring

⇒ Design: GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC

Alice Héliou (LIX, Polytechnique)

Our Results: Structure-Approximating Algorithm

R8 Any structure *S* without m_5 and m_3 can be transformed in $\Theta(n)$ time into a designable structure *S'*, by adding at most a single base-pair to its helices.

Main idea: Offset grey vertices and leaves to odd/even levels \rightarrow Coloring is now separated

Our Results: Structure-Approximating Algorithm

R8 Any structure *S* without m_5 and m_3 can be transformed in $\Theta(n)$ time into a designable structure *S'*, by adding at most a single base-pair to its helices.

Main idea: Offset grey vertices and leaves to odd/even levels \rightarrow Coloring is now separated

Theorem

All the above results hold in any energy models \mathcal{M} :

$$E_{\mathcal{M}}(X,Y) = \begin{cases} \alpha & \text{if } \{X,Y\} = \{\mathsf{G},\mathsf{C}\} \\ \beta & \text{if } \{X,Y\} = \{\mathsf{A},\mathsf{U}\} \\ \gamma & \text{if } \{X,Y\} = \{\mathsf{G},\mathsf{U}\} \\ +\infty & \text{otherwise} \end{cases}$$

such that $\alpha, \beta > \gamma$.

Proof idea: Our results are based on (G, C)-saturated sequences No G – U base pair in optimal fold, since $\alpha > \gamma$. Numbers of G – C and A – U base pairs are upper-bounded. \Rightarrow Any alternative has same number of each base-pair as target structure.

Remarks

Results also hold in Nussinov energy model (A − U, G − C, G − U + weights)
 ⇒Stacking energy model? Turner?

- Characterized classes are mostly easy:

 - Non-designable classes → Linear time membership tests

Forbidden local motifs (e.g. m₅ & m₃₀) can be found in any energy model
 ⇒ Designable structures ⊂ Tree-like objects with forbidden motifs
 Proportion of designable structures: (^β/_α)ⁿ, exponentially decreasing with n.
 Possible consequences on RNA neutral network studies

+ motivation for identifying new forbidden motifs

Remarks

- Results also hold in Nussinov energy model (A − U, G − C, G − U + weights) ⇒Stacking energy model? Turner?
- Characterized classes are mostly easy:
 - Designable classes → Linear time algorithms
 - Non-designable classes → Linear time membership tests

Forbidden local motifs (e.g. m₅ & m₃₀) can be found in any energy model
 ⇒ Designable structures ⊂ Tree-like objects with forbidden motifs
 Proportion of designable structures: (^β/_α)ⁿ, exponentially decreasing with n.
 Possible consequences on RNA neutral network studies
 motivation for identifying new forbidden motifs

+ motivation for identifying new forbidden motifs

Remarks

- Results also hold in Nussinov energy model (A − U, G − C, G − U + weights) ⇒Stacking energy model? Turner?
- Characterized classes are mostly easy:
 - Designable classes → Linear time algorithms
 - Non-designable classes → Linear time membership tests

- Forbidden local motifs (e.g. $m_5 \& m_{3\circ}$) can be found in any energy model
 - ⇒ Designable structures ⊂ Tree-like objects with forbidden motifs

Proportion of designable structures: $\left(\frac{\beta}{\alpha}\right)^n$, exponentially decreasing with *n*.

Possible consequences on **RNA neutral network** studies + motivation for identifying **new forbidden motifs**

Conclusions

• **RNA design** is one of the current challenge of RNA bioinformatics with far-reaching consequences for drug design, synthetic biology...

 RNA inverse folding is the combinatorial core of design. It remains largely unsolved, and opens new lines of research in Comp. Sci.

Thanks

LIX – Ecole Polytechnique

Yann Ponty Mireille Regnier

Amélie Héliou Afaf Saaidi Juraj Michalik

Simon Fraser University

CNrs

Jozef Haleš Ján Maňuch Ladislav Stacho

÷

Designable structure:

Then 2-stutter is designable as well:

Designable structure:

Then 2-stutter is designable as well:

Then 2-stutter is designable as well: A A C C A A G G G U U U U C C U U

- Compact k consecutive positions \rightarrow Multigraph G such that $\Delta(G) = k$
- Base-pair compatibility graph is bipartite \rightarrow *G* is also bipartite
- Therefore *G* is *k* edge-colorable
- Any restriction of G to a given color c = Valid structure S_c for w
- Either $E_{\mathcal{M}}(S_c) = E_{\mathcal{M}}(S) \iff S_c = S)$, or $E_{\mathcal{M}}(S_c) > E_{\mathcal{M}}(S)$ (holds for some c)
- Thus $\sum_{c} E_{\mathcal{M}}(S_{c}) > k \cdot E(S) = E(S^{[k]})$
- $\Rightarrow \ w^{[k]}$ is design for $\mathcal{S}^{[k]}$ (holds for any base-pair additive \mathcal{M})

Then 2-stutter is designable as well: A A C C A A G G G U U U U C C U U

- Compact k consecutive positions \rightarrow Multigraph G such that $\Delta(G) = k$
- Base-pair compatibility graph is bipartite → G is also bipartite
- Therefore *G* is *k* edge-colorable
- Any restriction of G to a given color c = Valid structure S_c for w
- Either E_M(S_c) = E_M(S) (⇒ S_c = S), or E_M(S_c) > E_M(S) (holds for some c)
 Thus ∑_c E_M(S_c) > k ⋅ E(S) = E(S^[k])
- $\Rightarrow w^{[k]}$ is design for $S^{[k]}$ (holds for any base-pair additive \mathcal{M})

Then 2-stutter is designable as well: A A C C A A G G G U U U U C C U U

- Compact k consecutive positions \rightarrow Multigraph G such that $\Delta(G) = k$
- Base-pair compatibility graph is bipartite → G is also bipartite
- Therefore *G* is *k* edge-colorable
- Any restriction of G to a given color c = Valid structure S_c for w
- Either $E_{\mathcal{M}}(S_c) = E_{\mathcal{M}}(S) \iff S_c = S$, or $E_{\mathcal{M}}(S_c) > E_{\mathcal{M}}(S)$ (holds for some c)
- Thus $\sum_{c} E_{\mathcal{M}}(S_{c}) > k \cdot E(S) = E(S^{[k]})$
- $\Rightarrow \ w^{[k]}$ is design for $S^{[k]}$ (holds for any base-pair additive \mathcal{M})

Then 2-stutter is designable as well: A A C C A A G G G U U U U C C U U

Proof idea: *w*: Design for *S*; $S' \neq S^{[k]}$: Alternative folding for *k*-stutter $w^{[k]}$:

- Compact k consecutive positions \rightarrow Multigraph G such that $\Delta(G) = k$
- Base-pair compatibility graph is bipartite \rightarrow *G* is also bipartite
- Therefore *G* is *k* edge-colorable
- Any restriction of G to a given color c = Valid structure S_c for w
- Either $E_{\mathcal{M}}(S_c) = E_{\mathcal{M}}(S) \iff S_c = S)$, or $E_{\mathcal{M}}(S_c) > E_{\mathcal{M}}(S)$ (holds for some c)
- Thus $\sum_{c} E_{\mathcal{M}}(S_{c}) > k \cdot E(S) = E(S^{[k]})$

 $\Rightarrow w^{[k]}$ is design for $S^{[k]}$ (holds for any base-pair additive \mathcal{M})

Then 2-stutter is designable as well: A A C C A A G G G U U U U C C U U

- Compact k consecutive positions \rightarrow Multigraph G such that $\Delta(G) = k$
- Base-pair compatibility graph is bipartite \rightarrow *G* is also bipartite
- Therefore *G* is *k* edge-colorable
- Any restriction of G to a given color c = Valid structure S_c for w
- Either $E_{\mathcal{M}}(S_c) = E_{\mathcal{M}}(S) \ (\Rightarrow S_c = S)$, or $E_{\mathcal{M}}(S_c) > E_{\mathcal{M}}(S)$ (holds for some c)
- Thus $\sum_{c} E_{\mathcal{M}}(S_{c}) > k \cdot E(S) = E(S^{[k]})$
- $\Rightarrow w^{[k]}$ is design for $S^{[k]}$ (holds for any base-pair additive \mathcal{M})