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Résumé substantiel

Depuis 1977, la classification conventionnelle des êtres du vivant est celle proposée
par Carl Woese, basée sur la comparaison des séquences des ARNr 16S, pour les
procaryotes et 18S pour les eucaryotes. Cette classification divise le monde du vivant
en trois principaux domaines, les Eucaryotes qui possèdent un noyau, les Bactéries
et les Archées. Ces deux derniers domaines correspondent à des organismes souvent
unicellulaires, qui ne possèdent pas de noyau. Ils sont donc d’apparence proches et,
pendant longtemps ils n’ont pas été distingués. Cependant ils ont des caractéristiques
bien différentes, les Archées étant proches des Eucaryotes sur certains points, tels
que les protéines impliquées dans les mécanismes de transcription et de traduction.

L’ADN est universellement utilisé pour stocker l’information génétique. Il est
transcrit en ARNs, qui, lorsqu’ils sont codants, sont eux-mêmes traduits en protéines.
Ainsi l’étude des séquences d’ADN et d’ARN est un outil clef dans la comparaison
des espèces et la compréhension des fonctions des différentes macromolécules. Le
séquençage de l’ADN et de l’ARN a été inventé dans les années 1970, mais ce
n’est que dans les années 2000 que des méthodes à haut débit et peu coûteuses
ont été développées, les Next-Generation Sequencing (NGS). Leur développement
a permis d’importantes avancées en biologie et en santé.

Dans la première partie de cette thèse, nous nous sommes intéressés aux ARNs
qui ont la particularité d’être circulaires. C’est-à-dire que leurs deux extrémités
sont liées l’une à l’autre par une liaison covalente. Les ARNs circulaires ont été
observés dans les trois domaines du vivant depuis plus de vingt ans (Cocquerelle
et al. 1993). Cependant ils étaient d’abord vus comme un bruit de transcription.
Ce n’est que récemment avec le développement des technologies de séquençage à
haut débit que leur importante présence a été révélée (Salzman et al. 2012). Etant
circulaires ils sont dégradés plus lentement dans la cellule, ils représentent une
partie conséquente des ARNs non codants. Cependant il a également été montré
que certains d’entre eux sont traduits en protéine chez la mouche (Pamudurti et
al. 2017). Bien qu’étant de plus en plus étudiés, la fonction et le mécanisme de
circularisation de la plupart de ces ARNs circulaires restent inconnus.

L’équipe d’Hannu Myllykallio a précédemment mis en évidence l’implication
de la ligase Pab1020 dans la circularisation in vivo de trois ARNs, l’ARNr 5S



et deux ARNs à boites C/D, le SR4 et SR9, chez l’archée Pyroccocus Abyssi. Le
sujet principal de cette thèse est de confirmer le rôle de cette ligase, et d’identifier
les ARNs circulaires chez cette Archée.

Pour cela quatre expériences de RNA-seq ont été réalisées :
• A1) Immunoprécipitation de l’ARN avec la ligase puis séquençage : cette

méthode permet de sélectionner les ARNs qui interagissent avec la ligase.

• A2) Réplication de la première expérience.

• B) Immunoprécipitation de l’ARN avec la ligase suivi d’un traitement RNase
R puis séquençage : le traitement RNase R permet de dégrader les ARNs
linéaires.

• C) ARNs totaux traités avec la RNase R puis séquençés.

L’identification des ARNs circulaires à partir des données de séquençage n’est en
théorie pas très compliquée puisque les lectures qui couvrent la jonction circulaire ne
s’alignent pas normalement sur le génome. En effet, au lieu de s’aligner linéairement
en un seul match, elles vont s’aligner partiellement en deux fois, et ces matchs sont
inversés sur génome (voir Figure 3.10 pour une illustration). Cependant les ARNs
circulaires ne représentent qu’une faible proportion des ARNs d’une cellule, de
plus, pour les identifier nous ne pouvons compter que sur les lectures qui couvrent
leur jonction circulaire. Ces lectures ne représentent en moyenne que 1 à 3% des
lectures dans des séquençages d’ARN totaux. Ainsi, même un faible taux d’erreurs
de séquençage peut nuire à la détection des ARNs circulaires en créant des faux
positifs qu’il sera difficile de distinguer des vrais ARNs.

De nombreux algorithmes ont été développés pour identifier les ARNs circulaires,
ils reposent tous sur le repérage des deux alignements partiels et inversés d’une
lecture. Cependant ils n’utilisent pas les même algorithmes d’alignement ni les même
critères d’identification d’une jonction. En 2016, Hansen et al. a comparé cinq de ces
algorithmes sur des données de séquençage humain. Les résultats sont très divergents
(voir Figure 3.2), parmi les 5075 ARN identifiés comme circulaires par au moins un
algorithme, seuls 854 (16,8%) sont identifiés par les cinq algorithmes. Finalement les
auteurs recommandent d’utiliser deux algorithmes circRNA_finder (Westholm et al.
2014) et find_circ (Memczak et al. 2013), pour augmenter la fiabilité des résultats.
Les algorithmes développés sont, pour la plupart, complexes car ils sont adaptés aux
génomes eucaryotes chez lesquels de l’épissage a lieu. Chez les Archées, l’épissage
n’a lieu que chez les ARNs non-codants. Généralement l’intron contient un motif
Bulge-Helix-Bulge (BHB) qui est reconnu pour la coupure par une endoribonucléase,
puis l’intron est circularisé par une ligase, (Salgia et al. 2003). Les ARNs circulaires
ont déjà été identifiés à partir des données de séquençage chez une archée, Sulfolobus



solfataricus (Danan et al. 2012). Cette étude nous a servi de base de comparaison
pour l’analyse de nos données de séquençage chez Pyroccocus Abyssi.

Pour analyser les données des quatre expériences de séquençage nous avons
choisi d’élaborer notre propre méthode afin de pouvoir tirer profit de la comparaison
des résultats et être aussi exhaustifs que possible. Tout comme Danan, nous avons
choisi d’utiliser Blastn pour aligner les lectures. Cet algorithme d’alignement est
lent par rapport à l’état de l’art, mais il nous permet d’avoir accès facilement à tous
les matchs d’une lecture, même les petits matchs locaux. Cependant nous avons
ensuite utilisé des critères différents de Danan et al. . Notre principale différence est
le fait d’exiger qu’une jonction soit soutenue par la majorité des lectures circulaires
qui la recouvre. Cela nous évite d’identifier des jonctions qui se recoupent et dont
la signification biologique est incertaine. En effet, nous supposons que si un ARN
est très structuré le séquençage peut mal se passer et donner des artefacts qui sont
ensuite de faux positifs. Avec nos différents critères de sélection nous avons identifiés
133 jonctions circulaires chez Pyroccocus Abyssi. Nous avons ensuite comparé les
résultats de nos différentes expériences, celles ayant subi un traitement RNase R
devraient présenter en proportion plus de lectures circulaires que linéaires. Seuls
42 des ARNs identifiés présentent un enrichissement en lectures circulaires avec
le traitement RNase. Parmi ces 42 jonctions, 38 sont des snoRNAs à boites C/D,
1 provient de l’intron du tRNA-Trp et 3 proviennent de transcrits non-annotés.
Ces 42 jonctions sont toutes retrouvées dans les données des expériences A et C
lorsqu’elles sont analysées séparément. Cela soutient fortement le rôle de la ligase,
puisqu’elle interagit avec les ARNs que l’on identifie comme étant circulaires.

Nous avons ensuite comparé les résultats de notre méthode d’analyse avec
ceux de méthodes existantes sur nos données de séquençage et en contrôle sur
des données générées aléatoirement. Nos résultats sont assez divergents, mais les
principales différences sont explicables. En effet, circRNA_finder est moins strict
au niveau des critères de sélection des jonctions et trouve notamment beaucoup de
jonctions dans des régions compliquées à analyser telles que les ARN ribosomiques.
Au contraire, find_circ a des critères de sélection très restrictifs, en ne considérant
par exemple que certains sites connus d’épissage, ce qui l’empêche d’identifier des
jonctions pour l’instant inconnues.

Nous n’avons pas de jeux de données sur lesquels évaluer nos taux de faux négatifs
et de faux positifs. Cependant nous pensons avoir un taux de faux négatifs assez
faible car dans toutes nos comparaisons, notre méthode a reconnu plus de lectures
circulaires que les autres algorithmes. Aussi si l’on souhaite améliorer la rapidité de
notre méthode d’analyse en utilisant un algorithme d’alignement plus performant,
il faudra alors bien choisir les paramètres pour ne pas augmenter les faux négatifs.



Nous avons maintenant comme projet de confirmer in vivo l’implication de
la ligase Pab1020 dans la circularisation. Pour cela nous allons comparer les
ARNs circulaires que nous identifierons chez Thermococcus barophilus sauvage
et avec délétion de la protéine homologue à Pab1020. Ensuite nous réaliserons
des RNA-seq sur d’autres organismes ayant ou non une protéine homologue à
la ligase Pab1020 de Pyroccocus Abyssi. Cela nous permettra d’observer si les
caractéristiques des ARN circulaires sont liées à la présence de cette famille d’ARN
ligase dans d’autres organismes.

Dans la seconde partie, nous nous intéressons à l’information négative des
séquences, les mots qui ne sont pas présents. Les mots absents étant trop nombreux
pour pouvoir être calculés rapidement, nous ne considérons qu’un sous-ensemble,
qui contient toute l’information nécessaire pour retrouver la séquence initiale. Un
mot est dit absent d’une séquence lorsqu’il n’apparait pas dans la séquence. Un
mot absent est dit minimal lorsqu’il est absent de la séquence mais que tous ses
facteurs propres sont présents dans la séquence. Il a été montré (Crochemore et
al. 1998) que le nombre de mots absents minimaux est linéaire en la taille de la
séquence. Des algorithmes permettant de calculer les mots absents minimaux ont
déjà été proposés, mais les implémentations disponibles n’ont pas des complexités
satisfaisantes. Soit elles utilisent une structure de données gourmande en espace
soit elles ne sont pas linéaires en temps.

Nous commençons par présenter l’algorithme MAW qui calcule les mots absents
minimaux, en utilisant la table des suffixes, en temps et espace linéaire. L’idée du
calcul se base sur deux parcours de la table des suffixes ainsi que de la transformée de
Burrows-Wheeler. Nous expliquons cet algorithmique, présentons un pseudo-code et
les résultats obtenus sur différents jeux de données. Les performances sont meilleurs
que celles des autres implémentations disponibles, mais nous avons voulu améliorer
le temps de calcul en adaptant l’algorithme au calcul parallèle.

Nous avons ainsi conçu l’algorithme pMAW qui calcule les mots absents minimaux
dans les mêmes complexités asymptotiques mais en étant en partie parallélisé. Plus
la séquence est grande par rapport à l’alphabet plus le calcul peut être divisé
en tâches indépendantes. Nous observons un gain de temps de calcul dès deux
processeurs, le temps de calcul est divisé par deux avec seize processeurs.

Cependant l’inconvénient principal de ces deux méthodes de calcul est la mémoire
interne nécessaire. Celle-ci dépasse les 100G pour le calcul sur le génome humain,
cela est donc impossible sans une infrastructure informatique appropriée. Nous
nous sommes donc intéressés au calcul en mémoire externe, l’algorithme est modifié
afin que le parcours des tables soit fait de façon séquentielle. Les tables sont



ainsi stockées en mémoire externe et lues petit à petit pour faire les calculs en
mémoire interne. L’algorithme em-MAW que nous avons proposé permet de calculer
les mots absents minimaux du génome humain avec 1G de mémoire interne en
seulement deux fois plus de temps queMAW. Cela devient donc faisable sur n’importe
quel ordinateur. Les trois implémentations sont disponibles en ligne à http://
github.com/solonas13/maw.

Les mots absents minimaux se sont révélés être intéressants pour la comparaison
de séquences (Crochemore et al. 2016). Ils proposent une alternative aux méthodes
de comparaison basées sur l’alignement ou sur la distribution des mots de taille k, k
petit. Puisqu’il est possible de comparer des séquences sur la base de mots absents
minimaux, il est intéressant de se demander s’il est possible de faire de la recherche
d’un motif donné dans une séquence en se basant sur ces mots absents minimaux.

Nous avons montré qu’étant donnés une séquence et un motif, on peut trouver
les positions de distance minimale, en terme de mots absents minimaux, entre le
motif et la fenêtre de la séquence commençant à cette position. La complexité en
temps de cet algorithme est linéaire en la taille de la séquence et en celle du motif,
mais la complexité en espace est linéaire en la taille du motif et est indépendante
de celle de la séquence. Il s’agit du premier algorithme de recherche de motifs
basé sur les mots absents minimaux.

Les algorithmes de recherche de motifs ont habituellement une complexité en
temps qui est indépendante de la taille de la séquence (une fois l’étape de pré-calcul
réalisée), et une complexité en espace qui est linéaire en la taille de la séquence,
ils sont donc plus rapides mais requièrent plus d’espace. Aussi notre algorithme
n’est pas adapté à un nombre de motifs importants. On peut supposer qu’il serait
intéressant pour chercher le meilleur alignement pour une lecture qui ne s’alignerait
pas sur le génome avec un algorithme conventionnel. Dans les travaux à venir nous
souhaitons implémenter cet algorithme et observer ses résultats dans différentes
situations, notamment les alignements de lectures sur un génome de référence.

http://github.com/solonas13/maw
http://github.com/solonas13/maw
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1.1 Domains of Life

1.1.1 History

During Antiquity, Aristote was distinguishing the "living beings" into four categories:
mineral, vegetal, animal and human. The criteria of membership were established
to the naked eye. It was not until the 16th century and the invention of the optical
microscope that unicellular organisms have been observed for the first time by
Antoni Van Leuwenhoek. In the 20th century, the transmission electron microscope
allowed the observation of the cellular ultrastructure. The definition of eukaryotes
and prokaryotes is established in 1963 by Stanier, Doudoroff and Adelberg, the
first ones are the only ones having a nucleus. In 1977, Carl Woese proposed a new
classification based on the comparison of the 16S and 18S rRNA sequences [1]. A
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4 1.1. Domains of Life

ribosome component is usually a good choice for phylogeny because the ribosomes
are highly conserved and found in all known forms of life with the same function;
they synthesise proteins from messenger RNAs. The ribosomes are divided into
two subunits, a large one and a small one, that fit together. The 16S rRNA is
a component of the small unit in prokaryotes, the 18S rRNA is its homologue
in eukaryotes. This classification includes a new group that separates from the
procaryotes and that was named the Archaebacteria. This classification is still the
current one, see Figure 1.1 for a detailed phylogenetic tree. The main characteristics
of the three domains of Life are synthesised in Table 1.1. Most prokaryotic cells are
small and simple in appearance. They live mostly as independent individuals rather
than as multicellular organisms and in an enormous variety of environments, hence
most species cannot be cultured by standard laboratory techniques. According to
one estimate [2], at least 99% of prokariotic species remain to be characterised.

Characteristics Archaea Bacteria Eukarya
Membrane lipids Ether-linked Ester-linked lipids Ester-linked lipids
Predominantly
multicellular

No No Yes

Cell wall Yes Yes No
Peptidoglycan Yes No No
Membrane-bound
organelles

No No Yes

Possible survival
above 80◦C

Yes Yes No

Ribosomes 70S 70S 80S
Circular DNA Yes Yes No
Histones Yes No Yes
Transcription fac-
tors required

No Yes Yes

RNA polymerase Several One Three
Initiator tRNA Methionine Formylmethionine Methionine
Introns in tRNA Yes No Yes

Table 1.1: The main characteristics of the three domains of Life. Adapted from [3]

1.1.2 Archaea: the third domain of life

Archaea were initially viewed as extremophiles living in harsh environments, such
as arctic seawater and salt lakes, but they can be found basically everywhere. Some
of them, the methanogens, inhabit human and ruminant guts, aiding digestion.
Evolutively they are very interesting as they have some characteristics that are
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Figure 1.1: Phylogenetic tree based on small-subunit ribosomal RNA sequences showing
three domains of life. Taken from [4].

close to bacteria (morphology, reproduction, etc ..) and other ones that are related
to eukarya (similarities of proteins, translation and transcription mechanisms, etc
..). Some hyperthermophilic archaea are exploited in biotechnology, for example
their DNA polymerases are used for PCR because they are thermostable.

Archaea have been evolving for a long time and they constitute a very heteroge-
neous phylogenetic group. In our work we focus on the study of Pyrococcus Abyssi,
an hyperthermophilic archaea that has been isolated from the North Fiji bassin
at 2 000 metres, its optimum growth temperature is 96°C.

1.2 What are RNAs ?

1.2.1 From DNA to RNAs

All living cells store their genetic information, necessary to their development and
functioning, in the form of macromolecules called DNA. DNA is universal, we
can take a piece of DNA from a human cell and insert it into a bacterium, or
the reverse, and, under certain circumstances, the information can be successfully
interpreted . Most DNA molecules consist of two strands that form a double helix.
Each strand is a succession of nucleotides, each of them is composed of a nucleobase
- either Adenine (A), Cytosine (C), Guanine (G), or Thymine (T)- and a sugar
(deoxyribose) with a phosphate group attached to it.
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The nucleotides are joined to one another in a chain by covalent bounds between
a sugar and a phosphate group. The sequence of these four nucleotides encodes
biological information. The nucleobases of the two strands are bound together
(according to pairing rules, A with T and C with G) with hydrogen bonds to
make double-stranded DNA.

The stability of DNA helix is determined primarily by hydrogen bonds, but there
are two other important forces that maintain the helix structure. The bases, located
inside the double helix, interact with each other through the Van der Waals forces.
Moreover, adjacent base pairs interact with each other, this kind of interaction is
called stacking interaction. Stacking interactions are hydrophobic and electrostatic.
They depend on the aromaticity of the bases and their dipole moments. There
is also the hydrophobic interaction; the nucleobases are hydrophobic whereas the
sugar and the phosphate group are hydrophilic. An helical structure tends to reduce
the interaction of the bases with the molecules of water. There exist different forms
of DNA helical structures, differing in their geometry and dimensions.

The strands run in opposite direction to each other, they are reverse comple-
mentary of one another, see Figure 1.2. The bonds between the base pairs are weak
compared with the covalent sugar-phosphate links that form the backbone. This
allows the DNA strands to be pulled apart without breaking. Each strand can serve
as a template, for a synthesis of a complementary strand of DNA. This process is
called the DNA replication. The regulation of DNA replication and its rates in the
cell life depend on the type of cells, however the basics are universal, see Figure 1.3.

To function, a cell must do more than copying its DNA, it must also express it.
This expression occurs by a mechanism that is the same in all living cells. It begins
with the transcription in which segments of DNA strand are used as templates
for the synthesis of RNAs. Then in some cases it is followed by the translation,
the synthesis of proteins directed by messenger RNA (mRNA) molecules. In this
work we focus exclusively on nucleotidic sequences analysis, thus we will not study
proteins and restrain ourselves to DNA and RNA.

The transcription is performed by an enzyme called a RNA polymerase. This
enzyme unwinds the DNA helix just ahead of an active site for polymerization,
called a promoter. Then it moves step-wise along the DNA, exposing a new region of
the template strand for complementary base-pairing. A complementary antiparallel
RNA chain is extended by one nucleotide at a time in the 5’-to-3’ direction. The
transcription terminates when reaching a transcription terminator.

Like DNA, RNA is a polymer of four types of nucleotides, but one of them
is different Uracil (U) replaces Thymine, and the sugar in RNA molecules is a
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Figure 1.2: DNA structure. A) "Unfolded" view of a double-stranded DNA molecule,
showing the two chains of nucleotides, connected in the center by a serie of hydrogen
bonds between nitrogenous bases. B) Schematic illustration showing the arrangement of
the two strands in the double-helix configuration. The "backbone" on the outside is the
sugar-phosphate chain, and the nitrogenous bases form the bridges across the middle.
Taken from http://myhome.sunyocc.edu/~weiskirl/nucleotides_nucleicacid.htm.

ribose. The segment of DNA that is transcribed into a single strand RNA is called

a transcription unit and encapsulates at least one gene. If this gene is coding for a

protein, the RNA produced is an mRNA that will be translated into a protein by a

ribosome during a process called translation. Alternatively, the gene may encode

for a non-coding RNA, that will have its function by itself.

http://myhome.sunyocc.edu/~weiskirl/nucleotides_nucleicacid.htm
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Figure 1.3: DNA replication. DNA replication faithfully duplicates the entire genome
of the cell. During DNA replication, a number of different enzymes work together to
pull apart the two strands so each strand can be used as a template to synthesize new
complementary strands. The two new daughter DNA molecules each contain one pre-
existing strand and one newly synthesized strand. Taken from https://opentextbc.ca/
anatomyandphysiology/chapter/3-3-the-nucleus-and-dna-replication/.

1.2.2 Diversity of non-coding RNAs

Non-coding RNAs are highly abundant, their number within the human genome
is unknown, but recent studies suggest the existence of thousands of them. The
Table 1.2 summarizes the main categories of non-coding RNAs. Ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs) and small nucleolar RNAs (snoRNAs) are the
three largest classes of non-coding RNAs. The Lowe lab has been working thoroughly
on the tRNAs and snoRNAs, providing web servers for their detection [5]. Those
genes are not detected by conventional gene finders that detect protein-coding
genes. Indeed they lack or have weakly conserved sequence signals characteristics
of protein-coding genes: promoters, terminators, absence of stop codon, poly-A-
addition, transcription-factor binding sites etc.... The methods proposed by Lowe
et al. combine deterministic search and probabilistic models based on training data
from selected species of phylogenetic groups (i.e. mammals, yeasts and archaea). The
snoRNAs fall into two major classes: C/D box and H/ACA box RNAs. Most C/D
box snoRNAs target particular ribose methylations within rRNA, whereas most
H/ACA box RNAs target particular conversions of uridine to pseudouridine within

https://opentextbc.ca/anatomyandphysiology/chapter/3-3-the-nucleus-and-dna-replication/
https://opentextbc.ca/anatomyandphysiology/chapter/3-3-the-nucleus-and-dna-replication/
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Type of RNA Function
mRNAs Messenger RNAs, code for proteins
rRNAs Ribosomal RNAs, form the basic structure of the ribosome

and catalyse protein synthesis
tRNAs Transfer RNAs, central to protein synthesis as adaptors

between mRNA and amino acids
snRNAs Small nuclear RNAs, function in a variety of nuclear processes,

including the splicing of pre-mRNA
snoRNAs Small nucleolar RNAs, help to process and chemically modify

rRNAs
miRNAs MicroRNAs, regulate gene expression by blocking translation

of specific mRNAs
siRNAs Small interfering RNAs, turn off gene expression by directing

the degradation of selective mRNAs
piRNAs Piwi-interacting RNAs, bind to piwi proteins and protect the

germ line from transposable elements
lncRNAs Long non-coding RNAs, many of which serve as scaffolds;

they regulate diverse cell processes, including X-chromosome
inactivation

Table 1.2: Principal Types of RNAs Produced in Cells. Taken from [2].

rRNA. snoRNAs are implied in eukaryote ribosome efficacy. However, as there is
no nucleus in Archaea, there can not be any snoRNAs, the Lowe lab introduced
the sno-like RNAs that they identified as homologs of snoRNAs genes. Finally,
by using a probabilistic model, they identified over 200 sno-like RNAs in seven
archaeal genomes [6], among them Pyroccocus abyssi.

1.2.3 RNA structure

The functional roles played by non-coding RNAs rely on their interactions with
other molecules and thus require the adoption of a specific conformation. Unlike
DNA, most RNA molecules are single stranded, they fold on themselves to acquire a
compact and functional conformation. Its three-dimensional shape is called tertiary
structure. The scaffold of this 3D-structure is provided by the secondary structure,
composed of nucleotides that are bounded together by hydrogen bonds. To entirely
characterise the 3D organisation of an RNA molecule we distinguish between
three kinds of structure:

• Primary structure: It consists of the sequence of bases read from the 5’
extremity to the 3’ extremity.
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• Secondary structure: It corresponds to a planar representation of the structure.
Usually it represents the base pair interactions, the Watson Crick C-G, A-
U and the Wooble pair G-U. The pairs create different components in the
secondary structure, see Figure 1.4:

– Helices: they are composed of a stack of base pairs, usually no more that
8 to 10 long.

– Hairpin loops: they link the 3’- and 5’-ends of a double helix, their length
vary from 2 to 14 nucleotides.

– Interior loops: they separate the helices into two segments by inclusion
of residues that are not paired.

– Bulge loop: they are similar to internal loops, but concern only one
strand.

– Multi-branched loops: they are formed by the insertion of three or more
helices.

• Tertiary structure: It is the 3D-localisation of all the atoms of the molecule.

1.2.4 RNA splicing
Canonical splicing

In eukaryotic cells, mRNA transcripts are subject to numerous modifications in the
nucleus before they can exit from the nucleus to the cytoplasm. Most eukaryotic
reading frames contain introns, these parts are transcripted into mRNA but they are
removed from the mRNA during a process called the RNA splicing, see Figure 1.5.
The sequences that are joined together to form the final mature mRNA are called
exons. Within the intron, a donor site (5’ of the intron), a branch site (near the 3’
of the intron) and an acceptor site (3’ end of the intron) are required for splicing.
The splice donor site includes an almost invariant sequence ‘GU’ at the 5’ end of
the intron. The splice acceptor site at the 3’ end of the intron terminates with an
almost invariant ‘AG’ sequence. Thus the motif ‘GU’-‘AG’ is an almost invariant of
canonical splicing. Eukaryotic mRNAs are also modified; by capping on the 5’ end,
polyadenylation of the 3’ end, methylation and other modifications, see Figure 1.5.
The ends modification is necessary to export the mRNA outside the nuclear, to
prevent their degradation by exonucleases and to promote the translation.
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Figure 1.4: Elements of RNA secondary structure: helix, hairpin loop, bulge loop, interior
(internal) loop and multi-branched loop. Taken from [7].

tRNA-splicing, back-splicing, trans-splicing and self-splicing

Non-canonical splicing events have been observed in the three domains of life. In
Archaea, introns have been found on tRNA and rRNA genes for a long time. At least
two protein enzymes, an endonuclease (that cleaves RNA) and a ligase, are known to
be involved in RNA splicing in Arachaea. Some archaeal RNA precursors containing
introns present a Bulge-Helix-Bulge (BHB) structure that is recognised by the
endonuclease as a splicing site [8]. It is interesting to note that archeal RNA splicing
endonucleases and eukaryal tRNA splicing endonucleases are homologous, they have
similar sequences and are likely to share a common ancestor. Figure 1.6 illustrates a
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Figure 1.5: In eukatyotic cells, the mRNA resulting from the transcription contains
both coding (exon) and non-coding (intron) sequences. This figure represents the different
processes undergone by the mRNA before reaching the cytoplasm to be translated into a
protein. Taken from [2].

Figure 1.6: Schematic representation of Sulfolobus solfataricus tRNA-Trp, which contains
a 65 bases intron that is cleaved in the process of tRNA maturation and becomes a stable
circRNA. Adapted from [9].

well-known example of a tRNA intron, the Sulfolobus solfataricus tryptophan-tRNA
(tRNA-Trp). This process generates a tRNA and a circular RNA from the intron.

Back-splicing is a non-canonical splicing event between a splice down and an
up-stream splice acceptor (SA) in contrast to a downstream SA in conventional
linear splicing, see Figure 1.7. Back-splicing results in circular RNA that are more
stable and resistant to RNase R, an exoribonuclease that specifically degrades
linear RNA molecules in a 5’-3’ direction.

Trans-splicing generates a single RNA transcript from multiple separate precursor
mRNAs. There are two categories of trans-splicing events; intragenic, when a mRNA
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Figure 1.7: Linear RNAs are formed by covalent linkage between an upstream 3’ splice
site and a downstream 5’ splice site of pre-messenger RNA. Whereas circRNA are
characterized by a covalent linkage between a downstream 3’ splice site and an upstream
5’ splice site in a process known as backsplicing. Exons are numbered. Adapted from [10].

Figure 1.8: A) Intragenic trans-splicing: mRNA containing tandem duplications of
specific exons (green) are generated. B) Intergenic trans-splicing: chimeric mRNAs are
generated from pre-mRNAs originating from two different genes. Arrows indicate the
direction of transcription. Boxes are exons, and horizontal lines are introns. mRNAs have
a cap structure at the 5’ end and a polyadenylated tail at the 3’ end. Adapted from [11].

contains duplicated exon sequences and intergenic, that generate chimeric mRNAs
originating from two different genes, see Figure 1.8.

Self-splicing occurs for some introns that are capable of catalyzing their self-
splicing reaction. These introns are divided into two main classes: group I and group
II, that share different self-splicing mechanisms. More details about self-splicing
processes can be found in [12]. Some of these group I and group II introns can
form circular molecules, see Table 3.1.
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2.1 History
Computational genetics is an interdisciplinary field that uses computational and
statistical methods to analyze and interpret genomic data. This field has emerged in
the 1970s, it has experienced an explosive growth in the mid-1990s, driven largely by
the Human Genome Project and by rapid advances in DNA sequencing technology.
The first organism to have its entire genome sequenced was Haemophilus influenzae
in 1995 of 1,830,140 base pairs of DNA. The first human genome was released in
2001. Nowadays thousand of genomes have been sequenced, and with the sequencing
costs declining it now costs below 1,000$ to sequence one human genome. This was
made possible by the permanent progress made by the Next Generation Sequencing
(NGS) technologies, the availability of huge computer power and storage space.

15
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From a clinical perspective there is great potential for NGS in the management
and treatment of human health. Improvements in sequencing technologies has
enabled large scale projects, such as the 1000 genomes project whose aim was to
map the Human genome common variations [13]. It took them approximatively 5
years to sequence 2,504 individuals from 26 populations and characterised over 88
million variants [14]. Next generation sequencing technologies have also enabled
worldwide collaborative efforts in research on cancer, such as the International
Cancer Genome Consortium (ICGC) [15] and the Cancer Genome Atlas (TCGA)
project [16], whose aim is to catalogue the genomic landscape of thousands of
cancer genomes across many disease types.

2.2 Sequencing Technologies

DNA/RNA sequencing is the process of determining the order of nucleic acids of
a given fragment. The knowledge of sequences has become essential in numerous
fields such as medical diagnosis, biotechnology and forensic biology.

The first DNA sequences were obtained in the early 1970s using laborious
methods based on two-dimensional chromatography and DNA labelling [17]. DNA
sequencing was invented in 1975 and two different methods have been developed
independently, one by Gilbert team and the other by Sanger’s. Their principles
are different: Sanger’s approach is based on a selective enzymatic synthesis while
Gilbert’s is based on a chemical cleavage technique. Relying on several reviews
that have been done on sequencing technologies [18, 19], we present briefly the two
approaches and the different resulting technologies that are now widely used.

2.2.1 Sanger sequencing [20]

Sanger method used DNA polymerase to perform a primer extension by incorpo-
rating nucleotides coupled with radio-labelled nucleotides lacking a 3’-OH group,
dideoxynucleotides, whose incorporation ends the extension of DNA.

Four separate sequencing reactions are performed at the same time. All four
contain the standard nucleotides and the DNA polymerase. To each reaction is added
only one of the four dideoxynucleotides. The concentration in dideoxynucleotides
is approximatively 100-fold lower than the concentration in the corresponding
nucleotide, allowing for enough fragments to be produced while still transcribing
the complete sequence. Finally, in the reaction containing, for example, a guanine
dideoxynucleotide all the fragments end on a G. The resulting DNA fragments are
heat denatured and separated by size using gel electrophoresis. The sequence is
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inferred from the size of the fragments coming from the four separate reactions. A
number of improvements were made to Sanger sequencing in the following years.

2.2.2 Maxam and Gilbert sequencing [21]

Maxam and Gilbert technique differed significantly. Instead of relying on DNA
polymerase to generate fragments, radio-labelled DNA is treated with chemicals
which break the chain at the specific bases. Similarly to the Sanger method, four
reactions are necessary, in each of the reaction the chemical treatments break at
a small proportion of one or two of the four nucleotide bases (G, A+G,C, C+T).
The guanines (G), the purines (A+G), the cytosines (C), and the pyrimidines
(C+T) are modified using specific chemicals. The concentration of the modifying
chemicals is controlled to obtain in average one modification per DNA molecule.
The modified DNAs is then cleaved by hot piperidine at the position of the modified
base. Thus labelled fragments are generated, from the radio-labelled end to the
first break in each molecule. They are then denatured and separated by size using
gel electrophoresis. The sequence can be inferred from the presence and absence
of certain fragments in the different reactions.

At the beginning Maxam-Gilbert and Sanger methods were both quite popular.
However Maxam-Gilbert sequencing uses hazardous chemicals and has a technical
complexity that prohibits its use in standard molecular biology kits. Thus it was
finally the Sanger’s method that becomes more popular and that was use to scale-up
for high-throughput sequencing.

2.2.3 Next Generation Technology

There are three main companies offering second-generation sequencing platforms:
Roche, Illumina and Life Technologies. The Next Generation Sequencing, also called
the High Throughput Sequencing enables rapid generation of data by sequencing
massive amounts of DNA in parallel.

This parallelisation allowed for an increase of sequencing speed and a reduc-
tion of the costs.

The four following technologies are summarised in Table 2.1. They rely upon the
same two principles: polymerase-based clonal replication of single DNA molecules
spatially separated on a solid support matrix ( beads or planar surface) and cyclic
sequencing chemistries that allow the detection of nucleotides incorporation.
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Technology Sequencing Amplification Run
time

Yield
(Mb/run)

Read
length
(bp)

Error
rate
(%)

Sanger SBS ddNTP ∅ 2 h 0.08 ∼1,000 0.1-1
Roche 454 SBS Pyrose-

quencing
emPCR 10 h 500 400 1

Illumina
HiSeq

SBS RDT Bridge PCR 6 d 1,000,000 2x125 ≥ 0.1

SOLiD SBL emPCR 12 d 50,000 35-50 >
0.06

Ion Torrent SBS H+ emPCR 7 h 2,000 400 1
SMRT SBS fluores-

cence
∅ 0.5-2 h 500 ∼10,000 16

Table 2.1: Different NGS technologies characteristic. SBS = Sequencing-by-synthesis;
ddNTP = dideoxynucleotide; RDT = Reverse Dye Terminator chemistry; H+ = Hydrogen
ion detection; SBL = Sequencing-by-ligation; SMRT = Single Molecule Sequencing Real-
Time; emPCR = emulsion PCR; SE = Single-end read; PE = Paired-end read; Mb =
Megabases; bp = base pairs; d = day.

Roche 454 Sequencer (2005)

Roche was the first to enter the market. Its platform distinguishes from the others
with longer read lengths, approaching those of Sanger sequencing (700-1000 base
pairs (bp)). The sequencing method, the pyrosequencing is different from Sanger’s
and Gilbert’s. It is a bioluminiscent method that measures the release of inorganic
pyrophosphate by converting it into visible light using a serie of enzymatic reactions.
The sequence is inferred by measuring pyrophosphate production as each nucleotide
is added and then washed in turn over the template DNA, fixed to a solid phase.
The major difficulty posed by this technique is finding out how many of the same
nucleotide there are in a row at a given position. The intensity of light released
corresponds to the length of the homopolymer, but the noise produces a non-linear
readout above four of five identical nucleotides.

This technology was the first to allow the mass parallelisation of sequencing
reactions. Libraries of DNA molecules are first attached to beads via adapter
sequences. Then a water-in-oil emulsion PCR (emPCR) is performed to coat each
bead in a clonal DNA population. Ideally on average one DNA molecule ends up on
one bead, which amplifies in its own droplet in the emulsion, see Figure 2.1a and c.
These DNA-coated beads are then washed over a picoliter reaction plate that fits
one bead per well. Pyrosequencing then occurs as smaller bead-linked enzymes and
nucleotides are washed over the plate, and pyrophosphate release is measured.
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Illumina Techonology (2006)

Illumina uses an alternative amplification to the beads by creating DNA cluster
directly on the flow cell by bridge PCR, see Figure 2.1b and d. The advantage is that
cluster generation by bridge PCR has been fully automated and is therefore more
streamlined. The downside is that the success of cluster generation is not known until
sequencing has begun, this can result expensive if cluster generation fails. Sequencing
itself is achieved in a Sequencing By Synthesis (SBS) manner using fluorescent
reversible-terminator nucleotides, which cannot immediately bind further nucleotides
as the fluorophore occupies the 3’ hydroxyl position. These modified nucleotides
and DNA polymerase are washed over the primed, single-stranded flow-cell bound
clusters in cycles. At each cycle, the identity of the incorporating nucleotide can
be monitored with a sensor by exciting the fluorophores with appropriate lasers,
before enzymatic removal of the blocking fluorescent fragments and continuation to
the next position. This technology was the first able to produce paired-end (PE)
data, in which the sequence at both ends of each DNA cluster is recorded.

Life Technologies - SOLiD 5500 (2007)

Sequencing by oligonucleotide ligation and detection (SOLiD) system differ from the
Roche 454 and Illumina because it does not sequence by synthesis but by ligation,
using a DNA ligase. Instead of synthesising a complementary strand, they ligate
Di-base probes that are fluorescently labelled with 4 dyes. Each dye represent 4 of
the 16 possible di-nucleotide sequences. At the beginning of each step a primer of a
fixed size is used, then the complementary probe hybridizes to the DNA template
and it is ligated by the ligase. Then, after fluorescence is measured the dye is cleaved
off and the next complementary di-base probe is ligated. At the end di-nucleotides
at regular interval have been translated into a ‘colour space’. Next, the synthesised
strand is removed, a new primer of a different size is used, and the process is repeated.
By combining the result of the different steps, the sequence can be inferred. The read
length is limited to 75 base pairs but the two base encoding provides higher accuracy
than Illumina sequencing. SOLiD platform is also able to produce paired-end data.

Life Technologies - Ion Torrent

The Ion Torrent uses neither fluorescence nor luminescence. In a manner analogous
to Roche 454 sequencing, beads bearing clonal population of DNA fragments,
produced via emPCR are washed over a picowell plate, followed by each nucleotide
in turn. However, nucleotide incorporation is not measured by pyrophosphate release,
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Figure 2.1: NGS parallelized amplification. (a): DNA molecules being clonally amplified
in an emulsion PCR (emPCR). This is the conceptual basis underlying sequencing in 454,
Ion Torrent sequencing protocols. (b): Bridge amplification to produce clusters of clonal
DNA populations in a planar solid-phase PCR reaction, as occurs in Illumina sequencing.
(c) and (d) demonstrate how these two different forms of clonally-amplified sequences can
then be read in a highly parallelized manner. Adapted from [19].

but with the difference in pH caused by the release of protons (H+ ions) during
polymerisation. This technology allows for very rapid sequencing during the actual
detection phase. As Roche 454, due to the loss of signal as multiple matching
nucleotides incorporate, it is less able to readily interpret homopolymer sequences.

2.2.4 Third Generation Sequencing Technology

Third generation sequencing technologies work by reading the nucleotide sequence
at the single molecule level, they do not require fragmentation nor amplification.
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Thus they have the capacity to produce longer reads, and present biaises that are
different from those of the second generation technologies. However their error rates
are higher, and can be prohibitive for certain applications such as de novo genome
assembly. Nonetheless, when combined with other sequencing data, like Illumina’s,
they are usefull for assembly. Moreover, they are convenient for applications tolerant
to error rates, such as large structural variant calling.

Pacific Biosystems Real-Time - Single Molecule Sequencing

The Single Molecule Real Time (SMRT), is at this time, the most widely used third-
generation technology. During SMRT runs, DNA polymerisation occurs in arrays
of microfabricated nanostructures, which are essentially tiny holes in a metallic
film covering a chip. In each hole, a single DNA polymerase with a single molecule
of a single stranded DNA template is immobilized inside the illuminated region.
Incorporated fluorescent nucleotide provides detectable fluorescence that enables
the detector to identify the base being incorporated. The dye is then cleaved off by
the incorporation, the signal ends as it diffuses out of the illuminated region. PacBio
machines are capable of producing incredibly long reads, up to and exceeding 10
kb in length, which are useful for de novo genome assemblies.

Oxford Nanopore Technologies

Single-stranded RNA or DNA can be driven across a lipid bilayer through large ion
channels by electrophoresis. Moreover, passage through the channel blocks ion flow,
decreasing the current for a length of time characteristic to the nucleic acid. Oxford
Nanopore Technologies is the first company offering nano pore sequencers, GridION
and MinION, the latter of which is a small, mobile phone size USB device. Despite
the admittedly poor quality profiles currently observed, it seems to be a disruptive
technology in the DNA sequencing field, producing very long read sequence data
far cheaper and faster than was previously possible.

2.3 Data sequencing analysis

2.3.1 De novo assembly

De novo assembly is performed when the reference genome for the specie of interest
is not available or when one does not want to rely on a existing reference. The
aim is to assemble the reads into the full length genome.

Numerous assembly programs, called assemblers, have been developed. The
main bottleneck to assemble next generation short reads is the repetitive regions.
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If the reads are shorter than the repetition it becomes very difficult to detect and
locate a repetition. The paired-end sequencing can, to some extent, compensate for
read length. With these technologies the two extremities of genomics fragment are
processed to produce two reads that are paired, they come from the same fragment.
The distribution of the fragments length depends of the sequencing protocol. This
information can be usefull when there is an ambiguity for the position on the genome
of one of the reads. Several assemblers such as SOAPdenovo [22] and Velvet [23]
exploit paired-end sequencing to improve the assembly quality.

The traditional method used for de novo assembly, is the overlap graph, in-
troduced by Myers in 1995 [24]. This structure represents each read as a node
and overlapping reads are connected by a bi-directed edge. This approach was
used for the first assemblies but it is too slow for next-generation data. Indeed the
computation of pairwise overlaps has a quadratic complexity in the number of reads.

Another structure based on a similar idea is the De Bruijn graph [25]. A De
Bruijn graph is build for a given length k, then every (k − 1)-mer present in the
reads is represented by a node. And every k-mer is represented by an edge that
goes from the node corresponding to its longest prefix, to the node corresponding
to its longest suffix. Thus for an alphabet of size σ, the De Bruijn graph has at
most σk−1 nodes and σk edges, independently of the amount of reads. The right
choice of k depends on coverage, read length and error rates. Some algorithms, like
Velvet recommend to try different k to see which one performs better.

2.3.2 Alignment of sequencing reads

When the reference genome has already been established for the specy of interest,
a classical way to analyse NGS data is to find where the reads come with respect
to the reference genome.

The true location is not known beforehand and is found by solving an approxi-
mate matching problem - that is, searching for occurrences of the read sequence
within the reference sequence but allowing for some mismatches and gaps between
the two. In general, the most widely used error models are the Hamming distance,
which accommodates only for mismatches between the read and a chosen genomic
location. And the edit distance, which accounts for mismatches and indels. Other
errors models, such as affine gap costs for longer indels, are also possible, often at
the expense of a higher computational cost. Algorithms for sequence alignment then
produce a BAM file that contains the information about the alignment for each
read, position and size of the match, direction of the strand, unique or multiple
mapping, number of mismatches and indels, etc...
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There is a myriad of sequence alignment algorithms for next-generation sequenc-
ing, detailed reviews have been written [26, 27]. We briefly present the different
approaches and data structures used for alignment. Most of the algorithms follow the
seed-and-extend scheme, where one or more seeds are searched and then extended
to cover the whole query sequence. We can divide them in two categories, those
based on hash tables and those based on suffix tree or suffix array structures (these
two data structures are defined and explained in Chapter 7). An hash table is a
data structure that allows an efficient storage of couples (key, value). It also allows
a fast access to the data. Here, the keys are usually k-mers and the values are
positions of the sequence of interest, usually the reference genome.

The idea of algorithms based on hash tables like SSAHA [28] and SOAP[29]
is the same as in BLAST [30]. They consider subsequences of length k, called
k-mers. They use an hash table to store for each k-mer of the reference sequence
the list of their starting positions. Then they search in the hash table the hits for
each k-mer of the read sequence. Finally they try to extend those partial matches
into one global match for the read.

The algorithms based on suffix tree or suffix array structures use these index
data-structures to do efficient exact pattern matching and then built approximate
alignments. In BWA_SW [31] the authors choose to index the reference sequence
using a prefix trie and the query with a Direct Acyclic Word Graph (DAWG).
Then a dynamic programming is applied by traversing the reference prefix trie and
the query DAWG. They use some heuristics to be faster, at each step they only
keep the best matches (by default 3). In Bowtie [32, 33] the query is compared to
the FM-index (space efficient index data-structure presented in section 7.1) of the
reference allowing only a few differences with a backtracking process. In STAR [34],
they proceed by first searching for the maximal exact match by the search of the
maximum mappable seed in the suffix array of the reference sequence. This search
is first performed at the first base of the read, and then it is performed for the
unmapped portion of the read. The improvement of this search is that it detects
the splice junctions in a single alignment pass. Then in the second phase of the
algorithm, STAR builds alignments of the entire read sequence by stitching together
all the seeds that were aligned to the genome in the first phase.

Some of these algorithms have been recently improved using general purpose
computing on graphics processing units (GPGPU). In 2012 Klus et al. proposed
BarraCUDA [35], using the NVIDIA Compute Unified Device Architecture (CUDA)
software development environment, they parallelize the BWA’s algorithm. In 2013,
Luo et al. provided SOAP3-dp [36] that was at the time the fastest, almost 10
times faster than BWA.
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2.3.3 Data structures to store raw sequencing data effi-
ciently

Before alignment, the sequencing data produced by the NGS technologies is
usually stored using the FastQ format file that contains both the sequence and
its corresponding quality scores. After the alignment on a reference genome the
reads are stored in SAM/BAM format [37].

For the sake of uniformity, nowadays, when the alignment is not performed
by the NGS machine, the reads are still outputted in BAM format but there are
qualified as unmapped. This format was developed by the 1000 genomes project [13],
it requires around 1 byte (8 bits) per base pair. Recently, the CRAM format has
been proposed [38] and adopted by the Global Alliance for Genomes and Health
consortium [39]. It is compressed and reference-based, it stores only the differences
between the reads and the reference genomes, in average it requires around 0.35
bits per base, much less than the SAM format.

Very recently, they proposed a reference-free full-text index of the sequencing
reads from 2,705 individuals [40]. Their data structure is based on a Burrows-
Wheeler Transform (BWT) and the FM-index. They managed to store and index
922G reads, representing 87Tbp, into 5.21TB, thus using only 0.5 bit per base. The
sequences of the reads are compressed using a BWT, into only 0.46TB, the rest of
the space is used to store the metadata (read id, read sample, base quality).

During the summer 2016, I have had the opportunity to work on this project
with Thomas Keane team. Our purpose was to achieve a better compression of the
metadata. In this aim we proposed another sorting order for the reads, based on their
alignment. Thus similarly to the CRAM format, the metadata becomes reference-
based for the reads that align successfully, and it stores apart the unmapped reads.
On one chromosome for 250M reads, we achieve a compression around 2.3 bytes per
read, reducing by a factor of 2.5 the size of the metadata. This method achieves
a much better compression for the metadata, but it is based on a non-optimal
sorting of the reads for the BWT. Thus the BWT size increases by a factor of
1.5. As a result we estimated the size of the whole index to be around 2.5TB.
We did not have the opportunity to verify the scalability of this improvement,
because it implies to compute again the BWT of the whole data set, and that step
requires numerous computing resources. Thus this work might be incorporated
to other impending improvements.
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3.1 What are the issues with circular RNAs

3.1.1 General introduction

Circular RNAs (circRNAs) are widely expressed and evolutionary conserved RNAs
whose 5’P and 3’OH extremities are covalently linked in a circle. They have been
discovered in all domains of life. Some circRNAs are characterized by a non-
linear back-splicing event, but others result from lariats or tRNA splicing [9], see
Figure 3.1. Although the presence of circRNAs in human cells was established
since 1993 by Cocquerelle et al. [42], they were first regarded as transcriptional
noise. The prevalence and abundance of these circular RNAs in human cells has

27
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Figure 3.1: Diverse types of circRNAs. (A) Exonic circRNA (ecircRNA) and exon-intron
circRNA (EIcircRNA). Canonical splicing produces linear mRNAs while noncanonical
splicing (back-splicing) produces ecircRNAs. Particularly, if the intron is retained, an
EIciRNA will be generated. (B) Circular intronic RNA (ciRNA). Some lariat introns
excised from pre-mRNA by canonical splicing machinery could further form stable ciRNAs.
(C) tRNA intronic circRNA (tricRNA). tricRNAs derive from introns that are removed
during pre-tRNA splicing. Taken from [41].

only recently been revealed [43–45], with the emergence of high-throughput RNA-
seq data analysis. Corresponding experimental validation have proved that they
actually represent a class of abundant, stable and ubiquitous RNAs in animals.
Although the number of circRNAs identified vary widely among the studies it has
become clear that circRNA constitutes an abundant class of non coding RNA.
The function of only a few circRNAs has been elucidated some acts a miRNA
sponge [44, 46]. MiRNA sponges contain multiple target sites complementary to a
miRNA of interest. They neutralise the miRNA and prevent them from blocking
the translation of specific mRNAs. Other circRNAs can regulate the function of
RNA-binding proteins [47]. Recently Pamudurti et al. [48] provided strong evidence
for translation of some circRNAs in fly.
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Circularisation enhances circRNA stability, enabling them to be resistant to
RNase R exoribonuclease that degrades linear RNA. Their high abundance and
evolutionary conservation between species suggest important functions. Genome-
wide analyses indicated that the majority of circRNAs are abundant, conserved
across species and often exhibit cell-type or tissue specific expression, suggesting
potential regulatory roles [49]. Nonetheless, the function of the majority of them
remains unknown and there are few models of their mechanism of formation. Jeck
et al. [50] and also Lasda and Parker [51] wrote reviews about the diversity of form
and function of circRNAs, they summarise numerous previous studies and they
distinguished between five general types of RNA described in table 3.1.

Type RNA circle Organism Size
Circular RNA
genome

Viroids Pathogen of plants 250-400 nt

Hepatitis delta
virus (HDV)

Pathogen of hu-
mans

1.7 kb

Circular RNA in-
tron

Excised group I in-
trons

Some eukaryotes,
some bacterias,
some viruses

200-500 nt

Group II intron
circles and intron
lariats

Bacteria, some
archaea, and
some eukaryotic
organelles

Up to 3kb

Circular intronic
RNAs (ciRNAs)

Eukaryotes <200 nt to >3 kb

Excised tRNA in-
trons

Some archaea not known

Circular RNA pro-
cessing intermedi-
ate

rRNA precursors Some archaea not known

Permuted tRNAs Some algae and ar-
chaea

not known

Circular noncod-
ing RNA

Some snoRNAs Some archaea not known

RNase P Some archaea
Circular RNA
spliced exons

Exonic circular
RNAs

Eukaryotes <100nt to > 4kb

Table 3.1: Types and characteristics of circRNA. Adapted from [51].

A repository of circRNAs has been developed, named circBase [52], containing
all annotation information on circRNAs predicted and identified so far in eukaryotes.
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3.1.2 The challenges of identifying circRNAs

Detection of circRNAs depends on reads spanning the back-splicing junction and
therefore that map as non linear reads in the genome. The genome-wide discovery
of circRNAs is challenging because of biases in both RNA-seq experiments and
downstream analysis. Moreover circRNAs constitute a small fraction of reads in
common cell lines, around 1− 3%. Even low sequencing errors can generate false-
positive alignments to back-splicing junctions at sufficient levels that they seem
to represent truly expressed circRNAs. Then as explained by Szabo and Salzman
in their review on the detection of circular RNAs [10], algorithms designed to
minimise common sources of false positives can cause systematic ‘blind spots’
that lead to incorrect results. Quite recently, in 2016, Hansen et al. [53] used
common human RNA-seq datasets derived from Hs68 fibroblast, two non-treated
(SRR444655 and SRR444975) and two RNase R treated samples, and thus enriched
in circRNAs, (SRR444974 and SRR445016) to compare five different detection
algorithms, see Table 3.2. Their aim was to evaluate the levels of bona fide and
false positif circRNAs based on RNase R resistance. The five algorithms rely on
the identification of two inverted matches coming from the same read. However
they implement distinct alignment methodologies and heuristics, leading to highly
divergent results, see Figure 3.2.

In total by merging the five pipelines 5075 unique circRNAs were identified,
of these only a modest overlap of 854 circRNAs (16,8%) was observed between
all five algorithms.

To assess the level of false positive circRNAs, they compared the number of
supporting reads in the RNase R digested samples to the non-treated samples.
They required at least 5-fold increase of the number of supporting reads in RNase
R treated samples. Based on this criteria they exhibit between 12% (MapSplice
and CIRCexplorer) and 28% (CIRI) mis-annotation. 2043 circRNAs were found
by only a single algorithm, more than half of them were RNase R sensitive and
thus defined as false positives.

The specificities of each algorithm differ in speed, Random Access Memory
(RAM) usage, annotation dependance etc ... They also use different aligners and
different heuristics, finally their results are dramatically different. Hansen et al. [53]
thus suggest combining the predictions of at least two algorithms to obtain better
results, they recommend using circRNA_finder and find_circ.
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Algorithm Read
type

aligner junctions considered Filtering rules blind spot

MapSplice [54] PE
SE

Bowtie No restrictions on
splice sequence or
intron length

Reads: assign single
best alignment for
each read using
a score based on
mismatches, base call
quality and junction
score (based on
distribution model)

Junctions where
sampling or alignment
properties differ from
training set used to
estimate regression
model parameters

find_circ [44] SE Bowtie2 GT-AG canonical
splicing site and
anchors within 100kb

Reads: unique anchor
alignment; anchor
extension completely
aligns read with <3
mismatches
Junctions: unambigu-
ous breakpoint

circRNAs comprising
small exons or using
non-canonical splice
signals

Segemehl [55,
56]

PE
SE

Segemehl No restrictions on
splice sequence or
intron length

Reads: alignment
must cover ≥ 80% of
read

circRNAs lacking
high-quality seeds or
circRNAs in genes
with homologous
exons

circExplorer
[57]

PE
SE

TopHat
Fusion

UCSC KnownGene
annotated exons
within single gene

Reads: Unique align-
ment

circRNA using
unannotated exons or
comprising multiples
genes

circRNA_finder
[58]

PE
SE

STAR Annotated exons
within gene or
intergenic GT-AG;
donor and acceptor
within 100kb

Reads:<4 mismatches;
unique alignment

circRNAs expressed at
moderate to low level

CIRI [59] PE
and
SE

BWA-
MEM

GT-AG canonical
splicing site

Junctions: Filter cir-
cRNAs in homologous
genes or repeat re-
gion and those lack-
ing paired chiastic clip-
ping signal

circRNA using non-
canonical splice sig-
nals

Table 3.2: circRNA detection algorithms, from [10]. SE: single end, PE: pair ends.

3.1.3 circRNAs in Archaea

Detection of circRNAs in Archaea is supposed to be easiest as splicing events
occur only for non coding RNA. In archaea, circRNAs are mainly described as
tRNA introns, rRNA introns, rRNA processing intermediates and snoRNA. Usually
archaeal introns contain a BHB structure, see Figure 1.6 for an example. The splicing
endonucelases recognize the BHB structures for cleaving, then archaeal introns
undergo circularisation by an RNA ligase. These mechanisms have been studied from
a long time [60] and more recently by Salgia et al. [8] in Haloferax volcanii. They
showed that in vitro the H. volcanii ligase can circularize both endonuclease-cleaved
introns, and synthetic substrates. Danan was the first to combine experimental
and computation approaches to map circular transcript in an archaea, Sulfolobus
solfataricus [9]. They compared the results of RNA-seq experiment enriched in
circRNAs by a RNase R treatment with a non-treated RNA-seq experiment. They
require for a circRNA to be covered by circular reads from both experiments.
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Figure 3.2: Prediction of circRNAs by five different prediction algorithms. Taken
from [53].

3.2 Our motivations

3.2.1 Identification of a putative ligase

Our team, the Laboratoire d’Optique et Biosciences, studied the mechanisms of
replication and repair of DNA in archaea. Thus they analysed the two open reading
frames encoding proteins previously predicted in Pyrococcus abyssi, Pab2002 and
Pab1020. They showed that while Pab2002 is indeed a DNA ligase, Pab1020 has
no effect on DNA but has an RNA ligase activity [61]. Therefore, they discovered a
putative RNA ligase family (InterPro code IPR001072) whose founding member
is the Pyrococcus abyssi reading frame, Pab1020. A Pab1020 monomer consists of
fours domains: the amino terminal (N-term), the catalytic nucleotide transferase
(NTase), the dimerization (Dim) and the carboxy-terminal (C-term) domains.

Biochemical and structural studies [61] had revealed that unlike others DNA and
RNA ligases, Pab1020 displays a homodimeric structure where two monomers are
related by non-crystallographic dyad symmetry, see Figure 3.3. Moreover Becker et
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Figure 3.3: The structure of Pab1020 coloured by chain.

Figure 3.4: RNA and DNA ligation assays with WT and mutant K95G of Pab1020
RNA ligase. Standard ligation reactions containing 10pmol Cy5-RNA or -DNA molecules
(18 mers) and 200 pmol RNA ligase Pab1020 were incubated 90min at 50◦. Reaction
products were resolved on denaturing PAGE and a 700nm scan of the gel was performed
on Licor Odyssey Infrared Imager. While no activity was observed with DNA substrate,
Pab1020 RNA ligase circularized an RNA oligoribonucleotide as shown on the gel with
the apparition of a lower band corresponding to circular RNA molecules. Expectedly, a
control reaction with an inactive enzyme (mutant K95G) presented no lower band.

al. [62] showed that Pab1020 only has a circularization activity on single stranded
RNA and no activity on single stranded DNA nor on the different RNA/DNA
homo- hetero- oligonucleotide duplexes tested. They did the same experiments
with a mutant of Pab1020 in which the catalytic nucleotide transferase domain
was modified by a mutation at position 95, the lysine is mutated into a glycine.
In these experiments, with small synthetic RNAs oligonucleotides (18 mers) the
circular product migrated ‘faster’ than the linear substrate, see Figure 3.4. No
circular products were observed with the mutant, thus confirming the specific
circularization was indeed catalyzed by Pab1020 .
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Figure 3.5: RNA binding between Pab1020 RNA ligase (0.2 to 4.5 µM) and the in
vitro transcripts (0.4 µM) corresponding to C/D Box RNAs SR4 (�) and SR29 (N) and
5S rRNA (H) was analyzed by EMSA. A fraction of protein-RNA complex formed was
plotted as a function of input protein. Insert: On the EMSA gel, the amount of the higher
molecular weight bands, corresponding to Pab1020 -nucleic acid complexes, increased as a
function of the protein concentration

3.2.2 In vivo identification of circRNAs

Becker et al. have performed RNA Immunoprecipitation Protocol (RIP) assays
to obtain RNAs that interact with Pab1020 , they identified the most abundant
RNAs, the 5S, the 16S and the 23S rRNAs. Among them they choose the smaller
because it was easier to study. Moreover by relying on Danan [9] study of Sulfolobus
solfataricus transcriptome, they choose to include in their study two C/D Box RNA
(sR4 and sR29). They have assayed the ligation activity of Pab1020 RNA ligase
using the linear fluorescent Cy5-RNA transcripts for three RNAs. Fluorescent RNA
substrates were prepared by in vitro transcription with T7 RNA polymerase capable
of incorporating Cy5-labeled nucleotide analogs. The electrophoretic mobility shift
assays (EMSA) indicated that the three transcripts formed specific RNA-protein
complexes at near stoichiometric conditions, see Figure 3.5.

To further identify circular RNA molecules, they used RNase R exoribonuclease
treatment to discriminate between circular products and linear substrate RNAs.
They observed that the fluorescent transcript corresponding to P. abyssi 5S rRNA
became partially resistant to RNase R treatment after incubation with Pab1020 ,
whereas the linear substrate RNA was totally degraded, see Figure 3.6.

They further confirmed the RNA ligation activity of Pab1020 on the 5S rRNA
and the Box C/D RNAs SR4 and SR29 by using inverse RT-PCR on circular RNA
matrix. In the inverse RT-PCR, outward facing (inverse) primers are used, this way,
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Figure 3.6: In vitro transcript of 5S rRNA was incubated (right panel) or not (left panel)
with Pab1020 RNA ligase (WT) for 120min at 55◦C. After incubation, recovered RNAs
were treated or not with exoribonuclease RNase R for 120min at 37◦C before analysis on
a 7% acrylamide 8M urea gel.

Figure 3.7: Schematic illustration of RT-PCR experiments on linear and circular RNAs
with divergent primers to distinguish linear RNAs from circular RNAs products after
incubation with Pab1020 RNA ligase. Only reverse transcription and PCR reactions on a
circular RNA template will lead to the total amplification of the substrate sequence.

the reverse transcription is expected to amplify only circular templates, whereas only
a small fragment of linear RNA template remains, see an illustration on Figure 3.7.
Indeed, they observed a full-length RT-PCR product (indicated by the asterisk
in Figure 3.8) for the three selected RNAs. It confirms RNA circularization by
Pab1020 . As negative control, in absence of RNA incubation with Pab1020 RNA
ligase, the full-length amplification products corresponding to circular molecules
(5S, SR4, SR29) were not observed (Figure 3.8).

These results from RNase R treatments and inverse PCR amplifications confirmed
that the RNA ligase encoded by Pab1020 gene catalyses the intramolecular ligation
of RNA molecules.
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Figure 3.8: complementary DNA (cDNA) generated using outward facing primers on
RNAs previously incubated (+) or not (-) with Pab1020 RNA ligase and in the present
(+) or absence (-) of RNase R were separated by gel electrophoresis. A full-length product
attesting the amplification of circular RNA molecules, indicated by the asterisk, was
observed for 5S rRNA (128bp), Box C/D SR4 RNA (68bp) and Box C/D SR29 RNA
(66bp). Circularization was observed only in the presence of Pab1020 RNA ligase.

3.2.3 RNA-seq experiments

As their biochemical studies confirmed that Pab1020 acts as RNA ligase, Becker et
al [62] further investigated the substrate specificity of this protein in the cell. To do
so, four different RNA samples were analyzed using experimental and computational
RNA sequencing pipeline, we further explain and justify in chapter 4, the Figure 3.10
gives an overview of the whole process.

Four different RNA-seq experiments were conducted:

A1) Pulldown ligase: RIP assay followed by an RNA-seq,

A2) Pulldown ligase: replicate of experiment A1,

B) Pulldown ligase + RNase R treatment: RIP assay followed by an RNase R
treatment to enrich in circRNA before the RNA-seq,

C) Total RNA + RNase R treatment: RNA extraction followed by an RNase R
treatment and an RNA-seq.

In the first three experiments (A1, A2 and B) the samples were obtained by
co-immunoprecipitation of RNA ligase Pab1020 after formaldehyde crosslinking
between Pab1020 and cellulars RNAs, RIP assays. In the fourth experiment, total
RNA sample was extracted from a stationary phase culture of P. abyssi. To enrich
the total RNA fraction in circRNAs, an RNase R, that specifically degrades linear
RNA molecules in a 3’-5’ direction, was used in experiments B and C.

The protocol used for sequencing is Ion Torrent PGM RNA-seq, it is divided
into three main steps illustrated in Figure 3.9:
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• Fragment the whole transcriptome RNA;
Partially fragment the RNAs using RNase III enzyme, that cleaves inter-
or intramolecular regions of double-stranded RNA [63]. This resulted into
formation of RNA fragments that were approximately 100 -150 bp.

• Construct the whole transcriptome library;
Hybridize and ligate the adaptors on the RNA, then perform reverse transcrip-
tion to obtain cDNA. The cDNAs obtained are then purified and amplified
by PCR.

• Prepare the template and start the run

Figure 3.9: Life Technologies’ protocol: RNAs were fragmented by RNase III. Then
the adaptors hybridize and are ligated on the RNA. cDNAs are obtained with a reverse
transcription. These cDNAs are fixed on beads, on average one per bead, then they
are amplified by an emulsion PCR. The beads are said to be enriched, because several
identical RNA are fixed into the same bead. Finally, the monoclonal beads, those having
only identical sequences are then used for sequencing. Adapted from [64]

Typical sequencing runs yielded approximatively to 400 000 reads with a read
size of 80 to 90 base pairs. Our aim was then to analyse these data to identify
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Figure 3.10: The pipeline for identification of circularization junctions using RNA
samples isolated from P. abyssi cells using IonTorrent semiconductor-based sequencing
technology is shown. Identical computational approach was used for the four samples.
Obtained linear and circular RNA molecules were fragmented at least once (indicated
by a double arrow in green) using RNase III treatment. Following reverse transcription,
samples were sequenced and obtained reads were aligned to the P. abyssi reference genome
using Blastn. Reads were considered circular if two permuted matches covering the whole
read were detected.

circular reads. The comparison of the different experiments would then help validate
the identification, with the enrichment expected with the RNase R treatment.
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We have seen that a lot of algorithms have been developed to identified circular
RNAs (see Table 3.2), but their results are dramatically different. Thus, we decided
to propose our own pipeline to identify circular RNAs, it does not have to be
particularly fast, nor complex. We are studying archaea RNA-seq thus we do
not consider linear splicing events in our analysis. The whole pipeline and the
different python codes used can be found here http://www.lix.polytechnique.

fr/Labo/Alice.Heliou/circRNA/. The Figure 4.1 presents an overview of the
different steps of our analysis pipeline.
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using BLASTn
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Selection of putative junctions

Putative circular junctions
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Figure 4.1: Overview of our analysis pipeline

4.1 Reads mapping

4.1.1 Alignment

There are multiple modern algorithms for reads mapping, we have presented the
most popular in section 2.3.2. However as we want to be as exhaustive as we can, we
decided to use BLAST [30], the oldest one, with very little heuristic. This algorithm
is quite slow but it allows us to account for every local match of every reads.

We consider every reads obtained from the Ion Torrent sequencing machine,
even those having low quality score and most of all, those that do not match
on the genome (reads that cover the circular junction are not expected to align
well on the genome). The reference genome used for the alignment is Pyroccocus
abyssi GE5 (GenBank: NC_000868.1, 1,765,118 base pairs). Read mapping was
performed using Blastn (version 2.2.26+) [65] with the Megablast option using
the following default parameters:

• word size at least 11,

• gap opening penalty of 5,

• gap extending penalty of 2,

• mismatch penalty of 3 and match reward of 1,
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• expect value threshold of 10, this parameter describes the number of hits with
the score of the match one can ‘expect’ to see by chance. The lower the expect
value, or the closer it is to zero, the more ‘significant’ the match is. 10 is the
default value, it means that, it is expected to see 10 matches with a similar
score simply by chance,

• maximum number of outputs is 250 alignments per query.

The maximum number of allowed outputs was not limiting our analyses, as the
highest observed number of alignments for any given query was 182.

The command line to run this alignment step is provided in Code 4.1, four
variables have to be set by the user, the number of threads, the output file in xml
format, the input file in fasta format and the index of the reference genome.
./blastn -task megablast -outfmt 5 -word_size 11 -gapopen 5 -

gapextend 2 -penalty -3 -num_threads $NB_THREAD -out $DIR$OUTPUT"
.xml" -query $DIR$OUTPUT".fasta" -db $DIR$REF".db"

Code 4.1: Command line for blastn (version 2.2.26+).

4.1.2 Detection of putative circular reads

When analysing BLAST output we distinguish between four cases, the first one is
the classical one, the match cover almost entirely the whole read, we say that this
read maps linearly. The second and the third cases concern circular reads. To detect
putative circular reads in sequencing data, all reads having two matches (from the
Blastn output) that together covered the whole read, were selected. We consider
only the inverted matches, see Figure 4.2 for an illustration, with no overlap on
the reference genome that are located within a 10,000 nucleotides window on the
genome sequence. The simplest case is when two matches cover almost entirely
the whole read, without overlapping, and have inverted matches on the genome.
However there is another case that we need to take into account, is when a match
cover a large part of the read but more than two nucleotides and less than eleven
(our minimum word size parameter) are missing to cover the read. BLAST was
not able to search for this small part in the genome, because it is smaller than the
word size parameter. Thus, we look ‘naively’ for the small match in a window of
10,000 nucleotides such that the two matches will be inverted. If we find a match,
then the read is considered as circular. The last case occurs when the read does not
map in a linear way nor in a circular way. Then we consider this read as unmapped
and we do not take it into account in further analyses.
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Figure 4.2: Illustration of the three different cases that we distinguish when mapping a
read.

This data processing step results into two sequence alignment data files in BAM

format that correspond to linear and putative circular reads.

The command line to run the detection of putative circular reads is provided

in Code 4.2. There are five arguments to provide in this order: the blastn output

in xml format, the two output files in bam format, the reference genome file and

the fasta file containing all the reads from the sequencing machine.

python blast_analysis.py $OUTPUT".xml" $OUTPUT"_outc.bam" $OUTPUT"
_outl.bam" $REF $OUTPUT".fasta" $REF_SIZE$

Code 4.2: Command line to run the detection of putative circular reads.
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4.1.3 First results

The mapping step led to the identification of approximately 80,000 putative circular
reads. We note that as it was already stated by Szabo et al. [10], the RNase R
treatment is not entirely efficient. Indeed we still obtained a large amount of linear
reads in the RNase R treated samples, see Table 4.1. Two RNA-seq experiments
were performed with the same protocol A) Pulldown ligase, we decided to merge
these results. To count the number of covering reads, we divided by two the sum
of reads covering the position in the two samples. Thus, we ignore the positions
covered by only one read. For the number of mapped reads we put the average of
both samples. We are aware that using the average of two samples is not ideal, but
it allowed us to give the same weight at each protocol for the analysis.

Experiments Circular reads Linear reads # of
mapped
reads

% of mapped
reads

% of
genome1

% of mapped
reads

% of
genome1

A) Pulldown ligase 8.3 6.8 91.7 50.3 247,060
B) Pulldown ligase
+ RNase R treat-
ment

14.7 2.7 85.3 8.7 44,413

C) Total RNA +
RNase R treatment

11.4 2.8 88.6 7.3 284,856

1 The genome size of P.abyssi is 1.76Mbp of which at least 79.5% is transcribed.
The portion of the genome (% of genome) covered by the mapped reads is
indicated for each sample.

Table 4.1: The summary of RNA-seq results and RIP assays using the Pab1020 antibody

In this table we see that eleven to fifteen percent of reads obtained using a
RNAse R enrichment were classified as ‘circular’ using our computational criteria.
These circular reads covered only a minor part of the transcribed genome (2-3%),
therefore indicating that the combined experimental and computational criteria are
strict. We also analyse the overlap of the putative reads found in each experiment,
the results are in Table 4.2. We observe that a large number of RNase R resistant
reads interact with Pab1020 . Indeed 41% of the positions covered by circular reads
in total RNA samples treated with ribonuclease R are also covered by circular reads
after RIP assays using Pab1020 antibodies. However the reverse is not true, the
pulldown appears to be less specific to circular RNA as only 14 and 10 % of the
positions covered by circular reads after RIP assays using Pab1020 antibodies are
covered by RNase R resistant circular reads, respectively from B and C.
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These observations imply that almost half of the identified circRNAs interact
with Pab1020 in the cross-linking experiments. Moreover either the RIP assay was
not selective enough or the ligase Pab1020 interacts with some RNAs that are not
circRNAs. Both of these hypotheses explain why the genome is much more covered
by the reads from experiment A than B and C, see Table 4.1 .

A B C
A - 35.4% 41%
B 14.2% - 23.7%
C 9.69% 41.6% -

Table 4.2: Overlap of the different experiments in percentage. 35.4% of the positions
covered by a putative circular reads of B is covered by a putative circular reads of A. A,
circular reads after RIP assays using Pab1020 antibodies; B, circular reads after RIP
assay and ribonuclease R treatment; C, circular reads in total RNA samples treated with
ribonuclease R.

We are aware that our experimental and data analysis protocols may be prone
to unwanted artefacts. Hence, to establish more selective criteria for circRNA
identification we merged the sequencing data from all of our experiments to identify
the maximum number of circular RNAs.

4.2 Selection of circular junctions

We observed that the circular junctions were frequently shifted by one to three
nucleotides between the different reads. This may either reflect the slight hetero-
geneity in choosing the transcription initiation site, or, alternatively, the presence
of an identical base in 5’ and 3’ termini of a transcript that cannot be solved
during the read mapping.

Thus, we grouped together those putative circular reads where the circular junc-
tions were located within three nucleotides. In order to be classified as circular, we
only selected junctions that were identified at least in two independent experiments
and supported by more than three individual reads that may have different start
and end positions. We also requested that at least half of the putative circular reads
that aligned entirely inside a given putative junction support the junction.

With these strict and multiple constraints, we identified in P. abyssi a total of 133
individual circRNA loci (Figure 4.3) supported by 28,279 circular reads (Figure 4.4).

The command line to run the identification of junctions is provided in Code 4.3.
It uses three small codes, the first one takes as input the SAM file of the circular
reads, the size of the genome and the genbank file of the genome; it contains its
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Figure 4.3: Number and percentage of different functional classes of loci containing
circular junctions identified in our sequencing experiments.
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Figure 4.4: Number and percentage of the reads (total 28,279) supporting circular
junction of the different functional groups.

annotations. It outputs a file containing for each locus, the junctions present and
the number of reads sustaining the junction. Then we use a second code, to select
only the junctions corresponding to at least three reads and coming from at least
two different samples. Finally, the last code, allows us to apply the last selection
criteria; it requires that at least half of the putative circular reads that aligned
entirely inside a given putative junction support the junction.

The result file contains the list of the identified junctions with their loci and
positions on the genome.
samtools view $OUTPUT$"_outc.sorted.bam" > $OUTPUT".tmp"
python stat_circ.py $OUTPUT".tmp" $OUTPUT"_circ.txt" $GBK_REF

$GBK_NEW $REF_SIZE
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python analyse_circ.py $OUTPUT"_circ.txt" > $OUTPUT"_file.txt"
python analyse_file.py $OUTPUT"_file.txt" $OUTPUT $OUTPUT".out"

Code 4.3: Command line to run the identification of circular junctions.

4.3 Identification of functional categories of cir-
cular RNAs

4.3.1 Repartition of circRNAs in the different RNAs func-
tional categories

The 133 P. abyssi circRNA loci represent five distinct functional groups: C/D
Box RNA, non-annotated small RNAs, protein coding RNA, tRNA and rRNA
(Figure 4.3). Among these, circular reads were over-represented for 38 circular C/D
Box, out of 59 identified by the Lowe Lab in P.abyssi genome [66]. From the 46
identified tRNA in P.abyssi genome, 5 were covered at least partially by a circular
junction: PABt05 (tRNA-His), PABt10 (tRNA-Leu), PABt35 (tRNA-Trp which is
known to contain a C/D box intron), PABt39 (tRNA-Leu) and PABt44 (tRNA-Met).

Although 71 loci out of 133 loci correspond to protein coding mRNAs, these
were supported only by 3 % of the analyzed reads (Figure 4.4). This approach
also led to the discovery of 13 new circular RNAs, marked as non-annotated (NA)
in Figures 4.3 and 4.4. The 6 last junctions are non overlapping junctions found
on the loci of the 16S rRNA and the 23S rRNA. The constraints applied in our
computational pipeline, allow attaining highly selective circRNAs identification.

Numerous circRNAs, including non-coding RNAs, i.e. C/D Box RNA, tRNA-
intron and rRNA, were also observed in previous similar RNA-seq study [9]. They
studied non treated and RNase R treated RNA-seq samples obtained with a Genome
Analyser II (Illumina), from Sufolobus solfataricus. Their criteria were to observe
two inverted matches that cover the read, and to have at least one circular read
supporting the junction from each sample. They identified circRNAs in 37 loci.
Among them three are rRNA genes, 5S, 16S and 23S, five are tRNAs, tRNA-Trp,
tRNA-Lys, tRNA-Met, tRNA-Pro and tRNA-Ser, those eight junction were from far
the most represented junctions they have identified. They also found circRNAs in 12
snoRNA, 11 C/D Box and 1 H/ACA Box and in 7 other non coding RNA. The rest of
circRNAs were found in protein coding genes or in intergenic regions, see Figure 4.5.
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Figure 4.5: Functional characteristics of 37 genes encompassing circular transcripts
identified in Danan et al. study [9].
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Figure 4.6: Percentage of the reads supporting RNA circular junctions (supportive
circular reads) of the different RNA categories. ‘Other circular reads’ refers to a minority
of putative circular reads that fulfil all the computational criteria without supporting the
junctions identified. Non-Annotated (NA) refers to previously non-annotated loci.

4.3.2 Enrichment in circular reads with a RNase R treat-
ment

We noticed that circRNAs corresponding to the different functional categories
did not behave identically in RNase R-enrichment experiments. Strikingly, the
relative portion of circular reads markedly increased after RNase R treatment
from 35% to 86% for C/D Box RNAs and was constantly high, around 88% , for
tRNAs (Figure 4.6). The fact that RNase R treatment induces an enrichment in
the amount of reads supporting circularization junctions in pull-down and total
RNA samples further indicates that Pab1020 RNA ligase specifically associates
with circular RNA loci in P. abyssi cells.
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For the three additional functional groups, this RNase R enrichment for circRNAs
was less obvious (Figure 4.6). Note that for the specific case of the tRNA-Trp, the
circularization of the encoded-intron occurs simultaneously during the splicing
process and linear intron intermediates is not expected to occur. For others RNAs
(NA, protein coding and rRNA), the amount of circular reads is too low compared to
linear reads for a same locus to allow the enrichment visualization. However, three
non-annotated circRNAs (NA7, NA12, NA13 in Table 4.3) out of thirteen showed
some enrichment supported by significant amount of reads, see Table 4.3. These
three non-annotated circRNAs do not have C/D boxes but they have the same size
as C/D Box RNA, between 60 and 70 nucleotides. They are strongly supported,
with at least 24 reads supporting the junctions when merging the samples. Thus
we are confident that they are not false positives.

4.3.3 Repartition of the circular junctions in the different
experiments

The Venn diagram, in Figure 4.7, illustrates the repartition of the 42 enriched (in
white) and the 71 non-enriched (in black) identified circular junctions, amongst the
different experiments and functional group. In each circle we show which of the 133
identified junctions would have been identified in the experiment analysed separately.

1 tRNA, 3 NA,

32 C/D,

1 tRNA, 3 rRNA,

1 NA, 15 Protein

2 rRNA,

1NA,

11 Protein

6 C/D,

3 NA

32 Protein

4 Protein
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∅
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Figure 4.7: Venn diagram summarizing the results of our RNA-seq experiments. A,
circular reads after RIP assays using Pab1020 antibodies; B, circular reads after RIP
assay and ribonuclease R treatment; C, circular reads in total RNA samples treated with
ribonuclease R. White numbers refer to the categories of the 42 junctions with increased
enrichment in RNase R experiments, see Table 4.3.



4. Data analysis 49

Even though we require for every junction to be sustained by reads coming from
at least two different experiments, this does not imply that they are identified in at
least two experiments separately. Indeed, it might occurs that some reads support a
junction but do not allow for the identification of the junction by themselves in their
experiment. For example if there are many reads in their experiment that support
an overlapping junction, then the considered junction might not be identified.
Interestingly, 131 of the identified circular loci (98%) were found in a RNA ligase
pull-down fraction, suggesting that Pab1020 is necessary for RNA circularization
in P. abyssi cells. As expected a vast majority of the enriched identified circular
junctions, 36 out of 42, are identified in each experiment taken separately. This
enhances our confidence in their identification as circular junctions.

4.3.4 The special case of rRNAs

A high number (∼ 38,000) of circular reads were mapped to ribosomal RNAs (5S,
7S, 16S and 23S rRNAs) but in most cases, localization of the precise position of
the junction point from inverted reads was far from evident, possibly reflecting
the length and highly structured nature of these RNAs that hinders activity of
the reverse transcriptase. However, in the case of the 5S rRNA, we identified 170
inverted reads indicating a specific circularization event between the 5’ and 3’
extremities of 5S rRNA (with a ten-nucleotide margin). As 5S rRNA interacted with
Pab1020 in cell-free extracts and its circular form has been previously observed [9],
this enzyme may participate in 5S rRNA pre-processing via a circular intermediate.
This was previously proposed in A. fulgidus and S. solfataricus for 16S and 23S
rRNAs, whose precursors present the BHB motif recognised by the archaeal splicing
endonuclease [67].

4.4 Comparisons of our methods with other al-
gorithms

In recent studies [10, 53], different algorithms for identifying circular RNAs have
been compared. As detailed in section 3.1.2, they are highly divergent with only
16.8% of identified circular reads from human RNA-seq data are identified by the
five algorithms. Hansen et al. [53] finally suggest combining the predictions of
circRNA_finder [58] and find_circ [44] to identify circular RNA.

Thus we decided to compare our result with their results on different kind of
data. Our method is not adapted to large genomes with splicing such as the Human
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Gene Transcript start Transcript end Circle start Circle end Circle size # reads in A1 # reads in B2 # reads in C3 enrichment4
sR46 57320 (asRNA) 57597 57374 57441 67 867 292 899 1.05
PABsnRNA44 (sR45) 63444 (ea) 65712 64244 64306 62 15 8 28 7.08
PABsnRNA21 (sR14) 65157 (asRNA) 65282 65218 65278 60 49 16 107 2.87
sR22 63444 (ea) 65712 65333 65397 64 206 17 255 2.41
sR32 67489 (ea) 68026 67951 68012 61 143 25 140 1.97
PABsnRNA3 (sR21) 126284 (ea) 127802 127067 127128 61 9 0 3 15.73
PABsnRNA10 (sR2) 230598 (asRNA) 230710 230632 230696 64 11 2 12 1.94
sR49 235431 (sRNA) 235516 235439 235502 63 35 5 61 1.29
PABsnRNA33 (sR13) 245269 (ea) 246692 245974 246035 61 7 2 8 3.86
sR31 257459 (ea) 258141 258066 258127 61 55 19 100 2.16
PABsnRNA35 (sR29) 318111 (utr5) 318226 318118 318182 64 64 3 35 2.81
PABsnRNA32 (sR4) 473162 (utr5) 473254 473175 473236 61 1 0 3 52.2
PABsnRNA38 (sR58) 539780 (ea) 541847 541770 541831 61 80 14 111 2.15
PABsnRNA40 (sR39) 543825 (sRNA) 543920 543855 543917 62 10 0 2 4.6
PABsnRNA31 (sR20) 553132 (ea) 554479 553656 553721 65 11 1 14 2.67
PABsnRNA12 (sR26) 631448 (sRNA) 631675 631518 631581 63 73 7 181 5.74
PABsnRNA39 (sR60) 631448 (sRNA) 631675 631584 631644 60 218 21 436 7.49
PABsnRNA13 (sR44) 636650 (sRNA) 636775 636702 636762 60 31 5 36 13.58
PABsnRNA17 (sR7) 647252 (ea) 648632 648165 648228 63 4 2 8 43.0
sR25 675393 (asRNA) 675502 675408 675468 60 4 1 5 62.5
PABsnRNA36 (sR55) 910377 (utr5) 910573 910497 910569 72 26 7 27 4.91
PABsnRNA27 (sR35) 949138 (ea) 951058 949199 949261 62 10 2 24 2.83
sR56 960247 (sRNA) 960405 960309 960370 61 30 15 108 5.31
PABsnRNA25 (sR3) 991432 (sRNA) 991508 991446 991505 59 13 1 24 13.74
PABsnRNA1 (sR24) 1024201 (ea) 1028004 1026074 1026133 59 8 10 22 6.93
sR53 1042208 (utr5) 1042365 1042251 1042319 68 2508 720 6159 1.11
PABsnRNA46 (sR38) 1065022 (ea) 1067559 1065728 1065791 63 14 2 9 5.14
PABsnRNA28 (sR37) 1195774 (sRNA) 1195856 1195780 1195842 62 20 1 19 2.32
PABsnRNA23 (sR1) 1209257 (sRNA) 1209332 1209270 1209329 59 21 4 54 36.27
PABsnRNA34 (sR59) 1260087 (utr5) 1260197 1260126 1260195 69 16 1 4 3.21
sR41 1292340 (ea) 1293389 1292356 1292415 59 8 0 4 5.63
PABsnRNA5 (sR11) 1397141 (asRNA) 1397236 1397126 1397188 62 15 1 22 28.62
PABsnRNA29 (sR8) 1403609 (sRNA) 1403742 1403662 1403723 61 3 0 20 113.04
PABsnRNA42 (sR36) 1408146 (ea) 1410562 1409130 1409196 66 20 2 10 9.73
PABsnRNA41 (sR48) 1468599 (ea) 1468802 1468649 1468712 63 26 9 32 1.23
PABsnRNA6 (sR6) 1536318 (asRNA) 1536409 1536388 1536449 61 2 0 2 4.33
PABsnRNA45 (sR34) 1754729 (ea) 1756032 1755871 1755930 59 57 11 112 3.02
PABsnRNA9 (sR12) 1754729 (ea) 1756032 1755929 1755991 62 13 5 15 6.88

PABt35 (sR40) 1330325 (ea) 1330647 1330513 1330584 71 4768 1228 3217 0.89

NA7 621251 (ea) 625587 622461 622526 65 26 4 19 8.39
NA12 1011089 (sRNA) 1011286 1011096 1011158 62 101 19 104 1.91
NA13 1673288 (ea) 1676136 1674520 1674581 61 11 1 12 5.36
1 Number of circular reads supporting the circularization junction in the pulldown ligase samples.
2 Number of circular reads supporting the circularization junction in the pulldown ligase + RNAse R treatment sample.
3 Number of circular reads supporting the circularization junction in the total RNA + RNAse R treatment sample.
4 Enrichment in reads supporting the circularization junction from the pulldown ligase samples to the total RNA + RNAse R treatment sample. Given by the
ratio PC

PA
with PA = number of circular reads supporting the junction

number of reads aligned in the junction for the pulldown ligase samples and PC is given by the same formula for the total RNA + RNAse R
treatment sample. When the ratio is not defined we wrote 0.

Table 4.3: List of 42 highly significant circular RNA molecules interacting with Pab1020
RNA ligase in cells.

genome. So we did not try our method on the datasets used by Hansen et al. We
used circRNA_finder and find_circ on our datasets, and we also created artificial
circular reads to simulate datasets and observe the performance of each algorithms.

4.4.1 Comparison on our datasets

The first thing to note is that their algorithms are much more faster, mainly because
of the aligner used, they run in a few minutes while ours run take a few hours.
Then we made the comparison sample per sample, so that our comparative analysis
of the different experiments does not interfere.

The second thing to observe is that circRNA_finder’s output is highly redundant,
it does not distinguishes between two highly similar circular junctions. For example
a junction that starts at position 65,332 and ends at position 65,397 is considered as
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experiment function circRNA_finder find_circ our pipeline

A1

Total 427 (247 distinct) 24 191
C/D Box 29 2 39
tRNA 1 0 7
rRNA 67 8 12

non annotated 10 2 23
others 140 12 110

A2

Total 1319 (751 distinct) 86 161
C/D Box 31 2 38
tRNA 3 0 6
rRNA 121 18 8

non annotated 16 4 19
others 580 62 90

B

Total 110 (79 distinct) 7 122
C/D Box 15 1 27
tRNA 0 0 4
rRNA 33 4 7

non annotated 6 0 7
others 25 2 77

C

Total 850 (541 distinct) 51 197
C/D Box 33 1 39
tRNA 1 0 4
rRNA 180 38 8

non annotated 12 4 14
others 62 8 132

Table 4.4: Number of identified junctions per algorithm and experiment.

a different junction from the one starting at position 65,332 and ending at position
65,398. Thus to make a pertinent comparison we grouped together junctions having
the same extremities within a margin of 3 nucleotides at each extremity.

On the contrary, find_circ identifies very few junctions, see Table 4.4. This is
due to the fact that find_circ restricts itself to canonical splicing junctions having
the motif ‘GT-AG’, see paragraph 1.2.4.

The results of our pipeline and circRNA_finder look quite similar in Table 4.4.
Indeed they identify comparable number of C/B box RNA. However, when looking
at the intersection in the prediction our pipeline presents a very small overlap with
the two other detection algorithms, Figure 4.8.

The overlap between find_circ and our pipeline is dramatically weak. This is
due to the fact that our criteria are very different, they rely mostly on identifying
inverted matches presenting the canonical splicing junctions, while we rely only on
the matches and on the ratio of circular reads that support the junction.
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The overlap between find_circ and circRNA_finder is better, indeed 60 to
80% of the junctions identified by find_circ are identified by circRNA_finder. But
their overlap is very thin in number of junctions in comparison to the number
of junctions identified by circRNA_finder.

The question that arises is why are our results so different from the other
algorithms. Our explanation is that we first identify the same circular reads as
circRNA_finder but we reject the junctions, because they do not fit our criteria.
Our more stringent criterion is the one requiring that at least half of the circular
reads mapping inside a junction support the junction. This criteria reject the areas
where circular reads overlap and there is no clear consensus for the junction to
identify. In this case we identify a junction only if it is supported by a majority of
circular reads, otherwise we do not identify any junctions. Inversely, in these areas,
circRNA_finder can identify dozen of circular junctions even thought there might
have some ambiguity. Indeed we see in Table 4.4, that circRNA_finder identify up
to 180 junctions in rRNAs, while we identify at most 12 junctions in rRNAs.

To confirm our hypothesis we decided to study artificial data, in which we can
estimate the risk of obtaining overlapping circular reads.

4.4.2 Comparison on artificial datasets

We generated artificial datasets, first without simulating sequencing errors. We
uniformly and at random picked a position in the genome sequence and simulate
circular RNA starting at this position. The length was chosen uniformly and at
random from 20 to 1,000. Then for each one of this simulated RNA, we simulated
10 copies having different fragmentation cut. When the length was above 100
we considered only a portion of size 100 overlapping the junction. This way we
obtained a set of 10,000 simulated circular reads, representing 1,000 different
junctions. Then we generated similar datasets by considering different maximal
RNA length; 100 and 10,000.

The number of mapped reads and circular junctions identified are summarised
in Table 4.5. It is very interesting to observe that the read length has a large impact
in the ability of identifying a junction. circRNA_finder is better when the RNAs
are not too short (we observe that it misses 95% of the simulated circular RNAs
of length less than 50 nucleotides), while our pipeline misses a lot of junctions
when the RNAs are too long. Indeed when the reads are too long, above 1,000
in average, they are likely to overlap as the genome is only 1,700,000 nucleotides
long and we consider 1,000 junctions. Thus our pipeline identified the circular
reads but not the circular junctions.
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Figure 4.8: Venn diagrams summarizing the results of detection algorithms on four
different samples. In white are the number of circular RNA that overlap one of 133 junctions
we have identified, in black are the rest of the circular RNA. A, circular reads after RIP
assays using Pab1020 antibodies; B, circular reads after RIP assay and ribonuclease R
treatment; C, circular reads in total RNA samples treated with ribonuclease R.

We indeed observe that in all cases our pipeline identified much more circular
reads than circRNA_finder. These results on simulated datasets strongly support
the absence of false positive in the junctions we have identified. Our pipeline is
more accurate in identifying circular reads, we mapped more than 90% of the reads
simulated. Then we are more selective in the identification of the circular junctions,
thus we have a strong confidence in the junctions we have identified in P. abyssi.

We reproduced the same kind of analyses with wgsim [68] to simulate reads
with errors, we used default parameters; error rate of 2% and mutation rate of 1%.
We restrained ourselves to reads having a length up to 1,000, because wgsim does
not simulate reads of length 10,000. The table 4.6 shows the number of circular
reads mapped and the number of junctions identified.
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max read length 100 1,000 10,000

circRNA_finder number of junctions 605 958 986
number of circular reads mapped 2,352 5,220 5,258

our pipeline

number of junctions 967 863 508
number of circular reads mapped 8,649 8,349 8,344
number of linear reads mapped 1,202 737 692

unmapped reads 149 914 964

Table 4.5: Comparison of circRNA_finder with our pipeline using error-free simulated
circular reads of different size. For circRNA_finder we only know the number of reads
that are mapped as circular.

read length 100 1,000

circRNA_finder number of junctions 941 937
number of circular reads mapped 5,123 5,059

our pipeline

number of junctions 867 776
number of circular reads mapped 7,258 6,531
number of linear reads mapped 492 607

unmapped reads 2,250 2,862

Table 4.6: Comparison of circRNA_finder with our pipeline using error simulated circular
reads of different size. For circRNA_finder we only know the number of reads that are
mapped as circular.

We note that now the read lengths are not random, they are fixed. This is the
reason why circRNA_finder achieves much better results for short reads. These
reads are all of length 100, so none of them are too short for circRNA_finder
to identify them.

Our pipeline is less robust than circRNA_finder to errors. Indeed circRNA_finder
identified roughly the same number of circular RNAs. While we identified 10% less
circular RNAs and around 20% less circular reads in comparison to the error-free
study. However we still identified much more circular reads than circRNA_finder.

Thus a futur work direction to improve our pipeline is to strengthen the
robustness to sequencing errors. To do so we could change the parameters of
BLAST alignment, but that will also increase the time consumption, or we could
try using another aligner.
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5.1 Study in other species

5.1.1 Our motivations

Our results on P.abyssi provide evidences of the function of Pab1020 as a ligase
that interacts with circRNAs. The protein Pab1020 is a member of the conserved
Rnl3 family of RNA ligases that are predominantly found in hyperthermophiles
(archaea, bacteria) and halophiles.

We now aim to prove the in vivo implication of a RNA ligase of the Rnl3 family
in the formation of circRNAs. To do so we need a genome having a Rnl3 ligase
and in which there are genetic tools available to inactivate a gene. Thermococcus
barophilus, an hyperthermophilic archaea, fill these criteria. The Laboratoire de
Microbiologie des Environnements Extrêmes in Brest will inactivate the gene coding
for its Rnl3 ligase, with the pop-in/pop-out method [69]. Thus we will study the
transcriptomes of T.barophilus in the wild type and devoid of Rnl3 protein.

55
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Organism name Rnl3 protein
Hyperthermophilic achaea Thermococcus barophilus, wild type yes
Hyperthermophilic achaea Thermococcus barophilus, inactiva-

tion of Rnl3
no

Halophilic archaea Natrialba magadii yes
Halophilic archaea Haloferax volcanii no
Hyperthermophilic bacteria Aquifex aeolicus yes
Halophilic bacteria Halorhodospira halophila yes

Table 5.1: Different organisms for which we plan to do RNA-seq experiments and
analysis.

Moreover we decided to study the transcriptome of other organisms, we chose
four other organisms, one hyperthermophile and three halophile, expressing or
not a Rnl3 protein, see Table 5.1.

Haloferax volcanii presents a particular profile since circular introns have
previously been identified during pre-tRNA-Trp processing whereas the Rnl3 family
enzyme is absent [70].

The questions we are interested in are:
• Is there a correlation between circRNAs characteristics and the Rnl3 ligases ?

• Do the organisms without Rnl3 ligase have different kind of circRNAs ?
This project has been drawn up in collaboration with two other teams; the

Laboratoire de Microbiologie des Environnements Extrêmes in Brest and the
Laboratoire de Bioénergétique et Ingénierie des Protéines in Marseille. Indeed
the selected species are extremophiles and some of them require special materials
to be grown. In Marseille they grew Aquifex aeolicus and sent us the cells ready
for RNA extraction, we stored it at -20◦C. The Laboratoire de Microbiologie
des Environnements Extrêmes in Brest is working on the gene inactivation of
Thermococcus barophilus. We have ordered Natrialba magadii and Halorhodospira
halophila culture pellets at DSMZ, we received them dehydrated and we followed
their protocols for cell cultures. The culture of Natrialba magadii went flawlessly,
but we were not able to grow Halorhodospira halophila . This organism is anaerobic,
and we may need the help of a specialised laboratory to grow it. As for Haloferax
volcanii, this organism was already studied in our lab, thanks to Roxane Lestini,
the culture protocol is well-established thus we obtained the cells easily.

5.1.2 Cell culture and growth
Natrialba magadii

Natrialba magadii was grown in a medium composed as follow :
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• NaCl 200g/L,

• Na2CO3 18.5g/L,

• Yeast extract 20g/L,

• Sodium citrate dihydrate 3.4g/L,

• KCl 2g/L,

• MgSO4, 7H2O 1g/L,

• MnCl2, 4H20 3.6.10−4g/L,

• FeSO4, 7H2O 2.10−5g/L,

• Casamino Acids, 7.5g/L.

After resuspension of the dehydrated pellet, the cells were incubated in the medium
at 37◦C with an agitation of 150rpm.

To measure the cell growth we measured the Optical Density (OD) at 600nm of
the culture medium, using a nanodrop. This measure give us a value that depends
on the total cell density, dead or alive. At the beginning of the culture the cells
grow slowly, the OD increase is small. Then they reach the exponential growth, they
divide actively and the OD increase is important. Finally, they reach the saturation
of the medium, they can not grow anymore. The time scale of this scheme depends
on the organism, and on the culture conditions. We wanted to collect the cells
in the middle of their exponential growth phase. We measured regularly the cell
density every 2 hours, in order to obtain a curve as complete as possible we start a
culture (culture 1) in the morning and another one (culture 2) 8h later, this way
the measures will be complementary. We obtained the growth curve in Figure 5.1,
we see that the exponential growth starts between 8 and 16hours and ends around
28h, thus we collected the cells at 22hours of culture.

Halorhodospira halophila

We tried to grow Halorhodospira halophila with different pH from 7 to 8.5 and
temperatures from 25◦C to 37◦C. The cultures were permanently illuminated.
Moreover we used anaerobic atmosphere generation bags and argon gaz to remove
as many oxygen as we could. We were surprised to see that in previous study [71]
the authors used a temperature of 42◦C while DSMZ advices to use 25◦C. We
tried to stay as close as possible to that was recommended by DSMZ but none of
our culture conditions was a success. We think that this might be because of our
anaerobic conditions that were not strict enough. 1L of the medium is composed of:
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• KH2PO4: 250mg,

• CaCl2x2H2O: 25mg,

• NH4Cl: 0.40g,

• MgCl2x6H2O: 50mg,

• NaCl: 90g,

• Na2SO4x10H2O: 10g,

• Na2CO3: 3g,

• Na-succinate: 1g,

• Yeast extract 0.25g,

• NaHCO3: 14g

• Solution A: 1mL

• Na2S: 1g

1L of Solution A is composed of:

• FeCl2x4H2O: 1.8g,

• CoCl2x6H2O: 250mg,
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Figure 5.1: Growth curve of Natrialba magadii, realised by measuring the OD of the
cultures at different time of growth .
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• NiCl2x6H2O: 10mg,

• CuCl2x2H2O: 10mg,

• MnCl2x4H2O: 70mg,

• ZnCl2: 100mg,

• H3BO3: 500mg,

• Na2MoO4x2H2O: 10mg.

Haloferax volcanii

Haloferax volcanii was grown on the YPC medium (yeast peptide complex) at 45◦C
with 150rpm. 1L of YPC medium is composed of:

• purified H2O: 300mL,

• 30% salt water solution: 600mL,

• 10X YPC solution: 100mL.

2L of the salt water solution contains:

• NaCl: 480g,

• MgCl2, 6 H2O: 60g,

• MgSO4, 7 H2O: 70g,

• KCl: 14g,

• Tris HCl pH 7.5 (1M): 40mL.

204mL of the solution of 10X YPC contains:

• purified H2O 156mL,

• Yeast extract 10.2g,

• Peptone 2.04g,

• Casamino Acids 2.04g,

• KOH (1M) 3.6mL.

Similarly as for Natrialba magadii, we have studied the cell growth in order
to collect them during the exponential phase. We obtain the curve showed in
Figure 5.2. The exponential growth starts around 10hours of culture and ends
around 35hours, thus we collected them at 23hours.
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Figure 5.2: Growth curve of Haloferax volcanii, realised by measuring the OD of the
cultures at different time of growth .

5.1.3 Further perspectives

We do not know yet what kind of circRNAs we will find in these organisms. We
expect to obtain numerous circular reads mapping on the rRNAs as we have observed
in P.abyssi. This was also observed by Danan et al. [9] in Sufolobus solfataricus,
we note that they also found C/D box circRNAs. The genome of this organism
does not present a Rnl3 family protein. However, we found a protein that has
20% of identities with a Rnl3 ligase. Although it is annotated as a DNA-ligase,
we suspected it to be a RNA-ligase, at first, Pab1020 was also wrongly annotated
as a DNA-ligase. We present some perspectives on further studies depending on
the results obtained in the different organisms:

• For the organism having a Rnl3 family protein, we expect to obtain similar
results to what we obtain in P.abyssi; numerous small circRNAs of size around
60 to 70 nucleotides. If we indeed identify this kind of circRNAs or other
kinds of circRNAs it will be interesting to perform RIP assays to confirm the
function of the Rnl3 family protein in the circularization of the RNAs.

• For Thermococcus barophilus it will be of particular interest to compare the
identified circRNAs in the wild type and in the gene inactivated strain. We
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expect to see more circRNAs in the wild type, this would strongly support the
implication of the Rnl3 family in the circularization process of circRNA.
Otherwise, if we do not observe significant differences in the two RNA-
seq analysis, then it might be because the Rnl3 protein is only indirectly
implied or because another mechanism is performing the circularization. A
complementary analysis would then be to study the gene expression level.
This will give us more insight in the impact of the gene inactivation on the
metabolism of the organism.

• Our expectations on Haloferax volcanii are different as we already know
from previous study [8] that there are some circRNAs although it does not
have a Rnl3 family protein. Then our aim is to identified these circRNA and
compare them with the results of our other studies. Another mechanism, still
unknown, is performing the circularization and we are interested in analysing
the resulting circRNAs.

5.2 De Bruijn graph, de novo analysis

The previous algorithms to identify circRNA all work with the same idea, the
mapping of the reads on the genome. Thus, they strongly rely on the genome.
However for numerous organisms the reference genome is not available or it has
been established but it is not highly reliable, because the organism is not a
popular case of study.

A novel approach is to develop a reference-free method to identify circRNAs.
The idea is to build the De Bruijn graph of high-quality reads and then to focus on
the cycles to detect circRNA. It is important to consider only high-quality reads,
because the De Bruijn graph can be misleading when the error rate is important.
The De Bruijn graph of parameter k is a graph in which all (k − 1)-mers present in
the reads are nodes and all k-mers present in the reads are edges. We weight each
edge by the number of times their corresponding k-mers occur in the reads.

Our first results look promising. We use small datasets, by considering only the
reads that maps over the loci of some circRNAs. The Figure 5.3 shows the graph
obtained for the reads of the experiment A1, pulldown ligase, that map over the
sR46 locus, that we have identified as circular. The correlation between the graph
and the genome sequence is explained in the Example 5.2.1. In this example we
can easily retrieve the sequence of the circRNA. We did not deeply elaborate the
method, so our prototype does not scale well and we were not able to analyse the
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whole genome. However, the idea is attractive as it could allow to identify circRNAs
without having prior knowledge of the genome of the organism.

This could be interesting for incoming work on identifying circRNAs from RNA-
seq.

Figure 5.3: De Bruijn graph with parameter k=31, for the reads of the experiment
A1 (pulldown ligase), we selected only the reads having a phred quality above 10. We
represented the edges supported by at least three 31-mers. In red is the cycle corresponding
to the circular RNA, in yellow are the nodes corresponding to the annotated start and
end of the RNA. In blue is the part that precedes the circular RNA and in green and
black are parts the graph due to an error in some reads.

Example 5.2.1 The RNA sR46 is annotated from 57,375 to 57,438 in P.abyssi
genome. The sequence of the genome from nucleotide 57,323 to nucleotide 57,440 is:
GTGCTAAAATCAGGTTCTTCTCAAATCAAACATCTTCAAGCTTAAGCTCAGGGCAA
TGAGGAATGAATCCAATGCTGAGCAAAGGCAATGATTGACCCCAGAGTGGCCGAGC
CTCTAT

The part in orange corresponds to the annotated C/D box, it is flanked by red
letters that correspond to the circular RNA found with the De Bruijn graph. The
part in blue corresponds to the preceding region, it is present in the graph due to
linear reads overlapping the junction, there are not any reads overlapping the graph
on the right. The parts in green and black of the graph are due to an error in some
reads where a T is missing. There is only one edge missing from the black and the
green part of the graph to be connected, but the corresponding 31-mer is present
only twice in the data thus it is not represented.
green part: CCAGAGTGGCCGAGCCTCTA
black part: GGGCAATGA
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6.1 Definition and notation
Sequences. Let Σ be an alphabet - a finite set of symbols, of size σ. An element a
of Σ is called a letter. Finite sequences of elements of Σ are called words, sequences,
texts or strings. The length or size of a word w is the number of its elements
(with repetitions), we denote it |w|. The i-th element of a word w is denoted by
w[i] and i is its position in w. We denote by w[i . . j] = w[i] . . w[j] the factor of
w that starts at position i and ends at position j. If i > j, by convention, the
word w[i . . j] is the empty word, of length 0, denoted by ε. A factor v of w is a
proper factor of w if 0 < |v| < |w|.

Let w be a word of length n, and u a word of length m, 0 < m ≤ n. We say that
there exists an occurrence of u in w or that u occurs in w, when u is a factor of w.
Every occurrence of u can be characterised by a starting position in w. Thus we say
that u occurs at the starting position i in w when u = w[i . . i+m− 1]. Conversely,
we say that the world u is an absent word of w if it does not occur in w.
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66 6.1. Definition and notation

A prefix of w is any word v such that v = ε or v is a factor of w starting
at position 0. A suffix of w is any word v such that v = ε or v is a factor of
w ending at position n − 1.

We define the reverse of a word w = w[0] . . w[|w| − 1], by wr = w[|w| −
1] . . w[0], we note that (wr)r = w.

To concatenate two words, we use the operator ‘·’. For two words w = w[0] . . w[n−
1] and w′ = w′[0] . . w′[m− 1], we define the concatenation of w and w′ as w · w′ =
w[0] . . w[n − 1]w′[0] . . w′[m − 1].

This operator allows us to define a power of a word. The square of a word is
the concatenation of two copies of the word, w2 = w · w. More generally, for every
positive integer k, a word w to the power of k is denoted wk .

Graphs. A graph G = (V,E) consists of a set V = {v1, · · · , v|V |} of nodes and
a set E ∈ V 2 of edges, such that (u, v) is an edge from node u to node v, for all
u 6= v ∈ V 2. A graph is directed if (u, v) is distinct from (v, u). We call (u, v) an
outgoing edge of node u and an incoming edge of node v. For every node v ∈ V , we
define the indegree of v to be the number of its incoming edges and the outdegree
of v to be the number of its outgoing edges. We call the degree of a node v the
sum of its indegree and its outdegree.

A graph is labeled when we attach a label `(v) to each node v ∈ V and/or to
each edge e ∈ E. A label is a set of symbols, usually letters, or an integer. A path
P = v1 . . v|P | is a sequence of nodes such that (vi, vi+1) ∈ E for all 1 ≤ i < |P |.
A cycle is a path of length at least 3 from a node to itself. A graph that does
not contains cycles is called acyclic.

A tree is an undirected graph G = (V,E) in which any two nodes are connected
by exactly one path. In a rooted tree, one node is selected as the root node, then
for each node u the parent of u is the node connected to u in the path from the
root to u. Every node, except the root, has exactly one parent. A child of a node
u is a node whose parent is u. An internal node is a node with at least one child,
while a leaf is a node without children. Rooted tree may be directed, either making
all its edges point away or towards the root; we will use the latter case.

A trie is a rooted tree, where every edge is labeled by a character. For any
internal node v, the edges leading to its children must have distinct labels.
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6.2 Minimal Absent Words

The number of absent words of length at most n is exponential in n. However, the
number of certain classes of absent words is only linear in n. This is the case for
minimal absent words (also called minimal forbidden words), that is, absent words
in the sequence whose all proper factors occur in the sequence [72]. An upper bound
on the number of minimal absent words is known to be O(σn) [73], where σ is the
size of the alphabet. This bound is known to be asymptotically tight [74, 75].

Definition 6.2.1 An absent word u, |u| ≥ 2, of w is minimal if and only if all its
proper factors occur in w. We do not consider minimal absent words of length 1
because they correspond to absent letters, we rather use a minimal alphabet such
that every letter occurs at least once in w.

MAWs are closely related to repeated pairs.

Definition 6.2.2 A repeated pair R in a word w is a triple < i, j, u > such that i
and j are distinct starting positions of word u in w. Moreover we have that:

• R is left maximal if and only if w[i− 1] 6= w[j − 1] or i = 0 or j = 0.

• R is right maximal if and only if w[i + |u|] 6= w[j + |u|] or i + |u| = |w| or
j + |u| = |w|.

• R is maximal if and only if it is left maximal and right maximal.

We will now present the relation between minimal absent words and maxi-
mal repeated pair.

Lemma 6.2.1 ([76]). Let aub be a minimal absent word of w, with a, b letters and
u a word. Then there exist i and j such that (i, j, u) is a maximal repeated pair.

Proof. If aub is a minimal absent word, then by definition au and ub occur in w; let
i− 1 be the starting position of au and j be the starting position of ub. We have
that u occurs in w at positions i and j. aub is absent from w, so the occurrence
of u at position i is not followed by b, thus (i, j, u) is a right maximal repeated
pair. Similarly, the occurrence of u at position j is not preceded by a. Consequently
(i, j, u) is a maximal repeated pair.
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In 2009 Pinho et al. [76] presented an algorithm to compute minimal absent
words based on the analysis of maximal repeated pair. Our approach is very similar
to theirs; our main contributions have been to achieve an O(n) time complexity and
to provide different algorithms and implementations. The different computation
algorithms are presented in chapter 8 and 9.

The set of minimal absent words contains all the information contained in the
input sequence. Indeed Mignosi et al [75, 77], have proved that one can retrieve the
input sequence from its set of minimal absent words. The algorithm run in time linear
to the size of the trie representing the set of minimal absent words, thus in O(n),
with n the size of the input sequence. For more details about this approach and the
problem of retrieving a sequence from its set of minimal absent words inspect [78].

6.3 Applications

6.3.1 In Biology

Biologically, absent words may present a spectrum of information. They can be
sequences of nucleotides which are hardly tolerated because they negatively influence
the stability of the chromatin or other functional genomic conformation; they can
represent targets of restriction endonucleases (oligonucleotides which are particularly
common in bacterial and viral genomes); or, more generally, they may be short
genomic regions whose presence in wide parts of the genome are not tolerated
for less known reasons.

Short words of nucleotides may be systematically avoided in large genomic
regions for very different reasons. For example, they play important signaling roles
that dictate their appearance only in specific positions, such as consensus sequences
for the initiation of transcription and replication.

There has been a large number of studies on the biological significance of absent
words. One of the first studies suggested that absent words can be used for choosing
artificial DNA sequences for molecular barcodes; for species identification and envi-
ronmental characterisation based on absence; and for identifying potential targets
for therapeutic intervention and suicide markers [79]. The most comprehensive
study on the significance of absent words is probably [80]; where the authors suggest
that the deficit of certain subsets of absent words in vertebrates may be explained
by the hypermutability of the genome. Moreover, the analyses in [81] support the
hypothesis that minimal absent words are inherited through a common ancestor, in
addition to lineage-specific inheritance. In [82], by computing minimal absent words
in four human genomes, it was shown that, as expected, intra-species variations
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in minimal absent words were lower than inter-species variations. Silva et al. [83]
highlighted the existence of three minimal words in the Ebola virus genomes which
are absent from the human genome. The authors suggest that the identification
of such species-specific sequences may prove to be useful for the development of
both diagnosis and therapeutics.

Minimal absent words have also been used for phylogenic reconstructions [84].
Crochemore et al. [85] proposed a linear time sequence comparison using minimal
absent words. Rahman et al. [86] conducted an experimental study to analyse five
different indices using minimal absent words as a similarity measure.

Moreover, in [87], the authors showed that minimal absent words correspond
to fine-tuned evolutionary relationships suggesting that they can be more widely
used as markers for genomic complexity. Very recently Vergni and Santoni [88]
studied the nature of absent words, and introduced the high order absent words,
they are absent words whose mutated sequences are still absent words. They showed
these words have some peculiar structural features.

6.3.2 In Computer Science

Minimal absent words have been used in different purposes in computer science
[89–91]. We will not describe them in details but just give an idea of one of the
applications that has been thoroughly studied, the data compression.

This data compression approach was introduced by Crochemore et al. [92] in 2000;
they called it the Data Compression with Antidictionaries (DCA). They showed that
their compression method runs in practice in linear time, although the worst case
scenario is quadratic, and it allows a fast decompression. In 2002, Crochemore et al.
[93] improved the compression ratio by considering almost absent words as absent
and by separately coding their occurrences as exceptions. The DCA method has
been developed in several directions, using suffix trees or suffix arrays data structures
(see chapter 7 for the definition of these data structures) and achieving different
trade-off between compression ratio, memory requirements and decompression time
[94–98]. The latter achieves an asymptotic optimality in compression for stationary
ergodic sources - whose statistical properties are time independent and can be
deduced from a single, sufficiently long, random sample of the process.



70 6.3. Applications

6.3.3 Our motivation

Although minimal absent words have been studied for quite a long time, efficient
computation algorithms are still missing. Some papers are purely theoretical and
do not provide an implementation and others are applied to real data but they
do not use efficient implementation. We wanted to close this gap by providing the
first implementation of linear time and space algorithms to compute all minimal
absent words for an input sequence. The different implementations we propose
provide different trade-off of memory consumption and computation time, from
a fast parallel algorithm [99] to an implementation in external memory that can
run on a desktop computer [100]. They are detailed in chapter 8.
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7.1 What are indexing data structures

Indexing data structures are small data structures (usually smaller or around the
same size than the input text) used for large texts when one wants to solve many
tasks in optimal time. In sequence analysis, indexing data structures are mostly used
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for pattern matching. Once the data structure is built, pattern matching queries
can be performed in optimal time as many times as wanted.

The first indexes created were based on the factors of the sequence. However
a sequence of size n, has an O(n2) number of factors. Thus only a small part
of the factors can be indexed. Originally, the suffixes have been chosen: indeed
there are only n − 1 suffixes in a sequence of size n, and all the factors can be
retrieved as prefixes of a suffix.

A suffix tree is a tree in which we store all the suffixes of a sequence. The
sequence has a terminator # added at the end such that every suffix ends with #.
To each suffix of the sequence corresponds a leaf, such that the suffix is the label
of the path from the root to the leaf. The size of such a structure is O(n log n),
this is too much for large sequences.

In 1973, Weiner [101] introduced the compact suffix tree, which is the most
popular and the oldest indexing data structure. He showed that it can be constructed
in linear time. Few years later McCreight [102] proposed an improvement of the
construction algorithm. In 1995 Ukkonen [103] devised a linear-time algorithm for
constructing a compact suffix tree. The main steps of the algorithm are still highly
similar to those presented by Weiner, but the algorithm is conceptually more intuitive
and easy to understand, see 7.2.3 for a short overview of this construction algorithm.

In the early 1990s Gonnet [104] et al. and Manber and Myers [105] proposed
another data structure, called the suffix array, a space efficient alternative to the
compact suffix tree. Shortly after, Burrows and Wheeler introduced the famous
Burrows-Wheeler Transform (BWT) [106], that is used, amongst others, in
the bzip2 compression algorithm. These two structures are closely related, they
are often combined together to form the FM-index [107].

7.2 The different variations of suffix trees

7.2.1 Suffix trees

To introduce this data structure, we give a definition adapted from the one Gusfield
gave in his well-known book [108]. Usually, in order to distinguish a suffix from any
other factor of the sequence, we append at the end of the sequence a terminator
(also called sentinel character) #, that is not part of the alphabet. The terminator
allows to easily distinguish the suffixes from the others factors of the sequence.
Indeed the suffixes are the only factors ending with the terminator. The suffix tree
is a tree in which we store all the suffixes of the sequence. This way every leaf
corresponds to exactly one suffix of the sequence.
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Definition 7.2.1 A suffix tree T of a sequence S of length n fulfills the following
properties:

• It has exactly n leaves numbered from 0 to n− 1;

• Two outgoing edges of a node have edge-labels beginning with different
characters;

• The concatenation of the edge-labels on the path from the root to a leaf i is
equal to the suffix i S[i . . n− 1].

Definition 7.2.2 A suffix tree is a trie if every edge label is composed of exactly
one character, see an example in Figure 7.1.

A suffix tree is compact if every internal node has at least two children. Then
edge-labels can contain several characters, see an example in Figure 7.3. We called
implicit nodes the nodes that are collapsed into the multi-characters edge-labels.
The nodes that are present in the data-structure are called explicit.

We briefly present some important properties of suffix trees.

Property 7.2.1 For every factor w of S, there is exactly one node v ∈ V such that
w is the label of the path from the root to v. Then v is said to be the corresponding
node of w and w is the corresponding factor of v.

Proof. For simplicity we consider a suffix trie. The proof is identical in a compact
suffix tree, except that the nodes can be implicit.

Let w be a factor of S, let i be one of its starting position, then by definition
there is a leaf, such that the label of the path from the root to this leaf is the suffix
S[i . . n− 1]. We denote v the |w|th node on this path. The label of the path from
the root to v is S[i . . i+ |w| − 1] = w.

The unicity of the node v comes directly from the definition of the suffix tree.
Two outgoing edges of a node have edge-labels beginning with different characters,
thus for each factor w there is only one path starting from the root and labeled
w.

Property 7.2.2 Every internal node having c, c > 1, children corresponds to at
least c(c−1)

2 right maximal repeated pairs (see definition 6.2.2).
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Figure 7.1: The suffix trie for the sequence S=ACACAAGCA#. ⊥ is the root.

Proof. Let v be a node with c children, c > 1. We note v1, v2, . . , vc its children, and
u1, u2, . . , uc their corresponding factors (see Property 1). We denote by u the factor
corresponding to the node v.

By definition of the suffix tree, u is the longest common prefix of the factors
u1, u2, . . , uc. Let i1 (resp. i2, . . , ic) be a starting position of the factor u1 (resp.
u2, . . , uc). Then for every couple (ik, i`), 1 ≤ k 6= ` ≤ c, < ik, i`, u > is a right
maximal repeated pair.

The suffix tree is usually augmented with auxiliary edges, called the suffix links.
These edges are necessary for an efficient construction of the suffix tree, as we
explain in section 7.2.3, and for many applications.

Definition 7.2.3 The suffix link of a node v corresponding to a factor αu, with α
a letter, goes from the node v to the node corresponding to the factor u. See an
illustration in Figure 7.2.

Property 7.2.3 The suffix links of a suffix trie form a trie. We note that this trie
is the suffix trie of the reversed sequence.
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Figure 7.2: The suffix trie for the sequence S=ACACAAGCA# with its suffix links in
dashed line.

7.2.2 Compact Suffix Tree

The compact suffix tree has been introduced by Weiner in 1973, it is identical to the
suffix trie but all consecutive internal nodes with only one child are collapsed into
one, thus the edge labels are strings. An internal node in a suffix trie, can either
become an internal node in the compact suffix tree with at least two children, then
this node is called explicit. Or if it has only one child, it will collapse into an edge with
a multi-characters label, then in the compact suffix tree it is called an implicit node.

The compact suffix tree, for now on we will refer to it as the suffix tree, occupies
an amount of space linear in the size of the input. Indeed, for a sequence of size
n there are exactly n leaves, one per suffix. Then in a compact suffix tree, every
internal node has at least two children, thus there are at most n explicit internal
nodes. Consequently, the whole structure has a linear number of nodes. However
the edge-labels are not of linear size, thus to achieve a linear space complexity,
there are not stored as sequences, instead they are stored as a pair of positions
corresponding to the starting position and the ending position of the edge-label
in the input sequence. The compact suffix tree can be build in linear time and
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space, the first algorithm was presented by Weiner [101] and has been improved
by McCreight [102], Ukkonen [103] and others afterwards. In the next section we
briefly explain the Ukkonen construction algorithm, because it is the more intuitive
and straightforward, we will use the this algorithm later in section 9.5.
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Figure 7.3: The compact suffix tree for the sequence S=ACACAAGCA#.

7.2.3 Ukkonen construction algorithm

We briefly present Ukkonen construction algorithm of the suffix tree. We present
the main ideas, the proofs can be found in the original paper [103].

Ukkonen’s construction algorithm works on-line, it constructs the suffix tree
from left to right and incrementally constructs the suffix trees for the prefixes
of the input sequence S seen so far.

An important point raised by Ukkonen is that once a leaf is created, it will
remain forever a leaf after all future right extensions. This implies that every time
a letter is added at the end of the text the edges leading to existing leaf must
be extended by that symbol. To handle this, Ukkonen introduced the open edges,
whose labels ends at the current and continuously growing end of the text.

To update the tree, it maintains a node, called the active point which is the
node corresponding to the longest repeated suffix in the sequence (it can be
explicit or implicit).
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An iteration of Ukkonen’s algorithm works on all suffixes between the active
point and up to the node corresponding to the shortest suffix that already occurs
followed by the added letter, the end point. It travels by following the suffix links
while performing the following tasks:

• If the active point is implicit, then it makes it explicit. Moreover if the last
but one node created has no suffix link, then it adds a suffix link from the
last but one node created to the last node created.

• It creates a new leaf and a new edge from the active point to the new leaf,
with label starting with the new letter. It adds a suffix link from the last but
one leaf created to the last leaf created.

• Then it moves the active node sideways by following the suffix link.

Once the end point is reached, the active node is moved down the edge whose label
starts with the new letter, the end point is now the new active point.

We recall that to fulfil the linear space requirement, the edge labels are repre-
sented by pairs of offsets of first and last symbol of the label in the input string,
except for the edges leading to leaf, they have only the offset corresponding to
the first position.

Figures 7.4 to 7.6 illustrate the construction of the suffix tree for the sequence

S=A
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.
Ukkonen showed that its construction algorithm is linear in the size of the input

text.

7.2.4 Applications

The suffix tree is used for pattern matching, it allows to find a pattern P of size m
in time O(m+ #occ), with #occ the number of occurrences of the pattern. To do
so it travels the tree from the root following the path corresponding to the pattern
P . If there is not such path in the tree, then the pattern does not occur in the
sequence. If the path leads to a leaf, then the pattern is unique, it occurs only once
in the sequence. If the path leads to an internal node or inside an edge, then the
pattern occurs as many times as there are leaves in the subtree. The compact suffix
tree has many other applications for text algorithms (see [108]).

In spite of its linear space consumption, the compact suffix tree, uses too much
space to be applied to huge sequences. Kurtz implemented in 1999 [109] a suffix
tree that, for a sequence of length n, uses 10n space in average and 20n space in the
worst case. This was a major improvement, but it stays too expensive for a sequence
like the whole Human Genome (3 Go), it requires around 45Go of memory.
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7.3 Suffix arrays

7.3.1 Presentation

The suffix arrays were introduced by Gonnet et al. [104] and Manber and Myers [105]
in 1993 as a space efficient alternative to suffix trees. Let S be a sequence of size n
over a finite and ordered alphabet Σ of size σ. The Suffix Array (SA) of S is an integer
array of size n storing the starting positions of all lexicographically sorted suffixes
of S. For all 1 ≤ r < n, we have S[SA[r − 1] . . n− 1] < S[SA[r] . . n− 1]. This array
occupies n log n bits, thus if n < 232 it can be stored in 4n bytes, much less than the
suffix tree. We note that this array corresponds to the array made by the leaves of
a the compact suffix tree, in the order they are seen during a depth first traversal.

Example 7.3.1 The suffix array for the sequence S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

.

i SA[i] suffixes
0 9 #
1 8 A#
2 4 AAGCA#
3 2 ACAAGCA#
4 0 ACACAAGCA#
5 5 AGCA#
6 7 CA#
7 3 CAAGCA#
8 1 CACAAGCA#
9 6 GCA#

The suffix array alone can be used for pattern matching. Given a pattern P of
size m the search can be done by dichotomy. The search is completed in at most
log n steps, each containing at most m comparisons. Thus the time complexity
of the pattern matching is O(m log n). Then to output the starting position of
each occurrence it take O(1) time.

The suffix array is a bijection that associates a position in the sequence to
the rank of the suffix starting at this position. Thus, it exists an inverse bijection,
that associates the rank of a suffix to its starting position in the sequence. The
inverse bijection is stored as an array denoted by the Inversed Suffix Array (iSA),
we have iSA[SA[i]] = i for all 0 ≤ i < n.
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7.3.2 Different construction algorithms

As mentioned above the suffix array can be obtained directly from the suffix tree,
thus it can be constructed in linear time and space. However, as the suffix tree
requires a lot of space, non-linear algorithms are faster than this naive approach.
The first construction algorithms of the suffix array were in time O(n log n). The
first linear time construction algorithms have appeared simultaneously in 2003:
Kärkkäinen and Sanders [110], Kim et al. [111] and Ko and Aluru [112]. Construction
algorithms of suffix arrays have been thoroughly reviewed by Puglisi and al. in
2007 [113], we briefly present the three main categories:

• Prefix doubling: the suffixes are first ordered according to their prefixes of
size 2. Then, knowing this result, they are ordered according to their prefixes
of size 4, then 8 etc... The process is repeated until we obtain a total order.
They are at most log n steps to sort all the suffixes, thus the time complexity
is O(n log n). The construction algorithm initially proposed by Manber and
Myers [105] is based on this idea.

• Recursive algorithms: they were the first to achieve linear worst time compu-
tation. The idea is to construct two subsequences U and V from S, such that
once we have constructed the suffix array of U we can deduce those of V and
finally S. Since U is chosen such that |U | < S, the overall time requirement
is O(n). For example Kärkkäinen [110] choose to sort, using a bucket sort
of depth 3, the suffixes starting at positions congruent to 1 or 2 modulo 3.
Once these suffixes are sorted they deduce the order of the suffixes starting at
positions congruent to 0 modulo 3, and they merge all the suffixes to find the
suffix array.

• Induced copying: the key insight is similar to the recursive algorithms i.e. the
complete sort of a selected subset of suffixes is used to induce a complete
sort of the whole set of suffixes. The main difference is that their approaches
here are non recursive, an example is Manzini and Ferragina in 2004 [114].
In general, these methods are very efficient in practice, but they may have
worst-case asymptotic complexity of O(n2 log n).

One of the fastest algorithm for the construction of the suffix array, is SA-IS
of Nong and al. [115]. It is a recursive algorithm based on a method of induced
sorting. The careful implementation, by Yuta Mori [116], outperforms the other
construction approaches available nowadays.
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Dynamic algorithm

In 2010, Salson et al. [117] proposed an algorithm to construct the suffix array
in a dynamic way, i.e. by allowing updates in the input sequence and editing the
suffix array accordingly without rebuilding everything from scratch. Their algorithm
has a poly-logarithmic time complexity for the updates, and thus it represents an
efficient way to obtain the suffix array of a sequence knowing the suffix array of a
very similar sequence (by the edit distance). However, the time complexity is not
satisfying for a streaming algorithm, as it will not permit to achieve a linear time
amortised complexity. When the number of update operations is too big, it is faster
to rebuilt the suffix array from scratch. This is why in chapter 9, we choose to use a
suffix tree and not a suffix array to perform pattern matching in a sliding window.

External Memory algorithm

External Memory model We use a model of computation detailed by Vitter
in [118]. By M we denote the internal memory or RAM size and by B the external
memory (disk) block size, both measured in units of Θ(log n)-bit words. We further
assume that M = Ω(log n) and M = O(n). In the external memory model, each
transfer of B words between memory and disk is called an Input Output Operation
(IO). Hence, an algorithm’s complexity is mainly measured in IOs.

Algorithms External memory algorithms can become very useful when the input
sequence is huge and the internal memory is of limited size. Bingmann et al.
[119] proposed an adaptation of the algorithm SAIS in external memory, creating
the eSAIS algorithm. For a sequence of size n it can compute the suffix array
in time O(n logM

B

M
B

) and with O(M
B

logM
B

M
B

) IOs. eSAIS is IO-optimal but it
uses large amount of disk, thus Kärkkäinen et al. [120] have recently proposed
a new algorithm that is much faster and with less disk usage. They achieve this
by using parallel implementation, thus their implementation is much faster, even
though it is not IO-optimal.

7.4 Longest Common Prefix (LCP) arrays

7.4.1 Presentation

Pattern matching with the suffix arrays is space efficient but not as fast as with
the suffix tree. An additional array is needed to achieve the search of a pattern
P of size m in a suffix array in time O(m + #occ). This additional structure is
called the Longest Common Prefix (LCP) array.
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Definition 7.4.1 The longest common prefix function is such that lcp(r, s) denotes
the length of the longest common prefix between S[SA[r] . . n−1] and S[SA[s] . . n−1],
for all 0 ≤ r ≤ s < n and 0 otherwise.

We note that lcp(r, s) corresponds to the depth of the longest common ancestor
of the nodes corresponding to the suffixes starting at r and s.

The LCP array of S is defined by LCP[r] = lcp(r − 1, r) for all 1 ≤ r < n,
and LCP[0] = 0.

Example 7.4.1 The suffix array and the LCP array for the sequence S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

.

i SA[i] LCP[i] suffixes
0 9 0 #
1 8 0 A#
2 4 1 AAGCA#
3 2 1 ACAAGCA#
4 0 3 ACACAAGCA#
5 5 1 AGCA#
6 7 0 CA#
7 3 2 CAAGCA#
8 1 2 CACAAGCA#
9 6 0 GCA#

Remark 7.4.1 We consider k, r, s, with k ≥ 0 and 0 ≤ r ≤ s < n, if lcp(r, s) = k

then there exist i in (r, s] such that LCP[i] = k.

It has been proved by Abouelhoda [121] that every algorithm that uses a suffix
tree as data structure can systematically be replaced with an algorithm that uses
an enhanced suffix array and solves the same problem in the same time complexity.
The enhanced suffix array is the suffix array plus the LCP array and the child
table. We now introduce the child table.

Definition 7.4.2 An interval [i, j], 0 ≤ i ≤ j < n, is an lcp-interval of lcp value `
if:

• LCP[i] < `,

• LCP[k] ≥ ` for all i < k ≤ j, with equality for at least one k if i 6= j,

• LCP[j + 1] < `
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We notice that lcp-intervals correspond to subtrees in the suffix tree, thus lcp-
intervals can be embedded. Let [i, j] be an lcp-interval of lcp value `. Each index
k, such that i + 1 ≤ k ≤ j with LCP[k] = ` is called an `-index. An lcp-interval
[g, d] of lcp value m is embedded in [i, j] if i ≤ g < d ≤ j and m > `. Then [i, j]
is called the enclosing interval of the interval [g, d]. If there is no other intervals
embedded in between [i, j] and [g, d], then [g, d] is a child interval of [i, j].

Lemma 7.4.1. Let [i, j] be a `-interval. If i1 < i2 < · · · < ik are the `-indices of
[i, j] then the child intervals of [i, j] are [i, i1 − 1], [i1, i2 − 1], · · · , [ik, j].

The child table, child, is an array of triplets (up,down,next) such that for
all 0 ≤ i < n:

• child[i].up = min{q ∈ [0, i− 1]|∀k ∈ [q + 1, i− 1], LCP[k] ≥ LCP[q] > LCP[i]}

• child[i].down = min{q ∈ [i+1, n]|∀k ∈ [i+1, q−1], LCP[k] > LCP[q] > LCP[i]}

• child[i].next = min{q ∈ [i+ 1, n]|∀k ∈ [i+ 1, q−1], LCP[k] > LCP[q] = LCP[i]}

Let [i, j] be an lcp-interval of lcp value ` with `-indices i1 < i2 < · · · < ik. The
meanings of these formal definitions are as follows.

• child[`].up stores the first index of the second child interval of the longest
lcp-interval ending at index `− 1. Thus child[j + 1].up = i1.

• child[`].down stores the first index of the second child interval of the longest
lcp-interval starting at index `. Thus child[i].up = i1.

• child[`].next stores the first index of the next sibling interval of the longest lcp-
interval starting at index ` if and only if the interval is neither the first child
nor the last child of its parent. Thus for all q, 1 ≤ q < k, child[iq].next = iq+1.

The child table is necessary to simulate all kinds of suffix tree traversals very
efficiently (more details can be found in Abouelhoda et al. paper [121] ).

Example 7.4.2 Consider the enhanced suffix array for the sequence S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

.
There are:

• one lcp-interval of lcp-value 1 is [1,5], it is the subtree with the blue root. It
has three 1-indices: 2, 3 and 5,

• one lcp-interval of lcp-value 2 is [6,8], it is the subtree with the green root. It
has two 2-indices: 7 and 8,
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• one lcp-interval of lcp-value 3 is [3,4], it is the subtree with the red root. It
has one 3-index:4 .

The rest are lcp-interval of size 1, there is one such interval for each suffix (or leaf
in the tree).

i SA[i] LCP[i] child suffixes
0 9 0 (∅, ∅, 1) #
1 8 0 (∅, 2, 6) A#
2 4 1 (∅, ∅, 3) AAGCA#
3 2 1 (∅, 4, 5) ACAAGCA#
4 0 3 (∅, ∅, ∅) ACACAAGCA#
5 5 1 (4, ∅, ∅) AGCA#
6 7 0 (2, 7, 9) CA#
7 3 2 (∅, ∅, 8) CAAGCA#
8 1 2 (∅, ∅, ∅) CACAAGCA#
9 6 0 (7, ∅, ∅) GCA#

⊥

9

8 4

2 0

5 7 3 1

6

A
(0

,0
)

C
A

(1,2)

GCA#
(6,9)#

(9,9)

G
C

A
#

(6,9)

A
G

C
A

#
(5

,9
)

C
A

(1,2)#
(9

,9
)

A
G

C
A

#
(5

,9
)

C
A

A
G

C
A

#
(3,9)

#
(9

,9
)

A
G

C
A

#
(5,9)

C
A

A
G

C
A

#
(3,9)

For an index i, we denote by vi the leaf corresponding to the suffix starting at position
i. When defined, the arrow (vi, child[i].up) is in cyan, the arrow (vi, child[i].down)
is in orange and the arrow (vi, child[i].next) is in magenta.

7.4.2 Construction algorithms

As we have seen in the previous section, there are plenty of algorithms to construct
suffix arrays. The LCP array can be build at the same time as the suffix array;
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that is the case in the augmented eSAIS algorithm [119]. Other algorithms use
the suffix array as an input and build the corresponding LCP array. The faster
algorithm to compute the LCP array from the suffix array in external memory is
LCPscan [122]. Its complexity is quadratic in theory; O( n2

M logσ n
+n logM

B

n
B

) in time
and O( n2

MB(logσ n)2 + n
B

logM
B

n
B

) in IOs, and only 16n bytes of disk usage. However
in practice, the quadratic part does not dominate the computation time when the
size of the input is less than 100 times the size of the RAM.

7.5 Burrows-Wheeler transform (BWT)

7.5.1 Presentation

The Burrows-Wheeler transform (BWT) was introduced in 1994 [106]. It is used in
everyday data compression techniques like bzip2. The BWT reorganises the input
to obtain a text that is much easier to compress. To obtain the BWT of a sequence
S, we consider all its circular permutations and we sort them lexicographically:
therefore they form a matrix of letters. The last column of this matrix is the BWT,
the first column is called F. We observe that there is a strong relationship between
the BWT and the suffix array. Indeed for all 0 ≤ i < n,BWT[i] = S[SA[i] − 1],
if SA[i] > 0 and ‘#’ otherwise.

The BWT is usually easier to compress than the input itself, because it tends to
gather identical letters. For example in English the letter ‘h’ is often preceded by
the letter ‘t’, thus in a text written in English, the suffixes starting with an ‘h’ are
likely to be preceded by a ‘t’. Consequently we are likely to obtain consecutive ‘t’s
in the BWT in the interval corresponding to the suffixes starting with an ‘h’.

By using a three-step compression algorithm, the BWT can be compressed in
space upper bounded by nHk(S)+o(n), with Hk(S) the k-th order empirical entropy
of the sequence S. The value nHk(S) represents a lower bound to the compression
one can achieve using codes which depends on the k most recently seen symbols.

Example 7.5.1 The suffix array, the F column and the BWT for the sequence

S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

.
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i SA[i] F[i] permutations BWT[i]
0 9 # #ACACAAGCA A
1 8 A A#ACACAAGC C
2 4 A AAGCA#ACAC C
3 2 A ACAAGCA#AC C
4 0 A ACACAAGCA# #
5 5 A AGCA#ACACA A
6 7 C CA#ACACAAG G
7 3 C CAAGCA#ACA A
8 1 C CACAAGCA#A A
9 6 G GCA#ACACAA A

The transformation is reversible. The input sequence can be retrieved from the
BWT. An essential property of the BWT is called the LF-mapping property. It
says that for each letter, the order in the F column is the same as in the BWT.
This property allows the reversibility of the BWT.

Property 7.5.1 LF-mapping: The kth letter ‘c’ in F and the kth letter ‘c’ in
BWT correspond to the same occurrence of the letter ‘c’ in the input sequence.
More formally for an index i, 0 ≤ i < n, we denote by ‘c’ the starting letter of its
corresponding suffix (S[SA[i]] = c ) and k the rank of this letter among the other ‘c’
in the column F. Then the kth letter ‘c’ in the BWT is at position iSA[SA[i] + 1] if
SA[i] < n− 1 and iSA[0] otherwise.

Proof. Let us consider a letter that occurs at least twice, let i and i′ be two of its
occurring positions. With no loss of generality, we suppose that S[i] occurs before
S[i′] in F. We denote by s, respectively s′, the suffix of S starting at position i,
respectively, i′. We denote ` = lcp(i, i′) ≥ 1 and w = S[i+ 1 . . i+ `− 1], possibly
empty. We can decompose the suffixes s and s′ into s = S[i].w.S[i+ ` . . n− 1] and
s′ = S[i′].w.S[i′+ ` . . n− 1]. We know that s < s′ thus S[i+ `] < S[i′+ `], therefore
the suffix starting at position i+ ` is lexicographically smaller than the one starting
at position i′ + `. Consequently S[i] occurs before S[i′] in BWT.

Example 7.5.2 The arrays SA, iSA, F and BWT for the sequence

S = A0
0

C0
1

A1
2

C1
3

A2
4

A3
5

G0
6

C2
7

A4
8

#
9

.
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i SA[i] iSA[i] permutations F[i] BWT[i]
0 9 4 #A0C0A1C1A2A3G0C2A4 # A4
1 8 8 A4#A0C0A1C1A2A3G0C2 A4 C2
2 4 3 A2A3G0C2A4#A0C0A1C1 A2 C1
3 2 7 A1C1A2A3G0C2A4#A0C0 A1 C0
4 0 2 A0C0A1C1A2A3G0C2A4# A0 #
5 5 5 A3G0C2A4#A0C0A1C1A2 A3 A2
6 7 9 C2A4#A0C0A1C1A2A3G0 C2 G0
7 3 6 C1A2A3G0C2A4#A0C0A1 C1 A1
8 1 1 C0A1C1A2A3G0C2A4#A0 C0 A0
9 6 0 G0C2A4#A0C0A1C1A2A3 G0 A3

S[SA[6]] = S[7] = C2, it is the 1st suffix starting with an ‘C’, iSA[SA[6] + 1] = 1 and
we have BWT[1] = C2, it is also the 1st ‘C’ in the BWT and it corresponds to the
same position, 7, in the sequence.

According to the property 7.5.1, we construct an array LF, such that for each
position i in BWT, LF[i] gives the position of the corresponding letter in F. The
formula of the LF array is given in the next section (Definition 7.5.1), after having
introduced the bit vectors. We note that the F column is the sorted BWT, thus
we can obtain it directly from the BWT.

Then to recover the input sequence, we start from the right with the terminator
symbol. We know that this symbol is at the end of the sequence, thus S[n− 2] =
BWT[0]. Then we search for S[n− 2] in the F column, it occurs at position LF[0].
Then we know that the letter that precedes it is S[n− 3] = BWT[LF[0]]. Now we
search for S[n− 3] in the BWT, it occurs at position LF[LF[0]], and we obtain the
preceding letter S[n − 4] = BWT[LF[LF[0]]]. We go on until we reach again the
terminator symbol, meaning that the input sequence has been successfully retrieved.

Example 7.5.3 The arrays F, BWT and LF for the sequence

S = A0
0

C0
1

A1
2

C1
3

A2
4

A3
5

G0
6

C2
7

A4
8

#
9

.
i F[i] BWT[i] LF[i]
0 # A4 1
1 A4 C2 6
2 A2 C1 7
3 A1 C0 8
4 A0 # 0
5 A3 A2 2
6 C2 G0 9
7 C1 A1 3
8 C0 A0 4
9 G0 A3 5
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7.5.2 Bit vectors

A bit vector (also known as bitmap, bitset, bit string or bit array), is a data structure
storing only two possibles values, ‘1’ or ‘0’, so they can be stored in one bit. They
can be compressed efficiently, although there is always a trade-off between the space
compression and the time to answer queries. Once constructed, we can add to them
some additional data structures to answer rank and select queries in constant time
[123–125]. For a bit vector B of length n, rank1(i) (resp. rank0(i)) is defined as the
number of ‘1’s (resp. ‘0’s) in range [0, i). The operation select1(i) (resp. select0(i))
is the reverse, it answers at which position the ith ‘1’ (resp. ‘0’) is in the bit vector.

By using bit vectors and their additional data structures for rank and select
queries, we can search for a letter in the BWT in constant time. To this aim,
we use a bit vector for each letter in the alphabet, Bα[i] = 1 if BWT[i] = α for
every i ∈ [0 . . n − 1] and α ∈ Σ.

Definition 7.5.1 According to property 7.5.1, we define the LF array as follow:
For all i, 0 ≤ i < n,

LF[i] = 1 +BBWT[i].rank1(1) +
∑

β∈Σ,β<BWT[i]
Bβ.rank1(n), if BWT[i] 6= #,

LF[i] = 0 otherwise.

LF[i] gives the position in the F column of the letter S[SA[i] − 1] if SA[i] > 0
or 0 otherwise. Please note that the F column is sorted thus the kth letter c is
at position 1 + k +

∑
β∈Σ,β<c

Bβ.rank1(n).

Example of exact pattern matching with the BWT

Thus using the same approach as the reversing of the BWT we can search for
a pattern P efficiently. As an example we search for the pattern P=GCA in

S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

(see an illustration in Example 7.5.4). We search for the
pattern from right to left:

• First we are looking at the whole table and we consider the last letter of
the motif, ‘A’. BA.rank1(n) = 5, we know that there are 5 occurrences of
‘A’, the red ‘1’s in the illustration. With select we obtain their positions in
the BWT, and with the LF array we obtain the positions in the BWT of the
suffixes starting with ‘A’, the green numbers in the illustration. They are in
the interval [1, 6), these indices are in blue in the next step of the example.



88 7.5. Burrows-Wheeler transform (BWT)

• Now amongst the suffixes starting with ‘A’, we are looking for those preceded

by ‘C’. To do so we use BC .rank1(), at the two extremities of our interval

of interest [1, 6). BC .rank1[1] = 0 and BC .rank1[6] = 3, thus there are three

occurrences of the pattern ‘CA’. The LF array gives the interval of suffixes

starting with ‘CA’, it is [6, 9).

• Now amongst them we search for those preceded by ‘G’. BG.rank1[6] = 0 and

BG.rank1[9] = 1, thus there is only one occurrence of ‘GCA’.

This way we can count the occurrences of a pattern P of size m in time O(m).

However outputting the positions can take much more time as we will need to

count the steps until we reach the terminator symbol. Indeed, once we have found

that there is only one occurrence of the pattern GCA, we only know that the suffix

starting with GCA is at position 9 in the BWT. To know its position we have to

continue backward until we reach the position 0 in the BWT that corresponds to

the starting position of the input, and thus, by counting the number of steps to

reach the beginning, we know the position of the pattern in the sequence.

The BWT is particularly space efficient for small alphabets; indeed for an

alphabet of 4 letters (A, C, G, T) we need 4 bit vectors of size n. Thus without

even considering any compression it will take n
2 bytes to store the BWT. Moreover

these bit vectors are sparse, as in overall they contains exactly n− 1 ‘1’ and 3n+ 1

‘0’, thus they can be compressed efficiently.

Example 7.5.4 Searching for the pattern GCA in the sequence S = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

#
9

,

BA, BC , and BG are the bit vectors of the BWT.
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i BA BC BG LF[i]
0 1 0 0 1
1 0 1 0 6
2 0 1 0 7
3 0 1 0 8
4 0 0 0 0
5 1 0 0 2
6 0 0 1 9
7 1 0 0 3
8 1 0 0 4
9 1 0 0 5
S=ACACAAGCA#

Searching for ‘A’ in S
i BA BC BG LF[i]
0 1 0 0 1
1 0 1 0 6
2 0 1 0 7
3 0 1 0 8
4 0 0 0 0
5 1 0 0 2
6 0 0 1 9
7 1 0 0 3
8 1 0 0 4
9 1 0 0 5
S=ACACAAGCA#

Searching for ‘CA’ in S
i BA BC BG LF[i]
0 1 0 0 1
1 0 1 0 6
2 0 1 0 7
3 0 1 0 8
4 0 0 0 0
5 1 0 0 2
6 0 0 1 9
7 1 0 0 3
8 1 0 0 4
9 1 0 0 5
S=ACACAAGCA#

Searching for ‘GCA’ in S

The numbers in blue indicate the rows we are interested in . The red ‘1’s indicate
the rows of interest that are preceded by the letter we are looking for. The green
numbers indicate their corresponding row in the F column.

7.5.3 FM-index

We have seen that the SA and the BWT are highly related, they are both obtained
by sorting the suffixes of S. An idea introduced by Ferragina and Manzini in 2000
[107], was to use both of them at the same time. The structure, called the FM-index,
can be used for pattern matching in the same way as the BWT, and it uses the SA
to output the position of an occurrence in constant time. This structure is much
more space efficient than the SA plus the LCP and it achieves the pattern matching
in the same asymptotic time O(m+ #occ) for a pattern of size m. To achieve an
interesting trade-off between space and time. Ferragina and Manzini proposed to
sample the SA, by keeping only the value for the indices of the form jblog1+ε nc,
with 0 ≤ j ≤ n

blog1+ε nc and ε a strictly positive constant. Then the LF-mapping
property is used to obtain the value of a position that have been deleted. The
idea is to traverse the text from right to left by using the LF array, until reaching
a sampled position. The position of interest can be deduced from the retrieved
position, by adding to it the number of steps that have been necessary to reach
the sampled position. This solution is space efficient as the space complexity of
the sampled suffix array is o( n

log1+ε n
), but it requires O(log1+ε n) time to locate

an occurrence of a pattern in the input sequence.
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7.5.4 Applications to pattern matching in Bioinformatics

NGS also known as high-throughput sequencing technologies give a large number of
reads, paired or not, and of different size, from a few dozen to several thousands of
base pairs, depending on the technology. The reads obtained from a sequencing run
are stored in FastQ [126] or BAM [37] files. There are two main ways to analyse
these files: we can either assembly the genome de novo, or align (we also say map)
the reads to a reference genome of the same specie. The read mapper algorithms
are very important in NGS data analysis. Most of them are based on indexing
data structures we have presented, to cite only a few, there are Bowtie [32, 33],
BWA [31, 127] and SOAP [29, 36].

7.6 Summary of the different data structures

The different indexing data structures presented in this section are summarised in
Table 7.1. The model of computation is the RAM with a word size of Θ(log n) bits,
with n the size of S, the input sequence. This way the space taken by an integer
representing a position from 0 to n is constant. The column ‘Counting occurrences’
contains the complexity in time to output the number of occurrences of a pattern P
of size m in S. The column ‘Localisation’ contains the complexity in time to locate
the starting position in S of on occurrence of P after having counted its occurrences.

Data-structure Space Counting occurrences Localisation
Suffix trie O(n2) O(m) O(1)

Compact suffix tree O(n) O(m) O(1)
Suffix array O(n) O(m log n) O(1)

Enhanced suffix array O(n) O(m) O(1)
FM-index nHk(S) + o( n

log1+ε n
) O(m) O(log1+ε n)

Table 7.1: Complexities in space and query time for indexing data structure when
considering a fixed size alphabet. The model of computation is the RAM with a word size
of Θ(logn) bits.
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Figure 7.4: Illustration of the Ukkonen construction algorithm step by step for the
sequence S=ACACAAGCA#. The active point is represented in black. New nodes, leaves
and edges are in red.
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Figure 7.5: The continuation of the illustration of the Ukkonen construction algorithm
step by step for the sequence S=ACACAAGCA#.
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Figure 7.6: The end of the illustration of the Ukkonen construction algorithm step by
step for the sequence S=ACACAAGCA#.
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8.1 Problem and previous approaches

Now that we have presented all the necessary definitions and data structures, we
present different algorithms to compute minimal absent words (see Definition 6.2.1 )
that I have devised and implemented during my PhD. The problem we want

95
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to solve is the following.

Problem 1: Computation of Minimal Absent Words
Input: A sequence S of length n on a fixed-size alphabet Σ.
Output: For every minimal absent words w of S, one tuple < a, (i, j) >, such that
w = a.S[i . . j].

There already exists O(n)-time and O(n)-space algorithms for computing all
minimal absent words based on the construction of suffix automata [73]. An
alternative O(n)-time solution for finding minimal absent words of length at most
`, with ` = O(1), based on the construction of tries of bounded-length factors
was presented in [84].

A drawback of these approaches, in practical terms, is that the construction of
suffix automata (or of tries) may have a large memory footprint. Due to this, an
important problem is to be able to compute the minimal absent words of a sequence
without the use of data structures such as the suffix automaton or the suffix tree.

To this end, the computation of minimal absent words based on the construction
of suffix arrays was considered in [76]; although fast in practice, the worst-case
runtime of this algorithm isO(n2). Then Fukae et al. [128] proposed a linear time and
space algorithm to compute the set of minimal absent words. They claimed that their
algorithm is fast and memory-efficient, but they did not provide an implementation.
Alternatively, one could make use of the succinct representations of the bidirectional
BWT, recently presented in [129], to compute all minimal absent words in time O(n)
with a small memory footprint. However, an implementation of these representations
was not made available, and it is also unlikely that such an implementation will
outperform an O(n)-time algorithm based on the construction of suffix arrays.

We first present the algorithm MAW [130] that computes all minimal absent
words of a sequence of length n based on the suffix arrays and whose implementation
is available. It is shown to be more efficient than the existing tools at the time, both
in terms of speed and memory. Then we introduce the algorithm pMAW [99], a new
algorithm solving the same problem in linear time and space but with the additional
property that it can be executed in parallel. By excluding the indexing data-structure
construction time, the implementation achieves near-optimal speed-ups. Finally,
we explain how the first algorithm can be slightly modify into em-MAW [100] an
algorithm compatible with external memory computation. We have provided an
implementation that is slightly slower but that consumes much less internal memory.
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iSA[j]

k + 1
`

iSA[i]

m

index

LCP

Figure 8.1: Illustration of Lemma 8.2.1. (i, j, w) is a maximal repeated pair and w =
S[SA[k] . .SA[k] + LCP[k + 1]− 1] = S[SA[`] . .SA[`] + LCP[`]− 1]

8.2 MAW
In this section, we present algorithm MAW [130], an O(n)-time and O(n)-space
algorithm for finding all minimal absent words in a sequence of length n using
arrays SA and LCP.

As we have seen in Lemma 6.2.1 minimal absent words are closely related to
maximal repeated pairs (see Definition 6.2.2). Thus the main idea of minimal absent
words computation is to compute the set of letters that occur right before and after
each maximal repeated pair and see if they can form a minimal absent word.

Lemma 8.2.1. Let (i, j, w) be a right maximal repeated pair then there exists
0 ≤ k < ` < n, such that: S[i . . i + |w|] = S[SA[k] . . SA[k] + LCP[k + 1]] and
S[j . . j + |w|] = S[SA[`] . . SA[`] + LCP[`]].

Proof. Let (i, j, w) be a right maximal repeated pair with iSA[i] < iSA[j]; if this is
not the case we consider the triple (j, i, w). The two suffixes starting at positions
iSA[i] and iSA[j] share the same prefix of length |w| and then they differ. Thus,
we have lcp(iSA[i], iSA[j]) = |w|, according to remark 7.4.1, there is at least one
m ∈ (iSA[i], iSA[j]] such that LCP[m] = |w|. We choose ` to be the largest index in
(iSA[i], iSA[j]], such that LCP[`] = |w|, and k + 1 to be the smallest; they can be
equal. Thus lcp(k, iSA[i]) > |w|, so S[SA[k] . . SA[k] + |w|] = S[i . . i+ |w|]. Similarly,
lcp(`, iSA[j]) > |w|, so S[SA[`] . . SA[`] + |w|] = S[j . . j + |w|]. For an illustration
inspect Fig. 8.1.

By Lemma 8.2.1, we can focus onto the following 2n factors to consider all
right maximal repeated pairs:

• F2i = S[SA[i] . . . SA[i] + LCP[i]], with i ∈ [0 : n− 1].

• F2i+1 = S[SA[i] . . . SA[i] + LCP[i+ 1]], with i ∈ [0 : n− 1].
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Lemma 8.2.2. For all 0 ≤ i 6= j ≤ n− 1, F2i 6= F2j and F2i+1 6= F2j+1

Proof. Without loss of generality we can suppose that i < j. By definition of
LCP, S[SA[j − 1] . . . SA[j − 1] + LCP[j]] < S[SA[j] . . . SA[j] + LCP[j]]. The suffixes
are ordered in the SA thus i < j implies S[SA[i] . . . SA[i] + LCP[j]] ≤ S[SA[j −
1] . . . SA[j − 1] + LCP[j]]. Consequently F2i < F2j.

Similarly, we have S[SA[i] . . . SA[i]+LCP[i+1]] < S[SA[i+1] . . . SA[i+1]+LCP[i+
1]]. And i < j implies S[SA[i + 1] . . . SA[i + 1] + LCP[i + 1]] ≤ S[SA[j] . . . SA[j] +
LCP[j + 1]]. Consequently F2i+1 < F2j+1.

These 2n factors are sufficient to compute the set of minimal absent words,
but there is redundancy because some of them are equals. This is proved in the
following Lemma.

Lemma 8.2.3. For 0 ≤ i 6= j ≤ 2n − 1, Fi = Fj if and only if there exist
0 ≤ a < b ≤ n − 1 such that i = 2a, j = 2b + 1, LCP [a] = LCP [b + 1], and, for
each ` in [a+ 1 : b], LCP [`] > LCP [a].

Proof. According to lemma 8.2.2, Fi = Fj is possible only if i and j do not have
the same parity. Thus, without loss of generality we take i even, i = 2a, and j

odd, j = 2b+ 1; then, y[SA[a] . . SA[a] + LCP[a]] = y[SA[b] . . SA[b] + LCP[b+ 1]]. By
definition, y[SA[a] . . SA[a] + LCP[a]] > y[SA[a− 1] . . SA[a− 1] + LCP[a]], thus b > a.
Moreover we have LCP[a] = LCP[b+ 1] so, for each ` in [a+ 1 : b], LCP[`] > LCP[a].

Reciprocally, if there are a < b such that LCP[a] = LCP[b+ 1], and, for each `
in [a + 1 : b], LCP[`] > LCP[a], then, y[SA[a] . . SA[a] + LCP[a]] = y[SA[b] . . SA[b] +
LCP[b+ 1]] so F2a = F2b+1.

For each Fj, with j ∈ [0 : 2n − 1], we denote by:

• B1[j] the set of letters that occur right before the occurrences of Fj.

• B2[j] the set of letters that occur right before the occurrences of the longest
proper prefix of Fj.

Remark 8.2.1 Note that for every j ∈ [0 : 2n− 1], B2[j] ⊂ B1[j].

Lemma 8.2.4. awb is a minimal absent word of S, with a, b letters and w a word,
if and only if there exists j such that a ∈ B2[j] \B1[j] and wb = Fj.
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Proof. If awb is a minimal absent word then by Lemma 6.2.1, there are i and j

with iSA[i] < iSA[j] such that (i, j, w) is a maximal repeated pair. One position, i
or j, is a starting position of wb.

Case 1 : If j is a starting position of wb then by Lemma 8.2.1, there exists `
such that SA[`] is a starting position of wb and LCP[`] = |w|. Thus wb = F2`, aw
occurs in S but awb does not, and a is in B2(2`) \B1(2`).

Case 2 : If i is a starting position of wb then by Lemma 8.2.1, there exists k
such that SA[k] is a starting position of wb and LCP[k+ 1] = |w|. Thus wb = F2k+1,
aw occurs in S but awb does not, and a is in B2(2k + 1) \B1(2k + 1).

Reciprocally, if there is an index j and a letter a such that a is in B2(j) \B1(j),
we denote by w the longest proper prefix of Fj. Then aw and Fj occur in S but
aFj does not. Consequently aFj is a minimal absent word of S.

By Lemma 8.2.4, the difference between B1[j] and B2[j], for all j in [0 : 2n− 1],
gives us all the minimal absent words of S.

Thus the important point is to compute these sets of letters efficiently. To
do so, we visit twice arrays SA and LCP. While iterating over these arrays, we
maintain another array denoted by Pref, such that, at the end of each iteration
i, the `th element of Pref stores the set of letters we have encountered before the
prefix of length ` of S[SA[i] . . n− 1]. Array Pref consists of maxk∈[0:n−1] LCP[k] + 1
elements, where each element is a bit vector of length σ, the size of the alphabet.
Thus it is of size O(σn).

During the first pass, we visit arrays SA and LCP from top to bottom. For each i
∈ [0 : n−1], we store in positions 2i and 2i+1 of B1 (resp. B2) the set of letters that
immediately precedes the occurrences of F2i and F2i+1 (resp. their longest proper
prefixes) whose starting positions appear before position i in SA. During the second
pass, we go bottom up to complete the sets, which are already stored, with the letters
preceding the occurrences whose starting positions appear after position i in SA. In
order to be efficient, we maintain a stack structure, denoted by LifoLCP, to store the
LCP values of the factors that are prefixes of the factor we are currently visiting.

8.2.1 Top-down Pass

Each iteration of the top-down pass consists of two steps. In the first step, we visit
LifoLCP from the top and for each LCP value read we set to zero the corresponding
element of Pref; then we remove this value from the stack. We stop when we
reach a value smaller or equal to LCP[i]. We do this as the corresponding factors
are not prefixes of S[SA[i] . . n − 1], nor will they be prefixes in the remaining
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suffixes. We push at most one value onto the stack LifoLCP per iteration, so, in
total, there are n times we will set an element of Pref to zero. Thus in overall
this step requires time and space O(nσ).

For the second step, we update the elements corresponding to factors in the
suffix array with a LCP value smaller than LCP[i]. To do so, we visit the stack
LifoLCP top-down and, for each LCP value ` read, we add the letter S[SA[i] − 1]
to Pref[`] until we reach a value whose element already contains it. This ensures
that, for each value read, the corresponding element of Pref has no more than σ
letters added. We have shown above that in overall we set an element of Pref to
zero at most n times. Thus filling all the elements of Pref during the Top-down
pass requires O(nσ) time and space. For an example, see Table 8.1.

Function Top-Down-Pass (S, n, SA, LCP, B1, B2, σ)
Pref[0 . .maxi∈[0:n−1] LCP[i]][0 . . σ − 1]← 0;
LifoLCP.push(0);
foreach i ∈ [0 : n− 1] do

if i>0 and LCP[i] < LCP[i− 1] then
while LifoLCP.top() > LCP[i] do

proxa← LifoLCP.pop();
Pref[proxa][0 . . σ − 1]← 0;

if LifoLCP.top() < LCP[i] then
Pref[LCP[i]]← Pref[proxa];

B1[2i− 1]← Pref[proxa]; B2[2i− 1]← Pref[LCP[i]];
if SA[i] > 0 then

u← S[SA[i]− 1]; value← LifoLCP.top();
while Pref[value][u] = 0 do

Pref[value][u]← 1; value← LifoLCP.next();
Pref[LCP[i]][u]← 1;
B1[2i][u]← 1; B1[2i+ 1][u]← 1;
B2[2i][u]← 1; B2[2i+ 1][u]← 1;

if i>0 and LCP[i] > 0 and SA[i− 1] > 0 then
v ← S[SA[i− 1]− 1];
Pref[LCP[i]][v]← 1 ;

B2[2i]← Pref[LCP[i]];
if LifoLCP.top() 6= LCP[i] then LifoLCP.push(LCP[i]);
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j B1 B2
0 ∅ ∅
1 ∅ ∅
2 A A
3 A A
4 C A,C
5 A,C A,C
6 C A,C
7 A,C A,C
8 C A,C
9 C C
10 A A,C
11 A A
12 A A
13 A A,C
14 A A,C

(a)

i LCP SA Factor Pref[0] Pref[1] Pref[2] Pref[3] Pref[4]
0 0 0 A ∅ ∅ ∅ ∅ ∅

A A
1 1 1 A C A A ∅ ∅ ∅

A C A C A
2 4 3 A C A C C A,C A,C ∅ ∅ A,C

A C A
3 2 5 A C C A,C A,C A,C ∅ ∅

A
4 0 7 C A,C ∅ ∅ ∅ ∅

C #
5 1 2 C A A,C A,C ∅ ∅ ∅

C A C A
6 3 4 C A C C A,C A,C ∅ A ∅

C A
7 1 6 C C A,C A,C ∅ ∅ ∅

(b)

i LifoLCP
0 0
1 0 → LCP[1] = 1
2 0 → LCP[1] = 1 → LCP[2] = 4
3 0 → LCP[1] = 1 → LCP[3] = 2
4 0
5 0 → LCP[5] = 1
6 0 → LCP[5] = 1 → LCP[6] = 3
7 0 → LCP[5] = 1

(c)

Table 8.1: Illustration of the top-down pass of algorithm MAW for the word S = AACACACC
over an alphabet of size 2. (a) Arrays B1 and B2 obtained after the top-down pass; (b)
Elements of array Pref at the end of each iteration of the top-down pass. Factors Fj are
in orange and red; their longest proper prefixes are in orange only; (c) The stack LifoLCP
at the end of each iteration.

8.2.2 Bottom-up Pass

Intuitively, the idea behind the bottom-up pass is the same as in the top-down pass
except that in this instance, as we start from the bottom, the suffix S[SA[i] . . n− 1]
can share more than its prefix of length LCP[i] with the previous suffixes in SA.
Therefore we may need the elements of Pref that correspond to factors with a LCP
value greater than LCP[i] to correctly compute the arrays B1 and B2. To achieve
this, we maintain another stack LifoRem to copy the values from LifoLCP that are
greater than LCP[i]. This extra stack allows us to keep in LifoLCP only values that
are smaller or equal to LCP[i] without losing the additional information we need to
correctly compute B1 and B2. At the end of the iteration, we will set to zero each
element corresponding to a value in LifoRem and empty the stack. Thus to set an
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element of Pref to zero requires two operations more than in the first pass. As we
consider at most n values, this step requires in overall time and space O(nσ).

Another difference between the top-down and bottom-up passes is that in
order to retain the information computed in the first pass, the second step is
performed for each letter in B1[2i]. As for each LCP value read we still add a
letter only if it is not already contained in the corresponding element of Pref. No
more than σ letters are added. Thus this step requires in overall time and space
O(nσ). For an example, see Table 8.2.

Function Bottom-Up-Pass(n, SA, LCP, B1, B2, Σ, σ)
Pref[0 . .maxi∈[0:n−1] LCP[i]][0 . . σ − 1]← 0;
LifoLCP.push(0);
foreach i ∈ [n− 1 : 0] do

proxa ← LCP[i] + 1; proxb ← 1;
if i<n-1 and LCP[i] < LCP[i+ 1] then

while LifoLCP.top() > LCP[i] do
proxa← LifoLCP.pop();
LifoRem.push(proxa);

if LifoLCP.top() < LCP[i] then
Pref[LCP[i]]← Pref[proxa]

foreach k ∈ Σ : B1[2i][k] = 1 do
value← LifoLCP.top();
while Pref[value][k] = 0 do

Pref[value][k]← 1; value← LifoLCP.next();
Pref[LCP[i]][k]← 1;

B2[2i] ← B2[2i] bit-or Pref[LCP[i]];
B2[2i+ 1]← B2[2i+ 1] bit-or Pref[LCP[i+ 1]];
B1[2i+ 1]← B1[2i+ 1] bit-or Pref[proxb];

proxb ← proxa;
B1[2i]← B1[2i] bit-or Pref[proxa];
while LifoRem not empty do

value← LifoRem.pop(); Pref[value][0 . . σ − 1]← 0;
if LifoLCP.top() 6= LCP[i] then LifoLCP.push(LCP[i]);
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j B1 B2
0 A,C A,C
1 ∅ A,C
2 A,C A,C
3 A A,C
4 C A,C
5 A,C A,C
6 C A,C
7 A,C A,C
8 A,C A,C
9 C A,C
10 A A,C
11 A A
12 A A
13 A A,C
14 A A,C

(a)

i LCP SA Factor Pref[0] Pref[1] Pref[2] Pref[3] Pref[4]
7 1 6 C C A A ∅ ∅ ∅

C A
6 3 4 C A C C A A ∅ A ∅

C A C A
5 1 2 C A A A ∅ ∅ ∅

C #
4 0 7 C A,C ∅ ∅ ∅ ∅

A
3 2 5 A C C A,C ∅ C ∅ ∅

A C A
2 4 3 A C A C C A,C ∅ C ∅ C

A C A C A
1 1 1 A C A,C A,C ∅ ∅ ∅

A A
0 0 0 A A,C ∅ ∅ ∅ ∅

(b)

i LifoLCP
7 0 → LCP[7] = 1
6 0 → LCP[7] = 1 → LCP[6] = 3
5 0 → LCP[7] = 1
4 0
3 0 → LCP[3] = 2
2 0 → LCP[3] = 2 → LCP[2] = 4
1 0 → LCP[1] = 1
0 0

(c)

Table 8.2: Illustration of the bottom-up pass of algorithm MAW for the word S =
AACACACC over an alphabet of size 2. (a) Arrays B1 and B2 obtained after the bottom-up
pass; (b) Elements of array Pref at the end of each iteration of the bottom-up pass. Factors
Fj are in orange and red; their longest proper prefixes are in orange only; (c) The stack
LifoLCP at the end of each iteration.

8.2.3 Deducing the set of minimal absent words

Once we have computed arrays B1 and B2, we need to compare each element. If

the difference is not empty, by Lemma 8.2.4, we can construct some minimal absent

words. For an example, see Table 8.3. However we observe that this computation may

result in reporting duplicates when there exist i and j such that Fi = Fj. To avoid

duplicates, we first build a bit-vector Dup of size n, that contains ‘1’ at position k if

and only if there exists an ` < k such that LCP[`] = LCP[k] and F [2`] = F [2k + 1].

We formalise this procedure in Function Avoid duplicates, that runs in linear time.
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j B1 B2 Factor Tuple representation of Minimal absent words
0 A,C A,C A
1 ∅ A,C A A <A,(0,1)>, <C,(0,1)>
2 A,C A,C A C
3 A A,C A C A C A <C,(1,5)>
4 C A,C A C A C C <A,(3,7)>
5 A,C A,C A C A
6 C A,C A C C <A,(5,7)>
7 A,C A,C A
8 A,C A,C C
9 C A,C C # We do not consider this row as it corresponds to the end of the sequence S
10 A A,C C A <C,(2,3)>
11 A A C A C A
12 A A C A C C
13 A A,C C A This is a duplicate of row 10 so we ignore it
14 A A,C C C <C,(6,7)>

Table 8.3: Minimal absent words of word S = AACACACC; we find seven minimal absent
words {AAA, AACACC, AACC, CAA, CACACA, CCA, CCC}

Function Avoid duplicates (n, LCP)
Stack lifo_lcp; int lcp=0; int mem;
lifo_lcp.push(lcp); Dup[0 . . n− 1]←0;
foreach i ∈ [0 : n− 1] do

lcp←lifo_lcp.pop();
while lifo_lcp is not empty and
lcp>LCP[i] do
mem←lifo_lcp.pop;
if mem=LCP[i] then Dup[i]=1;
lcp←mem

lifo_lcp.push(lcp); lcp←LCP[i];
lifo_lcp.push(lcp);

Then according to Lemma 8.2.3, we can avoid the duplicates by not considering
the indices j such that j is odd and Dup[(j+1)/2] = 1. Finally, to compute and report
all minimal absent words exactly once, we compute the difference B2(j) \ B1(j),
for all j ∈ [0 : 2n − 1], such that j is even or Dup[(j + 1)/2] = 0.

To report each minimal absent words in constant time, we represent them as a
tuple < a, (i, j) >. Where for some word x of length m ≥ 2, that is a minimal absent
word of S, the following holds: x[0] = a and x[1 . .m− 1] = S[i . . j]. Lemma 8.2.1
ensures exhaustivity, therefore we obtain the following theorem.

Theorem 8.2.5. Algorithm MAW solves problem Computation of minimal absent words
in time and space O(n).
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8.2.4 Results

We implemented algorithm MAW as a program to compute all minimal absent words
of a given sequence. The program was implemented in the C programming language
and developed under GNU/Linux operating system. It takes as input arguments a
file in (Multi)FASTA format and the minimal and maximal length of minimal absent
words to be outputted; and then produces a file with all minimal absent words of
length within this range. The implementation is distributed under the GNU General
Public License (GPL), and it is available at http://github.com/solonas13/maw,
which is set up for maintaining the source code and the man-page documentation.
The experiments were conducted on a Desktop PC using one core of Intel Xeon
E5540 CPU at 2.5 GHz and 32GB of main memory under 64-bit GNU/Linux. We
considered the genomes of eleven bacteria and four case-study eukaryotes (Table 8.4),
all obtained from the NCBI database (ftp://ftp.ncbi.nih.gov/genomes/).

Species Abbreviation Genome reference
Bacteria
Bacillus anthracis strain Ames Ba NC003997
Bacillus subtilis strain 168 Bs NC000964
Escherichia coli strain K-12 substrain MG1655 Ec NC000913
Haemophilus influenzae strain Rd KW20 Hi NC000907
Helicobacter pylori strain 26695 Hp NC000915
Lactobacillus casei strain BL23 Lc NC010999
Lactococcus lactis strain Il1403 Ll NC002662
Mycoplasma genitalium strain G37 Mg NC000908
Staphylococcus aureus strain N315 Sa NC002745
Streptococcus pneumoniae strain CGSP14 Sp NC010582
Xanthomonas campestris strain 8004 Xc NC007086
Eukaryotes
Arabidopsis thaliana (thale cress) At AGI release 7.2
Drosophila melanogaster (fruit fly) Dm FlyBase release 5
Homo sapiens (human) Hs build 38
Mus musculus (mouse) Mm build 38

Table 8.4: Species selected for this work with reference to the respective abbreviation
and identification of genome sequence data by accession number for bacteria or genome
assembly project for eukaryotes.

To test the correctness of our implementation, we compared it against the
implementation of Pinho et al. [76], which we denote here by PFG. In particular,
we counted the number of minimal absent words, for lengths 11, 14, 17, and 24,
in the genomes of the eleven bacteria listed in Table 8.4. We considered only the
5′ → 3′ DNA strand. Table 8.5 depicts the number of minimal absent words in
these sequences. We denote by M11, M14, M17, and M24 the size of the resulting

http://github.com/solonas13/maw
ftp://ftp.ncbi.nih.gov/genomes/
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sets of minimal absent words for lengths 11, 14, 17, and 24 respectively. Identical
number of minimal absent words for these lengths were also reported by PFG,
suggesting that our implementation is correct.

Species Genome size (bp) M11 M14 M17 M24
Ba 5,227,293 1,113,398 1,001,357 32,432 46
Bs 4,214,630 951,273 1,703,309 86,372 226
Ec 4,639,675 1,072,074 1,125,653 36,395 247
Hi 1,830,023 722,860 294,353 12,158 91
Hp 1,667,825 564,308 336,122 19,276 75
Lc 3,079,196 1,126,363 502,861 13,083 246
Ll 2,365,589 764,006 507,490 25,667 183
Mg 1,664,957 246,342 66,324 2,737 28
Sa 2,814,816 755,483 704,147 32,054 138
Sp 2,209,198 904,815 327,713 10,390 234
Xc 5,148,708 804,034 1,746,214 179,346 633

Table 8.5: Number of minimal absent words of lengths 11, 14, 17, and 24 in the genomes
of eleven bacteria.

To evaluate the efficiency of our implementation, we compared it against
the corresponding performance of PFG, which is currently the fastest available
implementation for computing minimal absent words. Notice that this evaluation
depends heavily on the suffix array construction implementation used; and that
PFG uses a less optimised implementation for this construction than the one used
by MAW. We computed all minimal absent words for each chromosome sequence
of the genomes of the four eukaryotes listed in Table 8.4. We considered both the
5′ → 3′ and the 3′ → 5′ DNA strands. Tables 8.6 and 8.7 depict elapsed-time
comparisons of MAW and PFG. MAW scales linearly and is the fastest in all cases.
It accelerates the computations by more than a factor of 2, when the length of the
sequences grows, compared to PFG. MAW also reduces the memory requirements
by a factor of 5 compared to PFG. The maximum allocated memory (per task)
was 6GB for MAW and 30GB for PFG.

Chromosome Size (bp) MAW (s) PFG (s)
1 30,427,671 40.20 51.90
2 19,698,289 25.86 32.94
3 23,459,830 30.84 42.30
4 18,585,056 24.65 31.42
5 26,975,502 35.38 48.91

(a) At

Chromosome Size (bp) MAW (s) PFG (s)
2L 23,011,544 30.01 40.85
2R 21,146,708 27.52 38.38
3L 24,543,557 32.00 45.13
3R 27,905,053 36.44 48.36
X 22,422,827 29.38 40.09

(b) Dm

Table 8.6: Elapsed-time comparison of MAW and PFG for computing all minimal absent
words in the genome of Arabidopsis thaliana and Drosophila melanogaster.
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Chromosome Size (bp) MAW (s) PFG (s)
1 248,956,422 426.39 972.52
2 242,193,529 423.19 772.89
3 198,295,559 353.60 645.45
4 190,214,555 339.02 616.26
5 181,538,259 342.53 577.05
6 170,805,979 299.72 538.34
7 159,345,973 305.26 491.32
8 145,138,636 254.17 437.18
9 138,394,717 235.14 356.08
10 133,797,422 235.38 392.45
11 135,086,622 236.80 379.15
12 133,275,309 235.14 390.46
13 114,364,328 191.64 269.52
14 107,043,718 178.00 240.93
15 101,991,189 167.89 222.98
16 90,338,345 153.07 198.49
17 83,257,441 144.32 207.02
18 80,373,285 137.68 199.44
19 58,617,616 100.95 126.82
20 64,444,167 109.80 144.83
21 46,709,983 74.65 74.65
22 50,818,468 80.49 73.34
X 156,040,895 275.14 457.2
Y 57,227,415 82.85 62.34

(a) Hs

Chromosome Size (bp) MAW (s) PFG (s)
1 197,195,432 340.59 599.86
2 181,748,087 316.17 578.2
3 159,599,783 274.46 506.73
4 155,630,120 266.67 473.97
5 152,537,259 260.50 424.24
6 149,517,037 256.36 455.11
7 152,524,553 257.65 413.37
8 131,738,871 223.09 344.92
9 124,076,172 210.37 334.25
10 129,993,255 222.36 363.34
11 121,843,856 208.55 324.54
12 121,257,530 205.09 324.79
13 120,284,312 204.80 314.56
14 125,194,864 212.59 336.49
15 103,494,974 175.21 265.92
16 98,319,150 166.10 249.03
17 95,272,651 160.70 232.79
18 90,772,031 153.40 223.56
19 61,342,430 101.89 125.85
X 166,650,296 282.21 503.98
Y 91,744,698 141.79 251

(b) Mm

Table 8.7: Elapsed-time comparison of MAW and PFG for computing all minimal absent
words in the genome of Homo Sapiens and Mus musculus.

To further evaluate the efficiency of our implementation, we compared it against
the corresponding performance of PFG using synthetic data. As basic dataset we
used chromosome 1 of Hs. We created five instances S1, S2, S3, S4, and S5 of this
sequence by randomly choosing 10%, 20%, 30%, 40%, and 50% of the positions,
respectively, and randomly replacing the corresponding letters to one of the four
letters of the DNA alphabet. We use the uniform distribution for random selections.
We computed all minimal absent words for each instance. We considered both the
5′ → 3′ and the 3′ → 5′ DNA strands. Table 8.8 depicts elapsed-time comparisons
of MAW and PFG. MAW is the fastest in all cases.

Sequence Size (bp) MAW (s) PFG (s)
S1 248,956,422 435.63 746.93
S2 248,956,422 438.52 733.69
S3 248,956,422 444.62 726.34
S4 248,956,422 444.06 743.29
S5 248,956,422 449.25 741.01

Table 8.8: Elapsed-time comparison of MAW and PFG for computing all minimal absent
words in synthetic data.
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8.3 pMAW

In this section, we present algorithm pMAW [99], a new O(n)-time and O(n)-space
algorithm for computing all minimal absent words of a word of length n using
arrays SA and LCP. We present our algorithm in detail; then, we show how it can be
adapted for parallel computing, achieving near-optimal speed-ups when excluding
the indexing data-structure construction time. Our first algorithm MAW is quite
straightforward, but there is some redundancy. For example in Table 8.3, we can
see that rows 0 and 7, 10 and 13, are identical. Here we try to improve this by
considering each right maximal repeated pair (see Definition 6.2.2) only once. To
do so, we remark that right maximal repeated pairs are related to the notion of
LCP-interval (see Definition 7.4.2). Indeed if the deepest LCP-interval including
positions i and j is of depth d then (i, j, S[SA[i] . . SA[i] + d− 1]) is a right maximal
repeated pair. Reciprocaly if (i, j, w) is a right maximal repeated pair then i and j
are in the same LCP-interval of depth |w|. Thus the computation of the minimal
absent words inside a LCP-interval is independent of the computation of minimal
absent word from LCP-intervals that are not overlapping.

8.3.1 Computation of Minimal Absent Words

For now on we denote minimal absent words by MAWs. If i is a local maximum in
the LCP array, then [i− 1, i] is the LCP-interval of LCP-depth LCP[i] that contains
i. Thus we can compute MAWs inside this interval independently of the rest of the
array. Our idea is to start the computation at the first local maximum of the LCP
array and to visit the surrounding positions in decreasing order of their LCP value.
In this process we keep in the array SetLetter the set of letters that occur before
the repeated factor. When we reach a local minimum we store its position on the
SA array in the stack LifoPos, and the current array SetLetter in the stack LifoSet.
We will analyse them once we have visited their whole LCP-interval. This way, we
consider each maximal repeated pair and infer from them the whole set of MAWs
using Lemma 6.2.1. An example of this function is illustrated in Fig. 8.2.

We first pre-compute SA, LCP, and a bit vector v such that v[i] = 1 if and only
if LCP[i] is a local maximum. We use rank and select data structures and denote
by rank(k) the operation giving the number of ‘1’s in [0 : k) and by select(k) the
operation giving the position of the kth 1. The following function presents MAWs
computation inside a given interval [k1, k2) of SA and LCP.
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Function ComputeMaws (k1, k2, S, SA, LCP, rank, select)
SetLetter←∅; LifoPos.push(0); LifoSet.push(SetLetter);
foreach t ∈ [rank(k1) + 1 : rank(k2)] do

i←select(t); left←i− 1; right←i+ 1;
pos←LifoPos.top(); lpos←LCP[pos]; SetLetter←∅;
while 1 do

while pos > 0 and LCP[i] < lpos do
we pop from LifoPos the positions with a LCP value equal to lpos; we
pop their set of letters from LifoSet;
we have visited the whole LCP-interval of depth lpos, so we infer
MAWs using these sets and SetLetter;
we update left and right;
pos←LifoPos.top(); lpos←LCP[pos];

if LCP[i] > max(LCP[left], LCP[right], lpos) then
we have visited the whole LCP-interval of depth LCP[i], so we infer
MAWs with SetLetter, S[SA[i]−1], and S[SA[left]−1];

SetLetter←SetLetter ∪ {S[SA[i]− 1]};
if LCP[left] = LCP[i] or LCP[right] = LCP[i] then

LifoPos.push(i); LifoSet.push(SetLetter);
we push onto LifoPos all the successive neighbours of interval
(left,right) with a LCP value equal to LCP[i];
for each of them we push onto LifoSet the letter preceding their
corresponding suffix;
we update left and right;

if LCP[right] ≤ LCP[left] < LCP[i] then i←left; left←i− 1;
else if LCP[right] > LCP[i] then we push onto stacks the positions
skipped and their corresponding set of letters; break;
else i←right; right←i+ 1;

Contrary to MAW [130], the previous linear-time algorithm, in pMAW we do
not consider our data structures globally; we rather consider each LCP-interval
independently. This important property will allow us to use parallel computation,
as shown in the following paragraph.

Overall Complexity. We use arrays SA and LCP, which can be computed in
time and space O(n) [115]. There also exists a representation which uses n+ o(n)
bits of storage space and supports rank and select on a bit-vector of size n in
constant time [131]. We also use two stacks, LifoPos and LifoSet, where we push and
pop O(n) elements, each containing at most σ integers. Thus the whole algorithm
requires time and space O(σn). We obtain the following result.

Theorem 8.3.1. Algorithm pMAW solves problem MAW in time and space O(n).
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LCP

j

8
S[SA[j]− 1]LCPj

suffixes

w
w
w
w
w
w
w
w
w

A T T T . . .k-1 11 T
C A A G . . .k 8 A
C C A A . . .k+1 9 G
C G C T . . .k+2 9 A
C G T A . . .k+3 10 A
C G T T . . .k+4 11 A
C T A C . . .k+5 9 T
C T G C . . .k+6 10 A
G C G G . . .k+7 8 T

(a)

w

k k + 1

k + 2

k + 3 k + 4

k + 5 k + 6

A C G

A C TG

C T

A T

A G

(b)

step i left right SetLetter Inferred MAWs and action on stacks
1 k+4 k+3 k+5 ∅
2 k+3 k+2 k+5 {A}
3 k+2 k+1 k+5 {A} we push k+2, k+1, and k+5

onto LifoPos; we push SetLetter,
k k+6 {G}, and {T} onto LifoSet

4 k+6 k+5 k+7 ∅ we infer 2 MAWs: AwCTA, TwCTG
5 k+5 k+4 k+7 {A} k+5 is already in LifoPos
6 k+7 k+4 k+8 {A,T} we pop k+5, k+1, and k+2 from

LifoPos and {T}, {G}, {A} from LifoSet
k {A,G,T} we infer 7 MAWs: GwCA, TwCA,

AwCC, TwCC, GwCG, TwCG, GwCT

(c)

Figure 8.2: Illustration of the algorithm step by step for the interval [k, k + 7), w =
TCTGAGCG is the common prefix of the considered suffixes.The example is taken from the
Lactobacillus casei genome (Accession #: NC010999) and k = 2, 554, 910. a) The portions
of the LCP array and the letters preceding the suffixes needed for computation. We also
show the suffixes, in blue are their prefix of size LCP[j]; b) The subtree of the suffix tree
corresponding to the interval [k, k+ 7), it is only an illustration, we do not need it for the
computation; c) The update of the different variables and stacks step by step and the
computation of minimal absent words

8.3.2 Parallelisation Scheme

We observe that the length of the shortest minimal absent word is equal to the length
of the shortest absent word. Now, we show how we can divide the computation
into independent tasks.

Lemma 8.3.2. Let S be a sequence of length n over an alphabet of size σ and let `
be the length of the shortest minimal absent word of S. Then the following hold:

• For all k ∈ [0, `− 2], |{s ∈ [0, n− 1] : LCP[s] = k}| = (σ − 1)σk + 1;

• For all k ∈ [`− 1, n− 1], |{s ∈ [0, n− 1] : LCP[s] = k}| < (σ − 1)σk + 1.
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Proof. Let k ∈ [0, n − 1], we denote by s0, . . . , sm−1, ordered increasingly, the m
elements of the set {s ∈ [0, n − 1] : LCP[s] = k}. For all i ∈ [0,m − 1], we have
S[SA[si− 1] . . SA[si− 1] +k− 1] = S[SA[si] . . SA[si] +k− 1] and S[SA[si− 1] +k] <
S[SA[si] + k]. We consider the pair (si, si+1) with i ∈ [0,m− 2], there are two cases:

• lcp(si, si+1) = k, so S[SA[si] . . SA[si] + k − 1] = S[SA[si+1] . . SA[si+1] + k − 1]
and S[SA[si − 1] + k] < S[SA[si] + k] ≤ S[SA[si+1 − 1] + k] < S[SA[si+1] + k].
The alphabet is of size σ; this can happen at most σ − 2 times consecutively.

• lcp(si, si+1) < k, so S[SA[si] . . SA[si] + k − 1] < S[SA[si+1] . . SA[si+1] + k − 1].
There are σk different words of length k; this can happen at most σk−1 times.

In the first case, we have an additional sub-case, when SA[si − 1] + k = n. Then
S[SA[si − 1] + k] is not a letter of the alphabet Σ, so we have one more position
with a LCP value equal to k. Thus, there are at most (σ − 1)σk pairs (si, si+1), so
there are at most (σ − 1)σk + 1 positions with a LCP value equal to k.

The equality holds if and only if all the words of length k + 1 appear in S,
therefore it holds if and only if k ∈ [0, `− 2].

By Lemma 8.3.2, the length ` of the shortest minimal absent word of some word of
length n satisfies: `−1 = min{k ≥ 0 : |{s ∈ [0, n−1] : LCP[s] = k}| < (σ−1)σk+1}.
As the alphabet is of size σ, there are σk distinct words of length k, but a sequence
S of length n has exactly n+ 1− k factors of length k. Thus, if σk > n+ 1− k there
are absent words of size k in S. Consequently we have ` ≤ logσ(n+ 1− `) < logσ(n).
Thus, we compute `, the length of the shortest minimal absent word, in one pass
over the LCP array by counting the number of positions having a LCP value equal
to d, for all d ∈ [0, blogσ(n)c].

According to Lemma 6.2.1 we can ignore positions having a LCP value lower
than `− 2 when computing minimal absent words. Hence, we focus on LCP-intervals
of LCP-depth above or equal to `−2: they are sufficient to exhaustively compute the
set of minimal absent words. Consequently we compute the set of positions ki with
i in [0, (σ− 1)σ`−3] such that LCP[ki] = `− 3. [0, k0), [k0, k1), . . . , [km−1, km), [km, n),
with m = (σ − 1)σ`−3, is a partition of [0, n − 1]. This partition is such that,
every LCP-interval of LCP-depth above or equal to ` − 2 is entirely included in
one of the sub-intervals [ki, ki+1).

Therefore we can consider each one of these sub-intervals independently, and
thus parallelise the computation of minimal absent words. In each sub-interval
we go through the SA and LCP arrays starting at the first (from left to right)
local maximum and going down until we reach a local minimum, as described in
Section 8.3.1. For an overview of the algorithm pMAW inspect Fig. 8.3.
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Compute arrays:
SA and LCP

Compute:
- positions of local maxima of LCP values
- the length ` of the shortest minimal absent word

Sequentialpart

For each 0 ≤ ki < ki+1 ≤ n− 1 such that LCP[ki] = `− 3, LCP[ki+1] = `− 3, and for all s in (ki, ki+1), LCP[s] 6= `− 3

Go through [k0, k1],
compute MAWs

. . . Go through [ki, ki+1],
compute MAWs

. . .Go through [km−1, km],
compute MAWs

Parallelpart

Write the output

Figure 8.3: Overview of Algorithm pMAW

8.3.3 Results

We implemented algorithm pMAW as a program to compute all minimal absent words
of a given sequence. The program was implemented in the C programming language,
using Open Multi-Processing (OpenMP) API for shared-memory multiprocessing
programming, and developed under GNU/Linux operating system. It takes as
input arguments a file in (Multi)FASTA format and the minimal and maximal
length of minimal absent words to be outputted; and then produces a file with all
minimal absent words of length within this range as output. There are additional
input parameters; for example, the number t of available processing elements. The
implementation is distributed under the GNU General Public License (GPL), and it
is available at http://github.com/solonas13/maw, which is set up for maintaining
the source code and the man-page documentation. The experiments were conducted
on a Desktop PC using 1 to 16 cores of 2 Intel Xeon E5-2670V2 Ten-Core CPUs
at 2.50GHz and 256GB of main memory under 64-bit GNU/Linux.

To evaluate the efficiency of our implementation, we compared it against the
corresponding performance of MAW [130], which was at the time the fastest available
implementation for computing minimal absent words. We generated three random
sequences of length 10Mbp, 100Mbp, and 1Gbp, respectively, by using a uniform
frequency distribution of letters of the DNA alphabet. We computed all minimal
absent words of length at most 20 for each sequence. We considered both the
5′ → 3′ and the 3′ → 5′ DNA strands. Fig. 8.4a depicts elapsed-time comparisons of
pMAW and MAW, including the sequential part of the algorithm. pMAW becomes
the fastest in all cases when t ≥ 2 accelerating the computation by more than
a factor of two when t = 16. Notice that the y-axis is on logarithmic scale. The
measured relative speed-up of pMAW is illustrated in Fig. 8.4b. The relative speed-
up was calculated as the ratio of the runtime of pMAW on 1 core to the runtime

http://github.com/solonas13/maw
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Figure 8.4: Elapsed-time comparison of pMAW and MAW and relative speed-up of
pMAW for computing minimal absent words using synthetic DNA sequences

of pMAW on t cores, excluding the sequential part of the algorithm. The results
highlight the excellent scalability of pMAW when the letters have a uniform frequency
distribution in the sequence. In this case, pMAW achieves near-optimal speed-ups,
confirming our theoretical findings.

To further evaluate the efficiency of our implementation, we compared it against
the corresponding performance of MAW using real data. We considered the genomes
of Homo sapiens and Mus musculus, obtained from the NCBI database (ftp:
//ftp.ncbi.nih.gov/genomes/). We computed all minimal absent words of length
at most 20 of the complete sequence of the Homo sapiens (2, 937, 639, 113bp) and
Mus musculus (2, 647, 521, 431bp) genomes—ignoring unknown bases. We considered
both the 5′ → 3′ and the 3′ → 5′ DNA strands. Fig. 8.5a depicts elapsed-time
comparisons of pMAW and MAW, including the sequential part of the algorithm.

ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nih.gov/genomes/
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Figure 8.5: Elapsed-time comparison of pMAW and MAW and relative speed-up of
pMAW for computing minimal absent words using real DNA sequences

pMAW becomes the fastest in all cases when t ≥ 2 accelerating the computation
by more than a factor of two when t = 16. Notice that the y-axis is on logarithmic
scale. The measured relative speed-up of pMAW is illustrated in Fig. 8.5b. The
relative speed-up was calculated as the ratio of the runtime of pMAW on 1 core to
the runtime of pMAW on t cores, excluding the sequential part of the algorithm.
The results highlight the good scalability of pMAW with real data. The computation
is accelerated by a factor of 10 when t = 16. The maximum allocated memory
was 137GB for both programs.

The importance of our contribution here is underlined by the fact that any
parallel algorithms for the construction of the involved indexing data structure can
be used directly to replace the sequential part of the algorithm proposed here (see
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Fig. 8.3). This would result in a fully parallel algorithm for the computation
of minimal absent words.

8.4 em-MAW
After providing a fast implementation due to a parallel algorithm, we aim to reduce
the bottleneck of our previous implementations, the RAM usage. We propose an
adaptation of MAW to the external memory (EM) model of computation (see
paragraph 7.3.2 and the reference [118] for details). We recall that by M we denote
the RAM (internal memory) size and by B the disk (external memory) block
size, smaller than M , both measured in units of Θ(log n)-bit words. We further
assume that M = Ω(log n) and M = O(n). In the EM model, each transfer of
B words between memory and disk is called an IO, and, hence, an algorithm’s
complexity is mainly measured in IOs.

Our algorithm for computing minimal absent words in external memory, which
we denote by em-MAW has the following three main stages:

8.4.1 Stage 1: Computing SA, LCP, and BWT

Computing SA and LCP. There exist IO-optimal algorithms for computing
SA and LCP, but they use large amounts of disk, which can be problematic in
practice. In our implementation we instead make use of the space-efficient pSAscan
algorithm due to Kärkkäinen et al. [120] to compute SA. The IO complexity of
pSAscan is O( n2

MB logσ n
+ n

B
) and its time complexity is O(n2

M
log(2 + logσ

log logn)). To
compute LCP we make use of the external-memory LCPscan algorithm, due to
Kärkkäinen and Kempa [122]. It leads to a quadratic-time complexity of time
O( n2

M logσ n
+ n logM

B

n
B

) with O( n2

MB(logσ n)2 + n
B

logM
B

n
B

) IOs.

Computing BWT. There are no IO-optimal algorithms for computing BWT
directly from S. In our implementation we use the following easy-to-implement (and
non-optimal) method, which takes time O(n logM + n2

M
) with O( n2

MB
) IOs. If the

RAM is not enough for the word to fit inside, we compute the BWT block by block.
We store in memory m pairs of the form (i, SA[i]) such that they fit in RAM, and we
sort the pairs with respect to the SA[i] field. Then we scan S and the list of sorted
pairs. During the scan, we replace the SA[i] field of each pair with letter S[SA[i]− 1]
(except if SA[i] = 0, in which case we replace it with a letter ‘#’ not from Σ). Finally,
we sort the pairs with respect to the i field. The letters are a contiguous segment of
the BWT, we store them. We repeat the process, until we have the whole BWT.
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8.4.2 Stage 2: Computing sets B1[j] and B2[j]

Given the input sequence S and its SA and LCP in internal memory, the computation
of sets B1[j] and B2[j] can be done in internal memory in time and space O(n)
as shown in Lemma 8.2.4. In our algorithm, we adapt the algorithm MAW, to
compute sets B1[j] and B2[j] in external memory, when we have SA, LCP, and BWT
precomputed and stored in external memory. The main difference is that we do
not use the sequence S itself but rather its BWT. To compute the sets B1[j] and
B2[j], we scan SA, LCP, and BWT twice: top-down and bottom-up. These data
structures are always accessed sequentially. Thus we can store them in external
memory and then scan or modify them by transferring in RAM only a segment of
entries, whose number is proportional to M . Transferring an array of size n from
or to external memory requires time O(n) with O( n

B
) IOs [118].

8.4.3 Stage 3: Computing the set of minimal absent words

At this point we have stored into external memory the sets B1[j] and B2[j] for
all j ∈ [0 : 2n − 1]. By applying Lemma 8.2.4 we can obtain all minimal absent
words of S by computing the difference B2[j] \ B1[j] for all j ∈ [0 : 2n − 1].
Hence we obtain the following.

Theorem 8.4.1. Given a word of length n and its SA, LCP, and BWT in external
memory, algorithm emMAW computes all minimal absent words in time O(n), with
O( n

B
) IOs, and using O(n) space in external memory.

Note that asymptotically, the size M of the RAM, does not have an influence
on the number of IOs. However, the computation time decreases as the size of
RAM increases, until it reaches a lower bound. This lower bound corresponds to
the size of RAM that is large enough to store all stacks.

8.4.4 Results

We implemented algorithm emMAW as a program to compute all minimal absent
words of a given sequence. The program was implemented in the C programming
language. The implementation is available at http://github.com/solonas13/maw
under the GNU GPL terms. We made use of the following two machines in order
to evaluate our implementation. The first one, denoted by M1, is a Desktop PC
with 8 cores of 1 Intel(R) Core(TM) i7-4790 CPU at 3.60GHz with 8M Cache
and 16GB of DDR3 RAM under 64-bit GNU/Linux. M1 was equipped with a
single Samsung SSD 850 PRO Series disk with capacity 256GB. The second one,

http://github.com/solonas13/maw
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denoted by M2, is a single node of a cluster computer with 2× 10 cores of Intel(R)
Xeon(R) CPU E5-2660 v3 at 2.60GHz with 25M Cache and 384GB of DDR3
RAM under 64-bit GNU/Linux. M2 was equipped with a single Samsung SSD
850 PRO Series disk with capacity 256GB.

External memory

Our first task was to validate our theoretical findings (Theorem 8.4.1). To this end,
we used as input all chromosome sequences of the Homo sapiens genome obtained
from the NCBI database (ftp://ftp.ncbi.nih.gov/genomes/). We computed
all minimal absent words of length at most 11 for each sequence separately. We
considered only the 5′ → 3′ DNA strand. We had first pre-computed and stored in
external memory the necessary data structures. This set of runs was conducted on
M1. Fig. 8.6(a) depicts elapsed-time measurements of emMAW (without accounting
for the time to construct the data structures) using only 500 MiB of internal
memory. The results confirm our theoretical findings: the elapsed-time increases
linearly with the length of the input sequence. To further evaluate the efficiency
of our implementation, we used as input the full genome of Homo sapiens without
pre-computing the necessary data structures. We computed all minimal absent
words of length at most 11 using only 1,000 MiB of internal memory. We considered
both DNA strands. The whole assignment, the construction of the data structures
plus the computation of minimal absent words, took less than 4 hours to finish.

Internal memory

We next compared the efficiency of emMAW against the corresponding one of
MAW [130], the fastest internal-memory implementation, when both exclusively
use internal memory (150,000 MiB) for their computations. We considered the full
genomes of Homo sapiens, Gorilla gorilla, and Mus musculus genomes, obtained
from the NCBI database. We computed all minimal absent words of length at
most 11 for each sequence. We considered both DNA strands. For this set of runs,
we used M2 to ensure that the necessary data structures can be constructed and
stored in internal memory. We used two options for emMAW: (i) -c 1 denoting
that the necessary data structures must be constructed; (ii) -c 0 denoting that
they have already been pre-computed and can be read from disk. Elapsed-time
comparison is illustrated in Fig. 8.6(b). The results show that emMAW is less than
two times slower than MAW with -c 1; most importantly, we see that emMAW
becomes faster than MAW with -c 0.

ftp://ftp.ncbi.nih.gov/genomes/
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Figure 8.6: Computing minimal absent words in internal and external memory

8.4.5 Conclusion

We presented algorithm emMAW, the first external-memory algorithm for computing
minimal absent words. Given a sequence of length n and its SA, LCP, and BWT
in external memory, emMAW computes all minimal absent words in time O(n),
with O( n

B
) IOs, and using O(n) space in external memory. We also made available

an open-source implementation of emMAW, http://github.com/solonas13/maw.
We provided experimental results showing that our implementation requires less
than 4 hours on a standard workstation to process the full human genome when

http://github.com/solonas13/maw
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as little as 1 GB of RAM is made available. Our implementation, despite making
use of external memory, is fast; indeed, even on relatively smaller data sets when
enough RAM is available to hold all necessary data structures, it is less than two
times slower than state-of-the-art internal-memory implementations.
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9.1 Motivations
We have seen several linear time and space algorithms to compute minimal absent
words. The one using external memory gives very interesting results as it runs on
the whole human genome on a desktop computer in a few hours. However, even
though the RAM size can be as small as the user desires ( up to a few kB depending
on the size of the alphabet), the disk usage remains a bottleneck if we want to
consider very huge sequences. Indeed for the computation we need to store several
tables of size linear in the size of the input sequence.

The problem we want to tackle is to compute the minimal absent words in a
sliding window. This way, we can analyse a huge sequence of size n by focusing our

121
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attention onto all its factors of a fixed size m. For example, given a pattern P we can
find the most similar region of the sequence y by using similarity measure based on
minimal absent words. An other application to this problem is the data compression,
we can thus compress in an on-line manner an input stream, by compressing it
chunk by chunk using a minimal absent words compression methods [94].

Problem 2: Computation of Minimal Absent Words in a sliding window
Input: A sequence y of length n on a fixed size alphabet Σ, the size m of the
window of interest.
Output: Maintain the set of minimal absent words of a window of size m sliding
along the sequence y.

9.2 On-line computation of minimal absent words

Ota et al. [132] were the first to propose an on-line algorithm to compute the set of
minimal absent words (also called antidictionnary). Their construction algorithm is
based on two algorithms for building suffix trees, the Ukkonen algorithm [103] and
the Weiner algorithm [101]. They proved that the total construction complexity
is linear, but we suspect that it might be slow in practice. Indeed during the
construction algorithm they maintain two suffix trees, the suffix tree of the input
sequence using Ukkonen algorithm, and the suffix tree of the reverse sequence using
Weiner algorithm. Consequently their algorithm is not space efficient as these two
structures are redundant. However, we used their approach and combined it with
a construction algorithm of the suffix tree for a sliding window.

We present the first algorithm that can solve Problem 2 in linear time on the
size of the input sequence and in linear space on the size of the sliding window.

9.3 Computation of the suffix tree for a sliding
window

The algorithm of Ukkonen (see a brief explanation in paragraph 7.2.3) constructs
the suffix tree on-line in O(n) time for a constant-sized alphabet by processing
the input word from left to right. To adapt it for a sliding window with amortized
constant time per one window shift, two additional problems need to be resolved:
(i) deleting the leftmost letter of a window; and (ii) maintaining edge labels under
window shifts. We briefly explain how to achieve this, more explanations can be
found in the original paper [133].
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Removing the leftmost letter. Consider the longest repeated prefix of the
current window. When the leftmost letter is deleted, all prefixes that are longer
than this prefix need to be removed from the tree but the longest repeated prefix
and all shorter prefixes will remain in the tree. To remove these prefixes we delete
the leaf corresponding to the whole window and its incoming edge as follows:

• If the longest repeated prefix corresponds to an explicit node, this node is the
parent of the leaf to be deleted. If this node has only one child remaining, we
delete the node and merge the two edges. Otherwise, we do nothing.

• If the longest repeated prefix corresponds to an implicit node, it is equal
to the longest repeated suffix. We create a new leaf in place of the one we
have deleted. We label it with the starting position of what was the longest
repeated suffix and its incoming edge is labelled accordingly. Finally, we add
a suffix link from the last created leaf to this leaf and move up the active
node by following the suffix link.

Maintaining Edge Labels. Assume by induction that all edge labels are cor-
rectly positioned relative to the current window. For the next m shifts of the window,
we still maintain the same relative positioning of edge labels. After the m shifts,
edge labels are recomputed by a bottom-up traversal of the tree. Since m shifts
create at most 2m nodes, the amortized time spent on one shift is O(1).

9.4 Combinatorial results

In this section we consider a word z of fixed length m on an alphabet Σ of size σ
and denote by M(z) its set of MAWs. The word z essentially represents the content
of the window on word y used in the algorithm of Section 9.5. We first discuss
changes to be done on the set of MAWs when appending and removing letters on
the word of interest. Then we show bounds on the number of changes on the set
of MAWs when moving forward the current window by one position.

9.4.1 Changes when appending one letter to the window

We denote byM(z)|α, α ∈ Σ, the operation on the set of MAWs when concatenating
the letter α to the, possibly empty, word z. The operation creates M(zα) from
M(z). We introduce some bounds on the number of insertions/deletions for the
on-line computation of the set of MAWs. These results have already been shown
in [132] and we briefly present them for completeness.
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αz

sαs

type 1: a = b = α and
u = α|z|−sα+1 u b

ua

type 2
u′ α u′ α
u b ua

type 3: b = α u b
ua

Figure 9.1: Illustration of the three different types of MAWs that are added when letter
α is appended to z.

We denote by s the starting position of the longest suffix of z that repeats
in z; when this suffix is empty we set s = |z|. We also denote by sα the starting
position of the longest suffix that occurs in z followed by α; when this suffix is
empty we set sα = |z|. Note that we have s ≤ sα because the latter suffix obviously
repeats in z. This is illustrated in Figure 9.1.

The next two lemmas state bounds of the number of insert and delete operations
performed by M(z)|α.

Lemma 9.4.1. M(z)|α deletes exactly one MAW fromM(z), namely z[sα−1 . . |z|−
1]α

Proof. Let w = aub, a, b ∈ Σ and u ∈ Σ∗, be a MAW to be removed. This means
that aub is absent in z but present in zα. Thus b = α and au is a suffix of z that
does not occur followed by α in z. The word ub = uα is also present in z, so u is a
suffix of z that occurs in z followed by α. Then the starting position of the suffix
occurrence u in z is sα and w = z[sα − 1 . . |z| − 1]α.

To establish an upper bound on the number of MAWs added by the operation
M(z)|α, we first divide the new MAWs of the form aub, a, b ∈ Σ and u ∈ Σ∗,
into three types (see also Figure 9.1):

1. au and ub are absent in z.

2. au is absent in z and ub is present in z.

3. au is present in z and ub is absent in z.

Lemma 9.4.2. There are at most one MAW of type 1, σ MAWs of type 2, and
(sα − s)(σ − 1) MAWs of type 3, added by the operation M(z)|α.
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Proof. We consider a new MAW w = aub, a, b ∈ Σ and u ∈ Σ∗, created by the
operation.

Let w be of type 1, that is, au and ub do not occur in z. Then they are both
suffixes of zα, and because they have same length, are equal. This implies that u is
both a prefix and a suffix of ub = uα. Thus the latter has period 1, w is of the form
α|w|, and u = α|w|−2. But then uα is absent in z. Therefore, α|w|−3 is the longest
repeated suffix of z that occurs followed by α in z. Consequently |w| = |z| − sα + 3.

Let w be of type 2, that is, ub occurs in z and au occurs in zα but not in z.
Then au is a suffix of zα and u can be written u′α. As ub occurs in z, u′ is a suffix
of z that occurs in z followed by α. Moreover, since au = au′α does not occur in
z, u′ is the longest suffix of z that occurs in z followed by α, therefore its starting
position as a suffix is sα. The letter b can be any letter of the alphabet of z that
occurs after an occurrence of u in z. Consequently there are at most σ such MAWs.

Let w be of type 3, that is, au occurs in z and ub occurs in zα but not in z. This
implies that b = α, u is a suffix of z not preceded by a, and au occurs elsewhere in
z. Since no occurrence of u in z is followed by α, we have that the starting position
k of u as a suffix satisfies s ≤ k < sα. Therefore, there are at most sα − s possible
words u and for each of them, there are at most σ − 1 possibilities for the letter a
to obtain a MAW. Consequently, there are at most (sα− s)(σ− 1) such MAWs.

The previous lemma shows that during one step of the computation of MAWs for a
sliding window we may have to handle O(σm) new MAWs. Indeed the example of
M(ACm−1)|A shows that the bound is tight. However, the total number of insertions
when computing the set of MAWs for a word y of length n get amortized to
O(σn) in an on-line computation.

Proposition 9.4.3 ([132]). Starting with the empty word, and applying n times
the operation | leads to a total number of insertions/deletions of MAWs in O(σn).

Proof. The number of MAWs of the whole word of length n is in O(σn). As stated
by Lemma 9.4.1 at most one MAW can be deleted by each application of the
operation |. Thus the total number of insertions/deletions is still in O(σn).

9.4.2 Changes when removing the first letter of the window

Removing the leftmost letter of the window is a dual question to what is done
previously. We now focus on the longest repeated prefix instead of the longest
repeated suffix.
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ũα ũα
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Figure 9.2: Illustration of the three different types of MAWs that are deleted when
removing α, the letter before z.

Let us denote by p the ending position of the longest repeated prefix of z and
by pα the ending position of the longest prefix of z that occurs in z preceded by
α. We set them to 0 when the prefixes are empty. Note that pα ≤ p. Similarly as
Lemma 9.4.1, removing a letter from the left creates exactly one MAW.

Lemma 9.4.4. The operation M(αz)→M(z) creates exactly one MAW , which
is αz[0 . . pα + 1].

Similarly as in Section 9.4.1, we distinguish three types of MAWs to be deleted
by the operation:

1. au and ub are absent in z.

2. au is absent in z and ub present in z.

3. ub is absent in z and au present in z.
We note that types 1, 2 and 3 behave respectively similarly to type 1, 3 and 2
in Section 9.4.1; see Figure 9.2 for an illustration. The following result is similar
to that stated in Lemma 9.4.2.

Lemma 9.4.5. There are at most one MAW of type 1, (σ − 1)(p− pα) MAWs of
type 2, and σ MAWs of type 3, to be deleted by the operation M(αy)→M(y).

9.4.3 Changes when sliding a window over a text

We now focus on our main problem: MAWs in a sliding window. For m < n and for
all i, 0 ≤ i ≤ n −m, we consider the window y[i . . i + m − 1] and define:

• si the starting position of its longest repeated suffix,

• s̃i the starting position of its longest suffix that occurs followed by y[i+m],
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• ssi the starting position of its longest suffix that is a power,

• pi the ending position of its longest repeated prefix,

• p̃i the ending position of its longest prefix that occurs preceded by y[i− 1],

• ppi the ending position of its longest prefix that is a power.
In what follows, we make use of this notation considering the case of a sliding
window. The following lemma shows that we cannot output in linear time the set
of MAWs in the sliding window at each step of the process.

Lemma 9.4.6. The upper bound of
n−m∑
i=0
|M(y[i . . i+m− 1])| is O(σnm) and this

bound is tight.

Proof. For every factor z of lengthm of y, |M(z)| isO(σm). Thus the upper bound of
their sum is O(σnm). Now consider y = (Am−1Cm−1)

n
2m−2 of length n and its factors

of length 2m. In each factor w of length 2m, this kind of pattern occurs: XY m−1X,
with {X, Y } = {A,C}. Thus {XY iX|1 ≤ i ≤ m− 1} ⊆M(w), so |M(w)| ≥ m− 1.
Consequently the bound is tight. One can generalize this construction of y to obtain
a tight bound for larger alphabets (Lemma 1 in [134]).

However, as shown below, we can bound the number of changes necessary to
maintain the set of MAWs for a sliding window. We obtain the following result.

Theorem 9.4.7. The upper bound of
n−m−1∑
i=0
|M(y[i . . i+m−1])4M(y[i+1 . . i+m])|

is in O(σn).

Proof. Let us consider the setM(y[i . . i+m−1])4M(y[i . . i+m]) with 0 ≤ i < n−m.
From Lemmas 9.4.2 and 9.4.1 we get

|M(y[i . . i+m− 1])4M(y[i . . i+m])| ≤ (s̃i − si)(σ − 1) + σ + 2.

Then,
n−m−1∑
i=0
|M(y[i . . i+m− 1])4M(y[i . . i+m])| ≤

n−m−1∑
i=0

(s̃i − si)(σ − 1) + nσ + 2n.

We note that s̃i ≤ si+1 ≤ s̃i + 1 and we have si ≤ s̃i thus
0 ≤

n−m−1∑
i=0

(s̃i − si) =
n−m−1∑
i=0

s̃i −
n−m−1∑
i=0

si

0 ≤
n−m−1∑
i=0

(s̃i − si) = s̃n−m−1 − s0 +
n−m−2∑
i=0

(s̃i − si+1) ≤ n

Then
n−m−1∑
i=0
|M(y[i . . i+m− 1])4M(y[i . . i+m])| ≤ 2nσ+n. Now, we consider

the set M(y[i . . i+m])4M(y[i+1 . . i+m]), with Lemmas 9.4.4 and 9.4.5 we obtain
a similar inequality:

n−m−1∑
i=0
|M(y[i . . i+m])4M(y[i+ 1 . . i+m])| ≤ 2nσ + n. Thus

we obtain the desired bound by the triangle inequality.
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9.5 Algorithm to compute minimal absent words
in a sliding window

Consider a word y of length n on an alphabet Σ of size σ. Our goal is to maintain
the set of MAWs for a sliding window of size m. That is, for all successive i ∈
[0, . . . , n −m], we want to compute Mm(i) = M(y[i . . i + m − 1]).

For a word z, by Σ(z) we denote the alphabet of z and by V (z) the set of explicit
nodes in the suffix tree of z. Consider the map f : M(z)→ Σ(z)× V (z) defined by
f(aub) = (a, vub), where a ∈ Σ and vub is either the explicit node corresponding to
the factor ub or the immediate explicit descendant node if this node is implicit.

Lemma 9.5.1. Map f is an injection.

Proof. Let w,w′ ∈ M(z), w 6= w′, w = aub and w′ = a′u′b′, with a, b, a′, b′ ∈ Σ(z)
and u, u′ ∈ Σ(z)∗.

Suppose that f(w) = f(w′), then a = a′ and vub = vu′b′ . Thus ub and u′b′ are
distinct prefixes of the factor corresponding to vub, consequently one is prefix of the
other, without loss of generality ub is prefix of u′b′. Then aub is a prefix of au′b′,
this is impossible as they are both MAWs of z. Thus two distinct elements of M(z)
cannot share the same image by f , so f is an injection.

Lemma 9.5.1 allows us to represent all MAWs by storing a set of letters in each
explicit node of the tree. We will call this set the maw-set. Moreover, a letter a
in the maw-set will be tagged iff u corresponds to an implicit node in the tree.
Observe that a can become tagged only when u is a repeated suffix of y. This
is because factors au and ub define distinct occurrences of u, and the occurrence
of au must be a suffix, otherwise u would be followed by two distinct letters and
would then be an explicit node. Besides maw-sets, we will also need to store in each
explicit node another set of letters: the set of all letters preceding the occurrences
of the factor corresponding to the node.

By induction, assume we are at position i, the suffix tree Tm(i) is built and the
set of MAWs Mm(i) has been computed. We now explain how to update Tm(i) and
Mm(i) to obtain Tm(i + 1) and Mm(i + 1). The tree is updated based on Senft’s
algorithm, by first adding a letter to the right of the current window and then deleting
the leftmost letter. The set of MAWs is updated using Lemmas 9.4.1, 9.4.2 and
9.4.4, 9.4.5 respectively. The algorithm will maintain positions si, pi, s̃i, p̃i, ssi, ppi
as defined in Section 9.4.3. We store the leaf nodes in a list so that the last created
leaf and the “oldest” leaf currently in the tree can be accessed in constant time.
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Adding a letter to the right.

We follow Ukkonen’s algorithm for updating the suffix tree. Recall that Ukkonen’s
algorithm proceeds by updating the active node in the tree. At the beginning of
each iteration, the active node corresponds to the longest repeated suffix, i.e. to
factor y[si . . i + m − 1]. The node corresponding to the longest repeated prefix
is called the head node.

The algorithm starts from the active node and updates it following the suffix
links until reaching a node with an outgoing edge starting with y[i+m] – this node
corresponds to the suffix starting at s̃i. At the same time, we compute MAWs of
type 3 that are created. For each si ≤ j < s̃i, we perform the following.

• If the active node is implicit we make it explicit. We set its set of preceding
letters equal to its child’s set. We move the untagged letters of the maw-set
of its child to the maw-set of the active node. We untag the tagged letters of
the maw-set of its child. If the last node created at this window shift does not
have a suffix link, we add a suffix link from this node to the active node. We
add the letter corresponding to this suffix link to the set of preceding letters
of the active node.

• We create a leaf labelled j, with y[j − 1] in its set of preceding letters. We
create an edge from the active node to this leaf with the label y[i+m].

• For each letter a 6= y[j − 1] in the set of preceding letters of the active node,
ay[si + j . . i + m] ∈ Mm+1(i)\Mm(i) (type 3 in Lemma 9.4.2), therefore we
add a in the maw-set of the leaf.

The current active node corresponds to the factor y[s̃i . . i+m− 1]. According to
Lemma 9.4.1, there is exactly one MAW to be deleted which is y[s̃i − 1 . . i + m].
This MAW is stored in the child of the active node by following the edge starting
with y[i + m]; we remove y[s̃i − 1] (tagged or not) from its maw-set.

Then we update the active node by following the edge starting with y[i+m]; now
it corresponds to the factor y[s̃i . . i+m]. If the head node was also corresponding
to the factor y[s̃i . . i + m − 1], we move it down with the active node; we have
p̃i+1 = pi + 1, otherwise we have p̃i+1 = pi. If the active node is explicit, we update
its set of preceding letters by adding y[s̃i − 1].

Then, for each letter b occurring after an occurrence of y[s̃i . . i+m] in y[i . . i+
m− 1], y[s̃i− 1 . . i+m]b ∈Mm+1(i)\Mm(i) (type 2 in Lemma 9.4.2). These MAWs
are stored in their corresponding child of the active node. If the active node is
implicit, there is only one of them and we tag the letter.
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By Lemma 9.4.2, if ssi = s̃i − 1, then y[i + m]y[s̃i − 1 . . i + m] is the new
MAW of type 1. We store it in the maw-set of the child of the active node by
following the edge starting with y[i + m].

Deleting the leftmost letter.

We note that the longest repeated prefix of y[i . . i+m] is y[i . . p̃i+1], and its longest
repeated suffix is y[s̃i . . i + m]. At the beginning of this step they correspond
respectively to the head node and the active node. Consider the parent of the oldest
leaf of the tree, similarly as in Senft’s algorithm two cases are distinguished.

• If the head node is an explicit node, then it is the parent of the oldest leaf.
We remove the leaf and its incoming edge. If the head node has only one
remaining child, we delete the node and merge the two edges; the maw-set
associated to the node is added to the leaf.

• Otherwise, the head node is on the edge leading to the oldest leaf. We replace
the leaf by a new one labelled by s̃i, with y[s̃i− 1] as the only preceding letter,
and the edge is relabelled by y[s̃i− 1]. We add y[s̃i− 1] to the set of preceding
letters of the parent of the leaf.

The MAWs associated to the leaf we have deleted were those of type 3 (Lemma 9.4.5).
We now update the tree and compute the other MAWs to remove and add.

We visit the oldest leaf in the tree and empty its set of preceding letters. Then
we move up in the tree following back the edges until we have covered p̃i+1− i letters.
We move the head node to this node: it corresponds to the factor y[i + 1 . . p̃i+1].
If the active node was equal to the head node, we move the active node to this
node; we have si+1 = s̃i− 1, otherwise we have si+1 = s̃i. Each of the explicit nodes
visited on the path from the oldest leaf to the head node corresponds to a factor
y[i + 1 . . j], with pi+1 ≥ j > p̃i+1. For each of them, we remove y[i] from their
set of preceding letters. For each of their children, we remove letter y[i] (tagged
or not) from their maw-set (type 2 Lemma 9.4.5).

There is at most one MAW of type 1 that has to be deleted (Lemma 9.4.5).
It exists iff y[i] = y[i + 1] and ppi+1 = p̃i+1 + 1, in which case we remove it from
the maw-set of the child of the head node by following the edge starting with y[i].
According to Lemma 9.4.4, removing the leftmost letter creates one MAW, which
is y[i]y[i + 1 . . p̃i+1 + 1], thus we add y[i] to the maw-set of the child of the head
node by following the edge starting with y[p̃i+1 + 1]. If the head node is implicit
and thus equal to the active node we tag the letter y[i].
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Finally, if the head node is above the parent of the oldest leaf of the tree, we
move it down to this node. If the active node is implicit and on the edge leading
to the oldest leaf of tree we set the head node equal to the active node.

An illustrative example of our algorithm is shown in Section 9.7.

Complexity.

The algorithm extends Senft’s algorithm for the construction of the suffix tree in a
sliding window. For addition and deletion of a letter, the number of operations is
respectivelyO(σ(s̃i−si)) andO(σ(pi+1−p̃i+1)). Similar to the proof of Theorem 9.4.7,
we obtain that the total number of operations is O(σn). We use O(σm) space to
store the suffix tree for the factor inside the window. The O(σ) factor is to store an
array of size σ at each explicit node for constant-time child queries. We also use up to
4m arrays of size σ each to store the two sets of letters – the suffix tree has no more
than 2m explicit nodes. We also store the word itself over two windows. Thus the
total space complexity is bounded by O(σm). We thus obtain the following result.

Theorem 9.5.2. Given a word of length n on an alphabet of size σ, our algorithm
computes the set of minimal absent words in a sliding window of size m in O(σn)
time and O(σm) space.

9.6 Applications to on-line pattern matching

Chairungsee and Crochemore introduced the Length Weighted Index (LWI), a
metric based on the symmetric difference of minimal absent words sets [84]. The
LWI was then applied by Crochemore et al. [85] to devise an O(m+ n)-time and
O(m+ n)-space algorithm for alignment-free comparison of two sequences of length
m and n on a constant-sized alphabet. More recently, different such indices have
been studied for sequence comparison and phylogeny reconstruction [86]. We base
our new pattern matching algorithm on this LWI. To maintain the LWI across the
word y, we need to compute the set of minimal absent words in a sliding window
of size m = |x| of y. Several linear-time and linear-space algorithms have been
proposed to compute the set of minimal absent words [73, 129, 130, 135]. Ota et
al. presented an on-line algorithm that requires linear time and linear space [132].
However, to the best of our knowledge, the problem of computing minimal absent
words in a sliding window has not been addressed so far.

The LWI is based on the size of the minimal absent words that are in the
symmetric difference of the two sets of MAWs we compare. Thus a direct application
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to our algorithm is on-line approximate pattern matching using the LWI over the
pattern an every window of size m of the text.

This yields, to the best of our knowledge, to the first algorithm for the classical
on-line exact pattern matching problem that uses some form of negative information
(minimal absent words) for the comparison.

Theorem 9.6.1. Given a word x of length m on an alphabet Σ of size σ, one can
find on-line all occurrences of x in a word y of length n ≥ m on alphabet Σ in
O(σn) time and O(σm) space. Within the same complexities, one can also compute
on-line LWI(M(x),M(y[i . . i+m− 1])), for all 0 ≤ i ≤ n−m.

Proof. As a pre-processing step, we first build the suffix tree of x and compute the
MAWs of x. At the same time, by Lemma 9.5.1, we represent all MAWs of x by
storing a set of letters in each explicit node of the tree. This can be done in O(σm)
time and space [73]. We then apply Theorem 9.5.2 to build the suffix tree for a
sliding window of size m over y on top of the suffix tree of x. This way when a
MAW is created or deleted we can update LWI in O(1) time as we can check if it is
a MAW of x or not. For the first part, note that two words x and z are equal if and
only if LWI(M(x),M(z)) = 0 [73, 78]. We thus obtain the result.

9.7 An illustrative example of the algorithm

Let y = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

G
9

A
10

A
11

· · · and m = 8. The first three window shifts are
illustrated in the figures below. The longest repeated prefixes (head node) are shown
in green and the longest repeated suffixes (active node) are shown in blue. The
modifications from one tree to the other are shown in red. The sets representing
the MAWs are denoted by M and those representing the set of preceding letters
are denoted by B. Tagged letters are shown by a subscript ‘+’. The figures are to
be read from left to right and then from top to bottom.

First shift of the window z0 = A
0

C
1

A
2

C
3

A
4

A
5

G
6

C
7

:

• Part 1: Adding A on the right. The active node has a child by A, thus there
is no MAWs of type 3, the active node is also the node corresponding to the
suffix starting at s̃0.

– We remove the MAW GCA, stored in the destination of the edge contain-
ing the active node.

– We move down the active node (in blue) of one letter, this node is explicit.
We update its set of letters by adding the letter G.
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– In each child of the active node we store y[s̃0 − 1] = G in their maw-set
(type 2).

– ss0 6= s̃0 − 1 thus there is no MAW of type 1.

• Part 2: Removing A on the left.

– The head node corresponds to an explicit node in green. We remove the
MAWs stored in the oldest leaf of the tree (in red), CACAC (type 3). The
head node has only one remaining child. Thus we make it implicit, and
its maw-set goes to its leaf. We add its set of letters to its parents.

– We go to the oldest leaf in the tree, we empty its set of preceding letters.
Then we move 6 letters up. We move the head node to this node. There
were no explicit nodes on the way, thus there is no MAW of type 2.

– pp1 6= p̃1 + 1, thus there is no MAW of type 1.

– The MAW to create is ACAC, we store it in the oldest leaf with the letter
A.

Second shift of the window z1 = C
1

A
2

C
3

A
4

A
5

G
6

C
7

A
8

:

• Part 1: Adding G on the right.

– The active node is explicit but it does not have a child by G, thus we
create a leaf labelled s1 = 7, with y[s1− 1] = G as a preceding letter. For
every letter a preceding the active node, except G we add a as a MAW
in the leaf, thus we add A. We move up the active node following the
suffix link.

– The active node is explicit and it has a child by G.

∗ We remove the MAW CAG stored in the child of the active node by
G.

∗ We move down the active node by following G.
∗ The active node is now implicit, thus there is only one letter following

its corresponding factor, we add y[s̃1 − 1] = C in the maw-set of the
destination of its edge (type 2), we tag this letter.

∗ ss1 6= s̃1 − 1 thus there is no MAW of type 1.

• Part 2: Removing C on the left.

– The head node is explicit, we remove the oldest leaf, and its corresponding
MAWs ACAC and GCAC (type 3).
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– We visit the oldest leaf of tree. We empty its set of preceding letters.
Then we move up 7 letters. We move the head node to this node. There
were no explicit nodes on the way, thus there is no MAW of type 2.

– pp2 6= p̃2 + 1 this there is no MAW of type 1.

– There is one MAW to create it is y[1]y[2..p̃2 + 1] = CAC we add it to the
head node.

Third shift of the window z2 = A
2

C
3

A
4

A
5

G
6

C
7

A
8

G
9

:

• Part 1: Adding A on the right.

– The active node is implicit, we make it explicit. We set its set of preceding
letters equal to its child’s. There is no untagged letter in the maw-set of
its child, we untag the tagged letter of its child.

∗ We create a new leaf, labelled s2 = 8 with y[s2 − 1] = C in its set of
preceding letters.

∗ A 6= y[s2−1] precedes the active node, thus we add A in the maw-set
of the new leaf (type 3). And we move the active following the suffix
links.

– The active node is still implicit, we make it explicit. We set its set of
preceding letters equal to its child’s. We move the untagged letters of
the maw-set of its child to the maw-set of the active node.

∗ We create a new leaf, labelled s2 + 1 = 9 with y[s2] = A in its set of
preceding letters.

∗ There is no MAWs of type 3, as the active node is only preceded by
A. We create a suffix link from the last node created to the active
node. We move up the active node by following the suffix links.

– The active node is now explicit, it is the root:

∗ We remove y[s̃2 − 1] = G stored in the child of the active node by A.
∗ We move down the active node by following A. This node is explicit,
we add y[s̃2 − 1] = G to its set of preceding letters.

∗ We add y[s̃2− 1] = G in the maw-set of each child of the active node
(type 2).

∗ There is no MAWs of type 1.

• Part 2: Removing A on the left.
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– The head node is explicit, we remove the oldest leaf, and its corresponding
MAWs AAC, GAC and GAC (type 3).

– We visit the oldest leaf of tree. we empty its set of preceding letters.
Then we move 8 letters up. We move the head node to this node. There
is one explicit node on the way, we consider it.

∗ We remove y[2] = A from its set of preceding letters.
∗ We remove y[2] = A from the sets of MAWs of its children.

– There is no MAWs of type 1, there is one MAW to add it is AC, we store
it the child of the head node that lead to the oldest leaf in the tree.

– We move the head node to the node corresponding to the parent of the
oldest leaf in the tree.
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Conclusion

In the more theoretical part of my PhD, I studied thoroughly the computation
of minimal absent words. I proposed four algorithms to compute minimal absent
words. The first one, MAW, is the fastest available algorithm to compute all minimal
absent words in a sequence over a constant size alphabet. Then pMAW, is another
algorithm based on the same idea and engineered to be compatible with parallel
computation. em-MAW is adapted to use as little RAM as the user want (up to a few
kB). We provided an implementation for these three algorithms, they are available
at https://github.com/solonas13/maw, under the GNU GPLv3 License.

Finally, I introduced a new algorithm that rather than computing the minimal
absent words for the whole sequence, computes them for a sliding window over
the sequence. Its applications can be numerous. Indeed when combined with a
distance based on the set of minimal absent words it yields to the first algorithm
for the on-line exact pattern matching problem that uses some form of negative
information for the computation. This problem has many applications including
computational biology. Indeed our method could be used to search for seeds in
a genome for a mapping algorithm. However this method can not scale because
the search is linear in the size of the genome, not in the size of the read as it
should be for an aligner. Nonetheless we could try to use it for the reads that did
not align on the genome, or to look for a portion of the genome that is similar in
terms of absent words. An other application more general to the computation of
minimal absent words is the phylogeny. This idea was introduced by Chairungsee
in [84], but we could go further by using the algorithms we have developed whose
performances are far better from the one used at the time.

I have also worked on the Range Minimal Query (RMQ) problem. It consists
in answering efficiently the question: ‘what is the minimal element between two
specified indices in a given array?’. This problem is highly related to the problem
of finding the Lowest Common Ancestor (LCA) of a pair of nodes in a rooted
tree, widely studied, especially in phylogeny. We introduced a new approach that
is asymptotically slower and less space efficient than state-of-the-art approaches.
However our novel structure has a strong advantage; it can be maintained whenever
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an insertion, modification or deletion modifies the input sequence. Thus we proposed
a new algorithm for dynamic range minimum query [136].

I have had a small contribution in the study of the Combinatorial RNA Design,
for the energy models of Watson-Crick and Nussinov-Jacobson [137]. The problem
is, given a structure, to find a sequence such that the RNA will preferentially
fold into this structure for the chosen energy model. The RNA Design is a core
problem because the structure is very important for an RNA, often more than its
sequence as the structure gives the function. Solving the RNA Design problem
should allow to creates an RNA that will fold into the desired structure. However
this problem is very complex, and it requires a realistic energy model. We were
able to solve it only for basic energy models and further work need to be done
to adapt it to more complex energy models.

These two projects were related but totally independent from the two main
projects of my PhD, thus I have not detailed them in the manuscript.

The more applied project of my PhD was to identify the circRNAs in P.abyssi.
In theory it may seem quite straightforward, but the data revealed to be noisy.
Finally, we were able to identified 42 circRNAs with high-confidence because we
obtain them by combining the results of several independent experiments. However
we are not able to estimate the rate of false negatives and our criteria might be too
stringent. That was not our concern as we wanted to have as little false positive
as possible to identify the circRNAs that interacts with Pab1020 . The elaborated
method will be used to analyse the output of further RNA-Seq experiments that
we have just started and whose aim is to study the circularization function of
the Rnl3 protein family in other organisms.
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ABSTRACT
It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including
the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic
significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we
demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed
an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a
combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133
individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and
circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these
studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional
speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for
further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into
the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications
e.g. in ligation of preadenylated adaptors to RNA molecules.

KEYWORDS
Archaea; circular RNA;
computational biology; RNA
ligase; RNA-Seq

Introduction

For a long time, circular RNA molecules (circRNAs) lacking 30

or 50 termini were considered an unusual form of nucleic acids
found in few viroids or viruses using a single-stranded RNA
molecule as genetic material, participating in maturation of
some tRNA genes, or, alternatively, a result of aberrant RNA
splicing (for recent reviews, see1-3). However, numerous recent
genome-wide experimental and computational studies (RNA-
seq analyses) tailored toward detection of circRNAs have
revealed this class of RNA molecules as abundant in eukarya,
including humans. Evolutionary conservation of circRNAs has
suggested that they are functionally important. Indeed, recent
studies have revealed that circRNAs are differentially expressed
in different human cell lines and tissues, serve as regulators of
transcription and protein expression and can act as miRNA
sponges.4-7 Several different types of RNA circles originating
from diverse cellular processes have been identified. Most
eukaryotic circRNAs result from splicing reactions that are cat-
alyzed either by the spliceosome or ribozymes corresponding
to Group I and Group II introns. The process called “backsplic-
ing” that connects a downstream splice donor site (50 splice
site) to an upstream acceptor site (30 splice site) is the most
common mechanism producing circRNAs in eukaryotic cells.
During the formation of circRNAs either 20–50 or 30–50 linkages
have been detected.8,9 The resulting molecular “rings” or RNA
circles resist degradation by exoribonucleases that require free
termini and/or may have increased melting point in compari-
son to linear nucleic acid molecules. Circularization of RNA

molecules may thus drastically influence the structure and/or
shape of these molecules, presumably reflecting structural con-
straints brought about by circularization.

Although the majority of recent work on circRNAs has
been performed using human cell lines, circular RNAs also
exist in archaea and bacteria, in addition to the aforemen-
tioned viroids and RNA viruses. This raises the question
how circular RNA molecules are formed in prokaryotes,
where RNA splicing is a rare phenomenon. RNA-seq meth-
odology revealed an abundant genome-wide presence of
circRNAs in the transcriptome of the archaeon Sulfolobus
solfataricus10 such as tRNA introns and rRNA processing
intermediates, as well as several protein-coding genes, and
many smaller non-coding RNAs (e.g., box C/D RNAs). This
genome-wide study is also in agreement with earlier studies
that have revealed the presence of circular forms in excised
tRNA-introns,11,12 introns of rRNAs,13,14 rRNAs processing
intermediates15 and box C/D RNAs in archaea.16 Note that
box C/D RNAs guide site-specific modification (20-0-meth-
ylation) of rRNA and small nuclear RNA in eukaryotes and
tRNA in archaea.17 RNA-seq data obtained using the “mini-
mal” archaeon Nanoarchaeum equitans also revealed circu-
lar box C/D RNAs sequences.18 The specific case where the
cleaved-out intron contains a C/D box RNA that guide 20-
O-methylation on nucleotides in the anticodon loop of
mature tRNA-Trp should also be highlighted.12,19 At least 2
separate enzymes, an endonuclease and a ligase, are known
to be involved in pre-tRNA splicing in archaeal cell free
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extracts.20 The endonuclease cleaves in a characteristic
bulge-helix-bulge structure (BHB) of pre-tRNA-Trp, pro-
ducing 20-3-cyclic phosphate and 50-hydroxyl termini joined
by the ligase.11 In addition to ligation of resulting tRNA
halves, circularization of the pre-tRNA Trp intron occurs in
a mechanistically similar ligation reaction, as observed using
H. volcanii extracts.11,19

Considering the widespread presence of circRNAs in the
third domain of life is now evident, further studies on
archaeal RNA ligases are now necessary. Up to date, 2 evolu-
tionary unrelated families of RNA ligases capable of joining
single stranded RNA molecules have been identified in
archaea. RtcB proteins seem to function in most, if not all,
archaea as GTP-dependent tRNA-splicing ligases and join
spliced tRNA molecules halves to form mature-sized tRNAs
molecules e.g., in archaeal precursor tRNA-Trp.21 The obser-
vation that the genomes of some archaea contain 2 open
reading frames, previously predicted to function as DNA
ligases, led to the discovery of a putative second family of
archaeal RNA ligases.22,23 The founding member of this
putative RNA ligase family is the Pyrococcus abyssi reading
frame Pab1020. This family (InterPro code IPR001072) cur-
rently contains 170 archaeal and 35 bacterial homologs but
little is known concerning the molecular function of this
conserved protein family. We have previously shown that,
unexpectedly, Pab1020 catalyzed the circularization of physi-
ologically non-significant oligoribonucleotides in an ATP-
dependent reaction.22 Similar results have also been reported
for closely related Methanobacterium protein that catalyzes
the intramolecular ligation of 50-P single-stranded RNA to
form a covalently closed circular RNA molecule.24-27

Here using a combination of biochemical, RNA-seq and
computational analyses, we have investigated the molecular
function of the Pab1020 RNA ligase family.24,28 Our genome-
wide RNA co-immunoprecipitation studies, using affinity puri-
fied Pab1020 antibodies, led to the discovery of a large number
of circular RNAs that specifically interact with Pab1020 RNA
ligase in P. abyssi cells and were indeed efficiently circularized
by the Pab1020 in vitro. Our studies also indicate a widespread
importance of circular RNAs in prokaryotes and suggest a
functional speciation of an archaeal polynucleotide ligase
toward RNA circularization activity in many thermophilic
archaea and bacteria. The identification of physiologic sub-
strates for the Pab1020 RNA ligase may also facilitate develop-
ment of new biotechnological applications for this enzyme
family currently commercialized for e.g., labeling of 30 termini
of RNA.

Results

Domain structure of the Pab1020 family RNA ligases

Pab1020 is the founding member of the conserved Rnl3
family of RNA ligases28 that are predominantly found in
hyperthermophiles (archaea, bacteria) and halophiles. Each
Pab1020 monomer consists of 4 domains: the amino-termi-
nal (N-term), the catalytic nucleotide transferase (NTase),
the dimerization (Dim) and the C-terminal (C-term)
domains [22, Fig. S1A]. To address why these proteins are

frequently annotated as “DNA” ligases, we have performed
several sequence similarity searches indicating that the cen-
tral NTase domain of Pab1020 is closely related to the
CDC9 domain found in ATP-dependent DNA ligases [resi-
dues 66–235, E-value 1.21¡5, CDD database29]. This domain
carries the conserved nucleotide binding domain and corre-
sponds to the minimal catalytic core of this family of
enzymes. More sensitive HHpred searches based on the
pairwise comparison of profile hidden Markov models
(HMMs) also indicated that this domain is related to
COG1793 [ATP-dependent DNA ligases, E-value D 7.6¡23)
and COG0272 [NAD-dependent DNA ligases, E-value D
2.1¡14]. Note also that the NTase domain of Pab1020 is
26% identical and 37.8% similar with the corresponding
domain from the experimentally validated P. abyssi DNA
ligase Pab2002 and carries all the expected motifs for ATP-
dependent polynucleotide ligases.22 Additional HHpred
searches using the Pab1020 protein sequence as a query fur-
ther indicated that, at the sequence level, this proteins is
related to ATP or NADC-dependent DNA ligases, as well
as different families of RNA ligases, mRNA capping
enzymes and RNA repair enzymes (Table 1). These results
explain why members of the Rnl3 family are frequently
misannotated as DNA ligases. An excellent example of this
is the putative Aquifex aeolicus DNA ligase (PDB code
3qwu_A in Table 1). This bacterial protein is very likely an
RNA ligase, as it contains a dimer interface that is only
conserved among the Rnl3 family members in the PDB
databank.

Differently from monomeric DNA ligases, Pab1020
(Rnal3) ligases form a homodimer, which is a very rare fea-
ture among polynucleotide ligases and warrants further
attention. Several features predict that this dimer interface
is critical for Pab1020 complex assembly and/or function.
For instance, PDBePISA analysis showed that the interface
formed between 2 monomers has an interface area of
»2274 A

! 2, with a high complex formation significance score
of 0.518. Up to 58 residues (15.5% of total) interact between
the 2 Pab1020 monomers. Interestingly, these residues are
not randomly located within the Pab1020 polypeptide but,
on the level of the primary sequence, are mainly found on
either side of the catalytic domain.22,24 One particularly
interesting interface residue is Gly296 that is strictly con-
served among the Pab1020 family members (several addi-
tional residues of the domain interface are also evolutionary
conserved). This residue is part of a C-terminal dimeriza-
tion domain composed of 3 a-helices found at the dimer
interface and generates a kink in the helix a10. Our
dynamic light scattering studies indicated a hydrodynamic
radius of approximately 10 nm for the Pab1020 wild type
protein while the mutants G296A and DC-ter formed
higher molecular weight molecules without precipitating.
Therefore we suppose that the dimerization and C-terminal
domains of Pab1020 are required for optimal assembly of
the active homodimer. A similar suggestion has very
recently been made for the M. thermoautotrophicum RNA
ligase.25 Note also that the C-terminal domain of Pab1020
forms additional contacts with the other monomer, particu-
larly in the proximity of the active site.
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Polynucleotide ligase, but not nucleic acid binding, activity
of Pab1020 is specific for RNA

The nucleic acid binding activity of Pab1020 was investigated
by electrophoretic mobility shift (EMSA) assays using various
Cy5-labeled nucleic acid substrates. Binding reactions were per-
formed using 50-dephosphorylated substrates to prevent any
substrate circularization and/or ligation activities during EMSA
assays (Fig. 1A). Our results revealed that Pab1020 formed a
well-defined oligonucleotide-ligase complex with ssRNA oligo-
nucleotides under stoichiometric conditions. Under these
experimental conditions, some ssDNA binding was also
observed (Fig. 1A). We then investigated the ligase activity of
Pab1020 at 50!C after 50-phosphorylating oligos used for bind-
ing assays, including Mn2C as divalent cation in a standard
activity buffer. Our results revealed that Pab1020 only showed
circularization activity on ssRNA, while no activity was
observed with ssDNA (or the different RNA/DNA homo- or
hetero- oligonucleotide duplexes tested) used for binding assays
(Fig. 1B). In these experiments, the circular RNA product
migrated “faster” than the linear substrate ssRNA, in agreement
with earlier studies.25 In these assays, the “catalytic” K95G
mutant of RNA ligase Pab1020 was inactive, thus confirming
that RNA specific circularization was indeed catalyzed by
Pab1020. The Pab1020 G296A variant and the NTase domain
alone still had weak RNA binding activity (Fig. 1C). We also
stress that Pab1020 mutants G296A and “NTase domain” were
inactive in circularization assays, albeit they still possessed a
very weak adenylating activity, as witnessed by a very faint
band migrating “slower” than the linear RNA substrate
(Fig. 1D). These results suggest importance of the dimerization
and/or the C-terminal domains for RNA circularization
activity.

Pab1020 interacts with circular RNAs in cell-free extracts

As our biochemical studies confirmed that Pab1020 indeed acts
as RNA ligase, we further investigated the substrate specificity of
this protein in the cell. For these studies, 2 different RNA sam-
ples were analyzed using an experimental and computational
RNA sequencing pipeline (Fig. 2A). For these studies a total
RNA sample was extracted from a stationary phase culture of P.
abyssi while a second sample was obtained by co-immunopre-
cipitation of RNA ligase Pab1020 after formaldehyde crosslink-
ing between Pab1020 and cellular RNAs (RIP assay). Note that
the affinity purified polyclonal antibody used for pull-down
experiments revealed a single band in Western immunoblots of
P. abyssi cell-free extracts (Fig. S1B). Isolated RNase III-frag-
mented RNA was used to prepare a RNA-seq library and
sequenced following the Ion Torrent PGM RNA-seq protocol.
Typical sequencing runs yielded »400 000 reads with a read size
of 80 to 90 base pairs. All these reads were mapped to the P.
abyssi reference genome reference (NC_000868, 1765118 base
pairs) using Blastn. The unique criterion of the inversion of 2
matches within the same locus (Fig. 2A) led to the identification
of approximately 80 000 putative circular RNAs suggesting up
to 30 000 distinct junctions. To enrich for circRNAs, we used
RNase R that specifically degrades linear RNA molecules in a 50-
30 direction. For the total RNA fraction, our data revealed
approximately 285 000 reads that resisted RNase R treatment
and were mapped to the genome. Note that we still obtained lin-
ear reads using RNase R treated samples indicating that RNase
R did not degrade all linear RNA molecules under these condi-
tions (Table 2). However, 11 to 15 % of reads obtained using an
RNase R enrichment were classified as “circular” using our
computational criteria (see material and methods). These circu-
lar reads covered only a minor part of the transcribed genome

Table 1. Level of sequence similarity of Pab1020 with different protein families carrying the nucleotidyltransferase (NTase) domain.

Hit PDB code (chain) Description of the hita E-value number of aligned positions Query range HMM Template

HMM-HMM comparison against protein structure database
1 2vug_A Pab1020; RNA ligase 5.6E-63 381 1–382 8–389
2 5d1p_A ATP-dependent RNA ligase 2.2E-51 366 9–380 7–378
3 3qwu_A Putative DNA ligase 1.0E-50 361 17–382 4–370
4 1dgs_A DNA ligase; NAD-dependent 1.3E-38 270 37–344 32–369
5 4 glx_A DNA ligase, NAD-dependent 6.0E-38 272 37–344 30–371
6 2owo_A DNA ligase, NAD-dependent 1.7E-37 272 37–344 30–371
7 3sgi_A DNA ligase, NAD-dependent 2.3E-38 272 37–344 39–381
8 1b04_A DNA ligase, NAD-dependent 2.1E-31 224 37–284 32–317
10 3jsl_A DNA ligase; NADC-dependent 6.7E-30 219 37–260 30–310
14 5cot_A Naegleria gruberi RNA ligase 1.1E-16 173 62–244 133–330
15 1s68_A RNA ligase 2; ATP-dependent 5.7E-16 174 65–247 2–231
16 2hvq_A T4 RNA Ligase 2, ATP-dependent 1.0E-15 199 65–276 3–272
17 2c5u_A RNA ligase, ATP-dependent 2.8E-14 200 29–244 30–244
18 3l2p_A DNA ligase 3, ATP-dependent 1.6E-13 159 87–246 246–426
19 3w1b_A DNA ligase 4, ATP-dependent 2.3E-13 181 65–246 241–455
20 2cfm_A Pyrococcus DNA ligase (ATP) 2.9E-13 157 87–245 241–424
23 4pz7_A mRNA-capping enzyme 6.9E-14 202 43–259 21–259
27 1ckm_A mRNA capping enzyme 2.3E-12 165 66–252 54–245
28 1xdn_A RNA editing ligase MP52 3.7E-12 173 65–244 8–263
29 3rtx_A mRNA-capping enzyme 7.5E-13 202 45–264 25–257
31 1p16_A GTP–RNA, mRNA capping 2.3E-13 205 43–259 19–259
32 1a0i_A DNA ligase; ATP-dependent 6.5E-12 152 88–246 26–242
33 3kyh_C mRNA-capping enzyme 2.3E-12 204 44–259 23–267
34 4xrp_B RNL; RNA repair, kinase 1.2E-06 199 43–244 5–316

aThe level of sequence similarity of Pab1020 to the different proteins carrying a NTase domain was revealed using HHpred implemented at www.toolkit.tuebingen.mpg.
de. Homologies were detected using a highly sensitive HMM-HMM comparison mode with default settings. Searched database used was “pdb70_12jun16. Similar results
were obtained using Pfam and COG databases.
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(Table 2), therefore indicating that the combined experimental
and computational criteria are strict.

We are aware that our experimental and data analyses pro-
tocols may be prone for unwanted artifacts. Hence, to establish
more selective criteria for circRNA identification we first
merged the sequencing data from all of our experiments to
identify the maximum number of circular RNAs. We observed
that the circularization junctions were frequently shifted by 1
to 3 nucleotides between the different reads. This may either
reflect the slight heterogeneity in choosing the transcription
initiation site, or, alternatively, the presence of an identical base
in 50 and 30 termini of a transcript that cannot be solved during
the read mapping. Thus, we grouped together those putative
circular reads where the circular junctions were located within
3 nucleotides. To be classified as circular, we only selected junc-
tions that were identified at least in 2 independent experiments
and supported each time by more than 3 individual reads that
may have different start and end positions. We also requested
that at least half of these putative circular reads that aligned
entirely inside a given putative junction supported the junction.

With these strict and multiple constraints, we identified in P.
abyssi a total of 133 individual circRNA loci (Fig. 2B) supported
by 28 279 circular reads (Fig. 2C). The large majority of these
RNA molecules interacted with Pab1020 in pull down experi-
ments (Table 2, see also discussion).

Identification of functional categories of circular RNAs

The 133 P. abyssi circRNA loci represent 5 distinct functional
groups: C/D Box RNA, non-annotated small RNAs, protein
coding RNA, tRNA and rRNA (Fig. 2B). Among these, circular
reads were overrepresented for 38 circular C/D Box and 5
tRNA molecules. Although 71 loci out of 133 loci corresponded
to protein coding mRNAs, these were supported only by 3% of
the analyzed reads (Fig. 2C). This approach also led to the dis-
covery of 13 new circular RNAs was also identified [marked as
non-annotated (NA) in Fig. 2B and C].

As pointed out by Danan et al,10 it is necessary to be atten-
tive in attributing positions of circular junctions that are possi-
bly influenced by reverse transcription, sequencing and
mapping errors. The constraints applied in our computational
pipeline (see materials and methods), allow attaining highly
selective circRNAs identification. Numerous circRNAs, includ-
ing non-coding RNAs, i.e. C/D box RNA, tRNA-intron and
rRNA, were also observed in previous study.10

We also noticed that circRNAs corresponding to the differ-
ent functional categories did not behave identically in RNase
R-enrichment experiments. Strikingly, the relative portion of
circular reads markedly increased after RNase R treatment
from 35% to 86% for C/D Box RNAs and was constantly high,
around 88%, for tRNAs (Fig. 2D). The fact that RNase R

Figure 1. Pab1020 RNA ligase binds single-stranded DNA and RNA, but only circularizes single-stranded RNA oligonucleotides. (A) EMSA assays were performed with
internally labeled (Cy5) single stranded DNA or RNA oligonucleotides using increasing amounts of wild-type (WT) Pab1020 RNA ligase. The relative amount of bound
DNA or RNA was plotted against the protein concentration. Insert: On the EMSA gel, the amount of the higher molecular weight bands, corresponding to Pab1020-nucleic
acid complexes, increased as a function of the protein concentration. (B) RNA and DNA ligation assays with WT and mutant K95G of Pab1020 RNA ligase. Standard ligation
reactions containing 10 pmol Cy5-RNA or -DNA molecules and 200 pmol RNA ligase Pab1020 were incubated 90 min at 50!C. Reaction products were resolved on dena-
turing PAGE and a 700 nm scan of the gel was performed on Licor Odyssey Infrared Imager. While no activity was observed with DNA substrate, Pab1020 RNA ligase circu-
larized an RNA oligoribonucleotide as shown on the gel with the apparition of a lower band corresponding to circular RNA molecules. Expectedly, a control reaction with
an inactive enzyme (mutant K95G) presented no lower band. (C) Identical to panel (A), except that the enzymes used in the EMSA assays corresponded to the mutant
G296A (dimerization domain) and the amino-terminal domain of 250 residues carrying a nucleotide transferase (NTase) domain. Both mutants were able to form RNA-Pro-
tein complexes with 18-mers single-stranded RNA. (D) Identical to panel (B), except that circularization was performed only with RNA substrate and with G296A mutant
and NTase domain. No circRNAs were observed (positive control is indicated in panel B).
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treatment induces an enrichment in the amount of reads sup-
porting circularization junctions in pull-down and total RNA
samples further indicates that Pab1020 RNA ligase specifically
associates with circular RNA loci in P. abyssi cells. For the 3
additional functional groups, this RNase R enrichment for
circRNAs was less obvious (Fig. 2D). Note that for the specific
case of the tRNA-Trp, the circularization of the encoded-intron
occurs simultaneously during the splicing process and linear
intron intermediates is not expected to occur. For others RNAs
(NA, protein coding and rRNA), the amount of circular reads

is too low compared with linear reads for a same locus to allow
the enrichment visualization. However, 3 non-annotated circR-
NAs (NA7, NA12, NA13 in Table 3) out of 13 showed some
enrichment supported by significant amount of reads (Table 3).
A high number (»38 000) of circular reads were mapped to
rRNAs (5S, 7S, 16S and 23S rRNAs) but in most cases, localiza-
tion of the precise position of the junction point from permu-
tated reads was far from evident, possibly reflecting the length
and highly structured nature of these RNAs that hinders activ-
ity of the reverse transcriptase. However, in the case of the 5S

Table 2. The summary of the RNA-seq results and RIP assays using the Pab1020 antibody.

Circular reads Linear reads

Abbreviation Sample % of mapped reads % of genomea % of mapped reads % of genome Number of mapped reads

A RIP 8.3 6.8 91.7 50.3 247060
B RIP C RNase R 14.7 2.7 85.3 8.7 44413
C Total RNA C RNase R 11.4 2.8 88.6 7.3 284856

aThe genome size of P. abyssi is 1. 76 Mbp of which at least 79.5% is transcribed. The portion of the genome (% of genome) covered by the mapped reads is indicated in
each case. Samples are referred to using abbreviations “A,” “B” and “C” in the Figs. 2 and 4.

Figure 2. Identification of P. abyssi circRNAs using high throughput sequencing. (A) The workflow for identification of circularization junctions using RNA samples isolated
from P. abyssi cells using IonTorrent semiconductor-based sequencing technology is shown. “ § RIP” refers to the fact that identical computational approach was used for
total and RNA immunoprecipitation (RIP) samples. Obtained linear and circular RNA molecules were fragmented at least once (indicated by a double arrow in panel A)
using RNase III treatment. Following reverse transcription, samples were sequenced and obtained reads were aligned to the P. abyssi reference genome using Blastn.
Reads were considered circular if 2 permuted matches covering the whole read was detected. (B) Number and percentage of the different functional classes (loci) consid-
ered circular in our sequencing experiments. (C) Number and percentage of the sequencing reads (total 28 279) supporting circularization of the different functional
groups. (D) Percentage of the reads supporting RNA circularization (supportive circular reads) of the different RNA categories. Only intron containing tRNAs as identified
as circular were included in the analysis. “Other circular reads” refers to a minority of putative circular reads that fulfill all the computational criteria indicated in panel A
without supporting the junctions identified in panel B. Samples used were: A, circular reads after RIP assays using Pab1020 antibodies; B, circular reads after RIP assay
and ribonuclease R treatment; C, circular reads in total RNA samples treated with ribonuclease R. New (NA) refers to previously non-annotated loci.
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rRNA, we identified 170 permuted reads indicating a specific
circularization event between the 50 and 30 extremities of 5S
rRNA (with a 10 nucleotide margin). As 5S rRNA interacted
with Pab1020 in cell-free extracts and its circular form has
been previously observed,10 this enzyme may participate in 5S
rRNA pre-processing via a circular intermediate, as previously
proposed for 16S and 23S rRNAs.15

Circularization of physiologically significant RNA
molecules by an archaeal RNA ligase Pab 1020

To test whether RNAs interacting with Pab1020 in the cells may
correspond to physiologically significant substrates of this

enzyme, we assayed the ligation activity of Pab1020 RNA ligase
using the linear fluorescent Cy5-RNA transcripts for 3 circRNAs
identified during this work (Fig. 3). For these biochemical stud-
ies, we choose 2 Box C/D RNAs (SR4 and SR29) and the 5S
rRNA as RNA-seq indicated that their circular isoforms exist in
the cells and they specifically interacted with Pab1020 RNA
ligase in pull-down experiments. Fluorescent RNA substrates
were prepared by in vitro transcription with T7 RNA polymer-
ase capable of incorporating Cy5-labeled nucleotide analogs.

EMSA assays indicated that the 3 analyzed transcripts [Box
C/D RNAs SR4 and SR29 (69mers) and the 5S rRNA
(122mers)] formed specific RNA-protein complexes at near
stoichiometric conditions (Fig. 3A). We also tested whether
Pab1020 RNA ligase catalyzed the intramolecular ligation of
the aforementioned transcripts (circularization) at 50!C.
Fig. 3B shows that 15% acrylamide denaturing gel was not able
to resolve the substrates and products of the RNA circulariza-
tion reactions for these longer RNAs, as we successfully demon-
strated in Fig. 1 for synthetic oligoribonucleotides. Therefore, to
further identify circular RNA molecules, we used RNase R
exoribonuclease treatment to discriminate between circular
products and linear substrate RNAs. We observed that fluores-
cent transcript corresponding to P. abyssi 5S rRNA became
partially resistant to RNase R treatment after incubation with
Pab1020, whereas the linear substrate RNA was totally
degraded (Fig. 3B). We further confirmed the RNA ligation
activity of Pab1020 on the 5S rRNA and Box C/D RNAs SR4 or
SR29 using inverse PCR. Briefly, the RNA ligation reactions
were treated with RNase R, followed by the reverse transcrip-
tion of each RNA (Fig. 3C). The outward facing (inverse) pri-
mers (when compared with the genomic sequence) were
expected to amplify only circular templates, whereas only a
small RT-product would be observed on a linear RNA template
(Fig. 3C). For the same 3 selected RNAs (Box C/D RNAs SR4
orSR29 and 5S rRNA), after incubation with Pab1020 RNA
ligase, we performed RT-PCR with the divergent primers
described above. Indeed, we observed a full-length RT-PCR
product (indicated by the asterisk in Fig. 3D) confirming RNA
circularization by Pab1020. As negative control, in absence of
RNA incubation with Pab1020 RNA ligase, the full-length
amplification products corresponding to circular molecules
(5S, SR4, SR29) were not observed (Fig. 3D).

These results from RNase R treatments and inverse PCR
amplifications, confirmed that the RNA ligase encoded by
Pab1020 gene is a (hyper)thermophilic protein that catalyzes
the intramolecular ligation of RNA molecules.

Discussion

In archaea, 2 different major families of RNA ligases have been
described. RtcB has been mainly implicated in ligation of single
stranded tRNA halves with 20-30-cyclic phosphate and 50-OH
that occurs during splicing of pre-tRNAs. The Rnl3 ligase fam-
ily, represented by Pab1020 studied here, uses similar mecha-
nism as DNA ligases where 30-OH reacts with 50-phosphate to
circularize RNA molecules. As the abundant presence of circu-
lar RNAs in all kingdoms of life, including hyperthermophilic
Archaea, has only recently emerged, we investigated physio-
logic significance of Pab1020 RNA ligase activity previously

Table 3. List of 42 highly significant circular RNA molecules interacting with
Pab1020 RNA ligase in cells. A summary of these results in the form of a Venn dia-
gram is presented in Fig. 4.

CircularRNA

Locus Start End Size Enrichmenta

38 C/D box RNAs
sR46 57374 57441 67 1.05
PabsnRNA44 (sR45) 64244 64306 62 7.08
PabsnRNA21 (sR14) 65218 65278 60 2.87
sR22 65333 65397 64 2.41
sR32 67951 68012 61 1.97
PabsnRNA3 (sR21) 127067 127128 61 15.73
PabsnRNA10 (sR2) 230632 230696 64 1.94
sR49 235439 235502 63 1.29
PabsnRNA33 (sR13) 245974 246035 61 3.86
sR31 258066 258127 61 2.16
PabsnRNA35 (sR29) 318118 318182 64 2.81
PabsnRNA32 (sR4) 473175 473236 61 52.2
PabsnRNA38 (sR58) 541770 541831 61 2.15
PabsnRNA40 (sR39) 543855 543917 62 4.6
PabsnRNA31 (sR20) 553656 553721 65 2.67
PabsnRNA12 (sR26) 631518 631581 63 5.74
PabsnRNA39 (sR60) 631584 631644 60 7.49
PabsnRNA13 (sR44) 636702 636762 60 13.58
PabsnRNA17 (sR7) 648165 648228 63 43.0
sR25 675408 675468 60 62.5
PabsnRNA36 (sR55) 910497 910569 72 4.91
PabsnRNA27 (sR35) 949199 949261 62 2.83
sR56 960309 960370 61 5.31
PabsnRNA25 (sR3) 991446 991505 59 13.74
PabsnRNA1 (sR24) 1026074 1026133 59 6.93
sR53 1042251 1042319 68 1.11
PabsnRNA46 (sR38) 1065728 1065791 63 5.14
PabsnRNA28 (sR37) 1195780 1195842 62 2.32
PabsnRNA23 (sR1) 1209270 1209329 59 36.27
PabsnRNA34 (sR59) 1260126 1260195 69 3.21
sR41 1292356 1292415 59 5.63
PabsnRNA5 (sR11) 1397126 1397188 62 28.62
PabsnRNA29 (sR8) 1403662 1403723 61 113.04
PabsnRNA42 (sR36) 1409130 1409196 66 9.73
PabsnRNA41 (sR48) 1468649 1468712 63 1.23
PabsnRNA6 (sR6) 1536388 1536449 61 4.33
PabsnRNA45 (sR34) 1755871 1755930 59 3.02
PabsnRNA9 (sR12) 1755929 1755991 62 6.88

1 tRNA (intron)
Pabt35 1330513 1330584 71 0.89

3 non-annotated (NA) new circular RNAs
NA7 622461 622526 65 8.39
NA12 1011096 1011158 62 1.91
NA13 1674520 1674581 61 5.36

aAn enrichment factor for circular molecules was estimated using the ratios of the
circular and linear reads in the pulldown fraction (PA) and the total RNA (PC) sam-
ples before and after RNase R treatment. The values shown were obtained by
dividing PA by PC. Values higher than 1 indicate the enrichment for circRNAs due
to selective degradation of linear RNA molecules.
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observed only using synthetic substrates. The specific goal of
our studies was to identify bona fide substrates of the Rnl3 fam-
ily of RNA ligases. Using EMSA assays, we observed not only
binding of Pab1020 to ssRNA (Fig. 1A), but to ssDNA as well.
Nevertheless, under these experimental conditions, circulariza-
tion activity was specific for oligoribonucleotides (Fig. 1B).
Experiments shown in Fig. 1C also agree with the previous
observations suggesting that “dimerization” and “C-terminal”
domains of the Rnl3 family members are critical for intramo-
lecular RNA circularization activity.25

We next established an experimental and computational
pipeline to identify linear (substrates) and circular (products)
RNA molecules that specifically interact with Pab1020 in cells.
Toward this goal, we first isolated total RNA or Pab1020 inter-
acting RNA molecules from P. abyssi cells. Obtained RNA sam-
ples were then reverse transcribed and sequenced using Ion
Torrent technology. During this experimental protocol, RNase
III fragmentation of circular molecules was necessary to allow
ligation of adapters required for high-throughput sequencing.
In the cases were this fragmentation occurs close to the junc-
tion and/or the reverse transcription does not proceed to the
junction, reads originating from circular molecules would be
erroneously classified as linear reads. However, although we are
likely to underestimate the number of “circular” reads, the pre-
cise fragmentation site differs for individual molecules and it
remains unlikely that all circular reads for a given locus would
be missed in our computational analysis. Please note that our

computational pipeline is ideally suited for analyses on pro-
karyotic data sets where RNA splicing is rare, as the frequent
splicing would introduce gaps inside the matches.

The obtained sequencing reads were analyzed using the
computational criteria described in Fig. 2A to identify the
inverted matches, indicative of RNA circularization. At the first
stage of our analysis, our experiments cumulatively supported a
total of 30 000 distinct putative circularization junctions. For a
given locus, the ratio between circular and linear reads varied
substantially from approximately 5% up to 91%, indicating
large in vivo heterogeneity in efficiency of RNA circularization
process. This observation suggests that RNA circularization
may be regulated and/or favored in cases where 50 and 30

extremities are brought together e.g., by structural constraints.
The highest amount of circular reads (91% of all reads) was
found for the intron of tRNA-Trp that carries the C/D box
motif. In this case, 50 and 30 extremities are maintained in a
close proximity by a bulge-helix-bulge structure already before
ligation, thus likely favoring intramolecular ligation.

The Venn diagram shown in Fig. 4 illustrates the combined
results from 3 individual experimental conditions of RNA-seq
experiments that altogether revealed 133 circular loci (black
numbers in Fig. 4). Interestingly, 127 of these circular loci
(95%) were found in an RNA ligase pull-down fraction, sug-
gesting that Pab1020 is necessary for RNA circularization in P.
abyssi cells. We also stress that both linear and circular RNA
molecules co-precipitated with the Pab1020 RNA ligase

Figure 3. Pab1020 RNA ligase circularizes physiologically relevant RNA molecules. (A) RNA binding between Pab1020 RNA ligase (0.2 to 4.5 mM) and the in vitro tran-
scripts (0.4 mM) corresponding to BoxC/D RNAs SR4 (&) and SR29 (~) and 5S rRNA (!) was analyzed by EMSA. A fraction of protein-RNA complex formed was plotted
as a function of input protein. Insert: On the EMSA gel, the amount of the higher molecular weight bands, corresponding to Pab1020-nucleic acid complexes, increased
as a function of the protein concentration. (B) In vitro transcript of 5S rRNA was incubated (right panel) or not (left panel) with Pab1020 RNA ligase (WT) for 120 min at
55!C. After incubation, recovered RNAs were treated or not with exoribonuclease RNase R for 120 min at 37!C before analysis on a 7% acrylamide 8M urea gel. (C) Sche-
matic illustration of RT-PCR experiments on linear and circular RNAs with divergent primers to distinguish linear RNAs from circular RNAs products after incubation with
Pab1020 RNA ligase. Only reverse transcription and PCR reactions on a circular RNA template will lead to the total amplification of the substrate sequence. (D) cDNA gen-
erated using outward facing primers on RNAs previously incubated (C) or not (¡) with Pab1020 RNA ligase and in the presence (C) or absence (¡) of RNase R were sep-
arated by gel electrophoresis. A full-length product attesting to amplification of circular RNA molecules, indicated by the asterisk, was observed for 5S rRNA (128 bp), Box
C/D SR4 RNA (68 bp) and Box C/D SR29 RNA (66 bp). Circularization was observed only in the presence of Pab1020 RNA ligase.
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(Table 2). Note that the intersection of the RIP assays (A), RIP
assays with RNase R treatment (B) and total RNA with RNase
R treatment degrading linear molecules (C) contained approxi-
mately 40% of all the circular RNA loci. In agreement with pre-
vious studies,12,16 the most common circular RNAs correspond
to the Box C/D RNA (guiding rRNA methylation) that showed
an enrichment in RNase R experiments (indicated with white
letters in Fig. 4, see also Table 3 for complete listing). These loci
also suggested the presence of 3 novel non-coding RNAs that
are evolutionary conserved within Thermococcales, indicating
their functional importance. rRNAs, including P. abyssi 5S
rRNA, and some coding RNAs did not show obvious enrich-
ment in RNase R experiments, but have been observed in a cir-
cular form also in previous studies [Table S1.10,30]. Formation
of the circular 5S rRNA could be compatible with the proposed
processing mechanism of the archaeal pre-5S-RNA possibly31

but it is unclear whether this potential circular form corre-
sponds to an additional processing intermediate or the mature
5S rRNA.15 When linear isoforms of the naturally occurring C/
D box and 5 S rRNAs were used in binding (Fig. 3A) and circu-
larization (Fig. 3B and C) assays, we observed an activity that
was an order of magnitude higher than was observed for sim-
ple, likely non-structured, oligoribonucleotides (Fig. 1). As we
have not observed intermolecular ligation in our assays (Figs. 1
and 3), we conclude that Pab1020 is both necessary and suffi-
cient for RNA circularization in vitro and in vivo. This notion
is further supported by our observations indicating absence of
tRNA splicing products in our pull-down reactions. Thus, 2
RNA ligase families are not interchangeable.

We postulate that RNA circularization could provide
increased thermostability by limiting thermal denaturation of
stem structures formed between the 50 and 30 termini of box C/
D RNAs, which is in agreement with the preferential presence
of Pab1020 orhtologs in many extremophiles. However, we

stress that thermal protection of small non-coding RNAs does
not alone explain the functional importance of RNA circulari-
zation, as e.g., circular pseudouridylation guides carrying H/
ACA motifs have not been reported to exist in archaea. The so
called “H and ACA motifs” of these guides are obligatory found
in single-stranded extremities of pseudouridylation guides,32,33

thus likely disfavoring intramolecular ligation.
In conclusion, here we have presented the combined results

from pull-down experiments, RNA-seq experiments and in
vitro circularization assays revealing that Pab1020 is the key
enzyme required for RNA circularization in Archaea. Our
results suggest the duplication and functional speciation of an
ancestral NTase domain and/or DNA ligase toward RNA ligase
activity and prompt for further characterization of the wide-
spread functional roles of circular RNAs in prokaryotes.

Materials and methods

Strains and cell culture techniques

P. abyssi GE5 was grown in continuous culture in a gas lift bio-
reactor as described previously.34 Cells were collected in the
exponential growth phase, followed by centrifugation at 6000 g
for 15 min at 4!C. Strict anaerobic conditions were maintained
during cell collection, centrifugation and storage of P. abyssi
cells before further studies. Cell pellets were stored at ¡20!C.

Total RNA extraction from P. abyssi cells

Total RNA was isolated from approximately 108 P. abyssi cells
following a single-step total RNA isolation protocol using the
Tri-Reagent (Sigma-Aldrich). To remove contaminating DNA,
50 mg of isolated RNA was incubated with 50 units of RNase-
free DNase I (New England Biolabs) for 30 min at 37!C. DNase
I was inactivated by addition of 8 mM EDTA, pH 8 and 10 min
incubation at 65!C. To obtain highly pure RNA samples, Tri-
Reagent treatment was repeated to yield 40 mg of final RNA.

Production and affinity-purification of anti-Pab1020
antibodies

RNA ligase Pab1020 was produced and purified as described
previously,22 except that the Cobalt-Hi-Trap column was
replaced by a nickel column. Different Pab1020 mutants con-
structed during this work have been detailed in supplementary
Materials and Methods S1.

6 mg of purified Pab1020 RNA ligase were used to immu-
nize 2 New Zealand rabbits (Genecust, Luxembourg). We used
5 mL Hi-Trap N-hydroxy-succinimide (NHS)-activated col-
umn (GE Healthcare) for the affinity purification of the anti-
bodies following the procedure described in the GE Healthcare
Antibody Purification Handbook (http://www.gelifesciences.
com/handbooks). Briefly, the Pab1020 protein was linked to
the active groups of the column and 6 mL antisera from immu-
nized rabbits were passed through the column. Proteins bound
non-specifically to the column were eliminated using several
washing steps. Fractions containing Pab1020 specific antibodies
were collected using acid elution, immediately neutralized, dia-
lyzed against phosphate-buffered saline and concentrated to

Figure 4. Venn diagram summarizing the results of our RNA-seq experiments.
Samples used were: A, circular reads after RIP assays using Pab1020 antibodies; B,
circular reads after RIP assay and ribonuclease R treatment; C, circular reads in total
RNA samples treated with ribonuclease R. Black numbers refer to the categories of
133 junctions (Fig. 2B) and white numbers to 42 junctions with increased enrich-
ment in RNase R experiments (Table 3).
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1.5 mL. Specificity and titer of the obtained antibodies were
confirmed by Western Immunoblots (Fig. S1B).

Formaldehyde cross-link and RNA immunoprecipitation
(pull-down) assays

Approximately 1010 P. abyssi GE5 cells were suspended in
25 mM HEPES pH 7, 15 mM MgCl2, 300 mM NaCl and were
fixed using 2% formaldehyde during 20 min with gentle agita-
tion. Crosslinking reactions were quenched using 100 mM gly-
cine, followed by 2 successive washing steps in the same buffer
as above. Obtained cell pellets were suspended in the extraction
buffer containing 25 mM HEPES pH 7, 15 mM MgCl2,
300 mM NaCl, 0.4 M Sorbitol and complete, EDTA-free Prote-
ase cocktail (Roche). To obtain a soluble fraction containing
crosslinked RNA samples, at this stage precipitates were elimi-
nated by a 10-minute centrifugation step at 14 000 g. The
obtained soluble fractions contained approximately 30 ng/ml
RNA (estimated using A260 values) and 0.1 mg.mL¡1 protein
determined using a Bradford protein assay.

For the RNA immunoprecipitation (RIP) assays, to reduce
or eliminate non-specific binding, 300 mL of the above super-
natant were incubated for 1 hour at 4!C with 20 mL Protein A-
agarose (Sigma-Aldrich), followed by centrifugation for 2 min
at 10 000 g at 4!C. The resulting supernatant was incubated at
4!C for 3 hours with 5 mL of purified rabbit Anti-Pab1020 anti-
bodies before addition of 20 mL Protein A-agarose for an addi-
tional hour. The pellet was recovered after centrifugation for
2 min at 10 000 g. RNA-protein-complexes bound to the beads
were washed 3 times with 25 mM HEPES pH 7, 15 mM MgCl2,
300 mM NaCl and reversal of cross-links was achieved by incu-
bation in the same buffer at 65!C for 1 hour. To recover RNA
that specifically associated with the Pab1020 RNA ligase, sam-
ples were extracted with phenol/chloroform to remove pro-
teins. For all samples, the remaining RNA was recovered using
ethanol precipitation and dissolved in 20 mL water at a concen-
tration of »10 ng.mL¡1.

RNase R digestion of RNA samples

To enrich for circular RNA molecules, 100 ng of obtained RNA
samples were treated with a magnesium dependent 30 to 50

exoribonuclease RNase R (Epicentre) at 37!C for 1 hour in a
reaction buffer containing 20 mM Tris–HCl (pH 8), 0.1 mM
MgCl2 and 100 mM KCl. RNase R treatments were performed
with a ratio of 1 unit of enzyme per 10 ng of RNA. Ethanol pre-
cipitation was performed to remove the enzymes and salts, fol-
lowed by a second RNase R treatment. Exoribonuclease
resistant circRNA molecules were extracted with phenol/chlo-
roform, ethanol precipitated and suspended in water at
»10 ng.mL¡1.

Experimental circRNA-seq workflow

RNase R treated and non-treated RNA samples were sequenced
using the Ion Total RNA-seq Kit V2 (Life Technology). Total
and Pab1020 associated RNA samples were used for high
throughput sequencing studies. Briefly, cDNA libraries were
prepared for each sample containing 100 – 800 ng of RNA that

was treated using RNase III that cleaves inter- or intramolecu-
lar regions of double-stranded RNA.35 This resulted into for-
mation of RNA fragments that were approximately 100-150 bp
after 3 min incubation at 37!C with RNase III. RNA adaptor
sequences were “splint ligated” to resulting linear RNA frag-
ments using partly degenerate directional adapters. The first
cDNA strand was reverse transcribed with the Superscript III
Enzyme Mix (Life Technology) and double-stranded cDNA
was amplified using Platinium PCR SuperMix High Fidelity
(Life Technology) using manufacture’s recommendations.
Obtained DNA samples were diluted to obtain a final concen-
tration of 100 pM, and were attached to beads and amplified
using emulsion PCR. This circRNA protocol resulted into the
clonal amplification of each RNA fragment within the micro-
droplets (Ion Spheres). Beads containing amplified DNA were
enriched to eliminate empty spheres. Resulting samples were
loaded onto an Ion 314 Chip V2 and sequenced in an Ion Per-
sonal Genome Machine Sequencer (PGMTM, Life Technology).
Polyclonal sequences originating from microbeads containing
more than one template molecule were filtered out during auto-
matic data processing using the dedicated IonTorrent server.

A computational pipeline for detection of putative circular
reads

Sequencing reads were mapped to the P. abyssi GE5 reference
genome (GenBank: NC_000868.1). Read mapping was per-
formed using Blastn (version 2.2.26C)36 with the Megablast
option using the following default parameters: word size at least
11, gap opening penalty of 5, gap extending penalty of 2, mis-
match penalty of 3 and match reward of 1. The default expecta-
tion value threshold of 10 was used, and the maximum number
of outputs was limited to 250 alignments per query. The maxi-
mum number of allowed outputs was not limiting our analyses,
as the highest observed number of alignments for any given
query was 182. To detect putative circular reads in sequencing
data, all reads having 2 matches (from the Blastn output) that
together covered the whole read, were selected. We considered
only the permuted matches (Fig. 2A), with no overlap on the
reference genome that were located within a 10 000 nucleotide
window on the genome sequence. When more than 2 nucleoti-
des and less than 11 (our minimum word size parameter) were
missing in a match to cover the read, we looked “naively” for
the small complementary match. This data processing step
resulted into 2 sequence alignment data files in bam format
that corresponded to linear and putative circular reads,
respectively.

Electrophoretic mobility shift assay (EMSA)

Internally labeled RNA and DNA oligonucleotides were used
for EMSA assays. The oligonucleotides used were: AUUCC-
GAUAG(Cy5dT)GACUACA (RNA) and ATTCCGATAG
(Cy5dT)GACTACA (see also Table S2). Where indicated, RNA
or DNA oligonucleotides or in vitro transcripts (2.5 mM) were
incubated with protein samples (0.5–10 mM) in gel shift buffer
containing 10 mM Tris–HCl pH 7, 150 mM NaCl, 0.5 mM
DTT, 2.5 mMMgCl2, 0.01 mM ATP, 8 units of RNase Inhibitor
(Biolabs). Binding reactions were performed at 50!C for 30 min
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in a final volume of 20 mL, and were analyzed using native gel
electrophoresis. The final concentration of loading buffer used
was 2 mM Tris–HCl pH 7.5, 10% glycerol, 0.1 mM EDTA pH
8, 20 mg.mL¡1 BSA, 0.1 mg.ml¡1 Orange C. Samples were
loaded onto 10% native acrylamide/bisacrylamide gel (19:1)
and electrophoresed in TEG 1X buffer (40 mM Glycine,
0.5mM EDTA pH 8, 250 mM Tris–HCl) at 100V for 3 h at
room temperature. Gels were visualized and analyzed using an
Odyssey system (LI-COR) using the 700 nm channel.

Preparation of fluorescent transcripts using in vitro
transcription

Fluorescent transcripts for box C/D RNAs SR4 and SR29
(Table S2) were transcribed in vitro using synthetic DNA oligo-
nucleotides as DNA template (Eurogentec). DNA templates
were double stranded in the region corresponding to the 17
nucleotides of the T7 promoter sequence (TAATACGACT-
CACTATA). These dsDNA templates were prepared by
hybridizing oligonucleotides corresponding to 10 mM T7 Pro-
moter (plus strand), 10 mM T7 Promoter-RNA gene
(PabsnRNA32 or PabsnRNA35, minus strand) in T7 RNA
polymerase buffer (2,5X), by 3 min at 80!C, followed by slow
cooling to ambient temperature. For 5S rRNA transcript, tran-
scription was performed using 1 mg of DraI linearized pUC57
plasmid encoding T7 RNA polymerase promoter and 5S rRNA
gene Pabr05.

Standard 20 mL transcription reactions contained dsDNA
template (10 mM for box C/D RNA template or 0.1 mM for
pUC57–5S RNA gene Pabr05), 7.5 mM of each NTP, 1X com-
mercial reaction buffer, 12 units of RNasine, 0.25 mM Cy5-
UTP and 2 mL Enzyme mix (T7 RNA Polymerase Megascript
kit Ambion, Life Technology). All transcription reactions were
allowed to proceed for 1 night at 37!C, before addition of 1 mL
DNase Turbo (Megascript kit) and 15 min incubation at 37!C.
Transcripts were analyzed using a 15% denaturing polyacryl-
amide gel electrophoresis (PAGE) and visualized by UV-shad-
owing. This allowed excision and elution of RNA from the gel
with Maxam-Gilbert solution (0.5 M Na-acetate, 10 mM Mg-
acetate, 1 mM EDTA, 0.1% SDS). RNA was precipitated using
ethanol and transcripts were dissolved in diethylpyrocarbonate
(DEPC) treated water to yield a final amount of approximately
700 pmol of transcript.

RNA circularization assays using fluorescent RNA and/or
DNA oligonucleotides

Standard activity assays were performed in a mixture contain-
ing 10 mM Tris–HCl pH 7, 150 mM NaCl, 0.5 mM DTT,
2.5 mM MgCl2, 8 units of RNase Inhibitor (Biolabs), 10 pmol
Cy5-RNA or -DNA molecules and 200 pmol RNA ligase
Pab1020 in a total volume of 20 mL. Reactions were initiated by
adding enzymes and incubated for 90 min at 50!C. Proteins
were extracted with phenol/chloroform and obtained RNA
samples were suspended in 10 mL H2O and 5mL denaturing
buffer (Orange C 1 mg per mL in formamide). Reactions sub-
strates and products were resolved using denaturing 18%
PAGE containing 8M urea in 0.5X TBE. RNA molecules were

revealed and quantified using an Odyssey imaging system as
above (LI-COR).

RNA ligase assays on fluorescent box C/D and 5S RNA
transcripts

Standard RNA ligase assays were performed as described above
using Cy5-labeled box C/D or 5S transcripts. After incubation
at 50!C for 120 min, RNA molecules were recovered by ethanol
precipitation and resuspended in 10 mL of RNase R buffer 1X
and incubated for 120 min at 37!C with 10 units of RNase R
exoribonuclease (Epicentre), followed by 60 min incubation at
37!C with 40 mg of Proteinase K. Proteins were extracted by
Phenol/chloroform treatment and RNA were recovered by eth-
anol precipitation and resuspended in 10 mL of water. RNase R
resistant RNA molecules were detected and quantified using a
7% polyacrylamide gel containing 8M urea in 0.5X TBE.
Reverse transcription and PCR (RT-PCR) with outward facing
primers was also used to confirm RNA circularization. In this
case, reaction products recovered either from RNase R treated
or non-treated RNA ligation assays were reverse transcribed
using M-MLV RT (50 units, Promega) and primers comple-
mentary to a central portion of box C/D RNA gene. cDNA
templates were PCR amplified using Taq DNA polymerase and
2 divergent (outward facing) primers to anneal at the ends of
the cDNA sequences. We performed 30 cycles of PCR and PCR
products were visualized after electrophoresis on a 15% – 8 M
urea polyacrylamide gels under denaturing conditions. Bands
were visualized by ethidium bromide staining.
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