Asymptotic behaviour of large random stack-triangulations

Marie Albenque et Jean-François Marckert

LIAFA – LABRI

McGill University – February, 26th 2009
Outline

Stack-triangulations

Convergence of planar maps

Uniform law and normalized convergence

Other types of convergence

Perpectives
Definition of planar maps

- **Planar map** = planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere.
- **Rooted planar map** = an oriented edge \((e_0, e_1)\) is marked, \(e_0 = \text{root vertex}\).

Map = Metric space with graph distance.
Definition of planar maps

- Planar map = planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere
- Rooted planar map = an oriented edge \((e_0, e_1)\) is marked, \(e_0 = \) root vertex.
Maps and faces

Faces = connected components of the sphere without the edges or the map.
Triangulation = map whose faces are all of degree 3.
Quadrangulation = map whose faces are all of degree 4.

Figure: Two quadrangulations and two triangulations
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

$\triangle_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.}$
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

\[\triangle_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.} \]
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

\[\Delta_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.} \]
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

$\triangle_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.}$
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

\[\triangle_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.} \]
Random Apollonian networks – Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

\[\triangle_{2k} = \text{(finite) set of stack-triangulations with } 2k \text{ faces.} \]
Stack-triangulations vs Triangulations

\[\{\text{Stack-triangulations}\} \subsetneq \{\text{Triangulations}\} \]
Convergence of large random planar maps

- **Large**: Number of vertices grows to infinity.
- **Random**: Which law?
- **Convergence**: Which notion of convergence?

[Angel et Schramm, 03], [Chassaing et Schaeffer, 04], [Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06], [Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08], [Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]
Convergence of large random planar maps

- Large? Number of vertices grows to infinity.
- Random? Which law?
- Convergence? Which notion of convergence?

[Angel et Schramm, 03], [Chassaing et Schaeffer, 04], [Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06], [Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08], [Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]
Convergence of large random planar maps

- Large? Number of vertices grows to infinity.
- Random? Which law?
- Convergence? Which notion of convergence?

[Angel et Schramm, 03], [Chassaing et Schaeffer, 04],
[Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06],
[Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont, 07],
[Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08],
[Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]
Convergence of large random planar maps

• Large ? Number of vertices grows to infinity.
• Random ? Which law ?
• Convergence ? Which notion of convergence ?

[Angel et Schramm, 03], [Chassaing et Schaeffer, 04],
[Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06],
[Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont, 07],
[Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08],
[Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]
Two probability distributions

$\triangle_{2k} = \text{set of stack-triangulations with } 2k \text{ faces.}$

Two natural probability distributions on \triangle_{2k}:

- the uniform law, denoted \U_{2k},

- the “historical” law, denoted \Q_{2k}: the probability of each map is proportional to its number of histories.
Two probability distributions

\(\triangle_{2k} = \) set of stack-triangulations with \(2k \) faces.

Two natural probability distributions on \(\triangle_{2k} \):

- the uniform law, denoted \(U_{2k} \),
- the “historical” law, denoted \(Q_{2k}^{\triangle} \): the probability of each map is proportional to its number of histories.
Two probability distributions

$\triangle_{2k} =$ set of stack-triangulations with $2k$ faces.

Two natural probability distributions on \triangle_{2k}:

- the uniform law, denoted U_{2k},

- the “historical” law, denoted Q_{2k}^\triangle: the probability of each map is proportional to its number of histories.
△_{2k} = set of stack-triangulations with 2k faces.
Two natural probability distributions on △_{2k}:

- the uniform law, denoted U_{△_{2k}},

- the “historical” law, denoted Q_{△_{2k}} : the probability of each map is proportional to its number of histories.
Two probability distributions

\(\triangle_{2k} = \text{set of stack-triangulations with } 2k \text{ faces.} \)

Two natural probability distributions on \(\triangle_{2k} \):

- the uniform law, denoted \(\mathbb{U}_{\triangle_{2k}} \),

- the “historical” law, denoted \(\mathbb{Q}_{\triangle_{2k}} \) : the probability of each map is proportional to its number of histories.
Two probability distributions

$\triangle_{2k} = \text{set of stack-triangulations with } 2k \text{ faces.}$

Two natural probability distributions on \triangle_{2k}:

- the uniform law, denoted \mathbb{U}_{2k},

- the “historical” law, denoted $\mathbb{Q}^\triangle_{2k}$: the probability of each map is proportional to its number of histories.
Two probability distributions

\[\triangle_{2k} = \text{set of stack-triangulations with } 2k \text{ faces.} \]

Two natural probability distributions on \(\triangle_{2k} \):

- the uniform law, denoted \(U_{\triangle_{2k}} \),

- the “historical” law, denoted \(Q_{\triangle_{2k}} \) : the probability of each map is proportional to its number of histories.
Results on random stack-triangulations

According to Q_{2k}^\triangle,
- Degree of a vertex and expected value of the distance between two vertices
 [Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]

According to U_{2k}^\triangle,
- Degree of a vertex [Darasse et Soria, 07]
- Expected value of the distance between two vertices
 [Bodini, Darasse, Soria, 08]
Results on random stack-triangulations

According to \mathcal{Q}_{2k},

- Degree of a vertex and expected value of the distance between two vertices
 [Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]

According to \mathcal{U}_{2k},

- Degree of a vertex [Darasse et Soria, 07]
- Expected value of the distance between two vertices
 [Bodini, Darasse, Soria, 08]
<table>
<thead>
<tr>
<th>Stack Triangulations</th>
<th>Quadrangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform law</td>
<td>Historical law</td>
</tr>
<tr>
<td>Uniform law</td>
<td>uniform law</td>
</tr>
</tbody>
</table>

Which definition of convergence?
Two notions of convergence: local convergence

\[B_m(r) = \text{ball of radius } r \text{ centered at the root of } m. \]

Definition

Let \(m \) and \(m' \) be two planar maps, the local distance between them is:

\[d_L(m, m') = \inf \left\{ \frac{1}{1 + r} \text{ where } B_m(r) \sim B_{m'}(r) \right\}, \]

Local convergence = Convergence of the balls centered at the root.
<table>
<thead>
<tr>
<th>Local convergence</th>
<th>Stack-triangulations</th>
<th>Quadrangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform law</td>
<td>uniform law</td>
<td>historical law</td>
</tr>
<tr>
<td>historical law</td>
<td></td>
<td>Angel and Schramm, 03 Chassaing and Durhuss, 06</td>
</tr>
</tbody>
</table>
Two notions of convergence: overall convergence

Number of vertices grows to infinity
⇒ distance between two vertices grows to infinity.

To study the overall behavior of the map,
we have to normalize it:
Length of an edge = dependent on the number of vertices.
Two notions of convergence: overall convergence

Number of vertices grows to infinity
⇒ distance between two vertices grows to infinity.

To study the overall behavior of the map, we have to normalize it:
Length of an edge = dependent on the number of vertices.
<table>
<thead>
<tr>
<th>Stack-triangulations</th>
<th>Quadrangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform law</td>
<td>uniform law</td>
</tr>
<tr>
<td>Historical law</td>
<td>Historical law</td>
</tr>
<tr>
<td>Local convergence</td>
<td>Angel-Schramm, 03</td>
</tr>
<tr>
<td></td>
<td>Chassaing-Durhuss, 06</td>
</tr>
<tr>
<td>Scaled convergence</td>
<td>Chassaing-Schaeffer, 04</td>
</tr>
<tr>
<td></td>
<td>Marckert-Mokkadem, 06</td>
</tr>
<tr>
<td></td>
<td>Le Gall, 07</td>
</tr>
<tr>
<td></td>
<td>Le Gall-Paulin, 08</td>
</tr>
<tr>
<td>Stack-triangulations</td>
<td>Quadrangulations</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>uniform law</td>
<td>uniform law</td>
</tr>
<tr>
<td>Historical law</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stack-triangulations</th>
<th>Quadrangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local convergence</td>
<td></td>
<td>Angel-Schramm, 03 Chassaing-Durhuss, 06</td>
</tr>
<tr>
<td>Scaled convergence</td>
<td>?</td>
<td>Chassaing-Schaeffer, 04 Marckert-Mokkadem, 06 Le Gall, 07 Le Gall-Paulin, 08</td>
</tr>
</tbody>
</table>
The Theorem

Theorem (A., Marckert ’08)

Under the uniform law on \triangle_{2n},

$$\left(m_n, \frac{D_{m_n}}{(2/11)\sqrt{3n/2}} \right) \xrightarrow{(d)} (T_{2e}, d_{2e}),$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $(T_{2e}, d_{2e}) =$ Aldous’ Continuum Random Tree (CRT)
- $2/11$?
Theorem (A., Marckert ’08)

Under the uniform law on \triangle_{2n},

$$\left(m_n, \frac{D_{mn}}{(2/11)\sqrt{3n/2}} \right) \xrightarrow{(d)/n} (T_{2e}, d_{2e}),$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff?
- $(T_{2e}, d_{2e}) =$ Aldous’ Continuum Random Tree (CRT)
- $2/11$?
The Theorem

Theorem (A., Marckert ’08)

Under the uniform law on \triangle_{2n},

$$
\left(m_n, \frac{D_{mn}}{(2/11)\sqrt{3n/2}} \right) \xrightarrow{(d)} (T_{2e}, d_{2e}),
$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $(T_{2e}, d_{2e}) =$ Aldous’ Continuum Random Tree (CRT)
- $2/11$?
The Theorem

Theorem (A., Marckert ’08)

Under the uniform law on \triangle_{2n},

$$\left(m_n, \frac{D_{mn}}{(2/11) \sqrt{3n/2}} \right) \xrightarrow{(d)/n} (T_{2e}, d_{2e}),$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $(T_{2e}, d_{2e}) =$ Aldous’ Continuum Random Tree (CRT)
- $2/11$?
Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d):

$$d_H(X, Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\}$$

Gromov-Hausdorff distance between two compact metric spaces E and F:

$$d_{GH}(E, F) = \inf d_H(\phi(E), \psi(F))$$

Infimum taken on :
- all the metric spaces M
- all the isometric embeddings $\phi : E \to M$ et $\psi : F \to M$.

\{isometric classes of compact metric spaces\}

= complete and separable (= “polish”) space.
Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d):

$$d_H(X, Y) = \max \left\{ \sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y) \right\}$$

Gromov-Hausdorff distance between two compact metric spaces E and F:

$$d_{GH}(E, F) = \inf d_H(\phi(E), \psi(F))$$

Infimum taken on:

- all the metric spaces M
- all the isometric embeddings $\phi : E \to M$ et $\psi : F \to M$.

\{isometric classes of compact metric spaces\} = complete and separable (= “polish”) space.
Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d):

$$d_H(X, Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\}$$

Gromov-Hausdorff distance between two compact metric spaces E and F:

$$d_{GH}(E, F) = \inf d_H(\phi(E), \psi(F))$$

Infimum taken on:
- all the metric spaces M
- all the isometric embeddings $\phi : E \to M$ et $\psi : F \to M$.

\{isometric classes of compact metric spaces\}
= complete and separable (= “polish”) space.
Triangulations and ternary trees
Triangulations and ternary trees
Triangulations and ternary trees
Harris walk of a tree
Continuum Tree

\[f = \text{function from } [0, 1] \text{ onto } \mathbb{R}^+ \text{ such that } f(0) = f(1) = 0. \]

- \(s \sim s' \) if and only if \(f(s) = f(s') = m_f(s, s') \)
- continuum tree = \([0, 1]/\sim\)
- distance: \(d_f(s, t) = f(s) + f(t) - 2m_f(s, t) \)
Continuum Tree

\[f = \text{function from } [0, 1] \text{ onto } \mathbb{R}^+ \text{ such that } f(0) = f(1) = 0. \]

- \(s \sim s' \) if and only if \(f(s) = f(s') = m_f(s, s') \)
- continuum tree = \([0, 1]/\sim\)
- distance: \(d_f(s, t) = f(s) + f(t) - 2m_f(s, t) \)
Continuum Tree

\[f = \text{function from } [0, 1] \text{ onto } \mathbb{R}^+ \text{ such that } f(0) = f(1) = 0. \]

- \(s \sim s' \) if and only if \(f(s) = f(s') = m_f(s, s') \)
- Continuum tree = \([0, 1]/\sim\)
- Distance: \(d_f(s, t) = f(s) + f(t) - 2m_f(s, t) \)
Continuum Tree

\[f = \text{function from } [0, 1] \text{ onto } \mathbb{R}^+ \text{ such that } f(0) = f(1) = 0. \]

- \(s \sim s' \) if and only if \(f(s) = f(s') = m_f(s, s') \)
- continuum tree = \([0, 1]/\sim\)
- distance: \(d_f(s, t) = f(s) + f(t) - 2m_f(s, t) \)
Continuum Random Tree – CRT

A normalized brownian excursion $e = (e_t)_{t \in [0,1]}$ is a brownian motion conditioned to satisfy $B_0 = 0$, $B_1 = 0$ and $B(t) > 0$ for every $t \in]0,1[$.

CRT = Tree obtained from a normalized brownian excursion. It is denoted (T_{2e}, d_{2e}).
Uniform law on stack-triangulations with $2n$ faces
⇒ uniform law $\mathbb{U}^{\text{ter}}_{3n-2}$ on the set of ternary trees with $3n - 2$ nodes.

Proposition (Aldous)

Under $\mathbb{U}^{\text{ter}}_{3n+1}$, for the Gromov-Hausdorff topology:

$$
\left(T, \frac{d_T}{\sqrt{3n/2}} \right) \xrightarrow{(d) / n} (T_{2e}, d_{2e}).
$$
Triangulations and ternary trees
Triangulations and ternary trees
Triangulations and ternary trees
Bijection between trees and maps

Proposition

For any $K \geq 1$, there exists a bijection

$$\Psi^\Delta_K : \triangle_{2K} \longrightarrow T^\text{ter}_{3K-2}$$

$m \mapsto t := \Psi^\Delta_K(m)$

such that:

(i) (a) Every internal node u of m corresponds bijectively to an internal node v of t. u' denotes the image of u.

(b) Each leaf of t corresponds bijectively to a finite face of m.

(ii) For any internal node u of m, $|\Gamma(u') - d_m(\text{root}, u)| \leq 1$.

(ii') For any pair on internal nodes u and v of m

$$|d_m(u, v) - \Gamma(u', v')| \leq 3.$$
Proposition

For any $K \geq 1$, there exists a bijection

$$\Psi_K^\triangle : \triangle_{2K} \rightarrow \mathcal{T}_{3K-2}$$

$$m \mapsto t := \Psi_K^\triangle(m)$$

such that:

(i) (a) Every internal node u of m corresponds bijectively to an internal node v of t. u' denotes the image of u.

(b) Each leaf of t corresponds bijectively to a finite face of m.

(ii) For any internal node u of m, $|\Gamma(u') - d_m(\text{root}, u)| \leq 1$.

(ii') For any pair on internal nodes u and v of m

$$|d_m(u, v) - \Gamma(u', v')| \leq 3.$$
Neveu formalism

- A ternary tree = set of words on the alphabet \{1, 2, 3\}.
- Vertex of the tree = a word
If type(u) = (i, j, k),

\[
\begin{align*}
\text{type}(u_1) &= (1 + i \land j \land k, \quad j, \quad k), \\
\text{type}(u_2) &= (i, \quad 1 + i \land j \land k, \quad k), \\
\text{type}(u_3) &= (i, \quad j, \quad 1 + i \land j \land k)
\end{align*}
\]
If \(\text{type}(u) = (i, j, k) \),

\[
\begin{align*}
\text{type}(u1) &= (1 + i \wedge j \wedge k, j, k), \\
\text{type}(u2) &= (i, 1 + i \wedge j \wedge k, k), \\
\text{type}(u3) &= (i, j, 1 + i \wedge j \wedge k)
\end{align*}
\]
If $\text{type}(u) = (i, j, k)$,

$$
\begin{align*}
\text{type}(u_1) &= \left(1 + i \land j \land k, j, k \right), \\
\text{type}(u_2) &= \left(i, 1 + i \land j \land k, k \right), \\
\text{type}(u_3) &= \left(i, j, 1 + i \land j \land k \right)
\end{align*}
$$
A language for distances

\[\mathcal{L}_{1,2,3} = \{ \text{words of } \{1,2,3\}^* \text{ with at least one occurrence of } 1, 2 \text{ and } 3 \} \]

Let \(u \in \{1,2,3\}^* \),

\[\Gamma(u) = \max \{ k \text{ such that } u = u_1 \ldots u_k, \ u_i \in \mathcal{L}_{1,2,3} \text{ for } i \in \{1,2,3\} \} \]

\[u = 12213213212232 \Rightarrow \Gamma(u) = 3. \]

Let \(u = w \cdot u_1 \ldots u_k \) et \(v = w \cdot v_1 \ldots v_l \) with \(u_1 \neq v_1 \), we denote :

\[\Gamma(u, v) = \Gamma(u_1 \ldots u_k) + \Gamma(v_1 \ldots v_l) \]
A language for distances

\[\mathcal{L}_{1,2,3} = \{ \text{words of } \{1, 2, 3\}^* \text{ with at least one occurrence of 1, 2 and 3} \} \]

Let \(u \in \{1, 2, 3\}^* \),

\[\Gamma(u) = \max \{ k \text{ such that } u = u_1 \ldots u_k, \ u_i \in \mathcal{L}_{1,2,3} \text{ for } i \in \{1, 2, 3\} \} \]

\[u = 122132132212232 \Rightarrow \Gamma(u) = 3. \]

Let \(u = w \cdot u_1 \ldots u_k \) et \(v = w \cdot v_1 \ldots v_l \) with \(u_1 \neq v_1 \), we denote :

\[\Gamma(u, v) = \Gamma(u_1 \ldots u_k) + \Gamma(v_1 \ldots v_l) \]
A language for distances

\[\mathcal{L}_{1,2,3} = \{ \text{words of } \{1, 2, 3\}^* \text{ with at least one occurrence of } 1, 2 \text{ and } 3 \} \]

Let \(u \in \{1, 2, 3\}^* \),

\[\Gamma(u) = \max\{k \text{ such that } u = u_1 \ldots u_k, \ u_i \in \mathcal{L}_{1,2,3} \text{ for } i \in \{1, 2, 3\} \} \]

\[u = 12213 \cdot 213 \cdot 2212232 \Rightarrow \Gamma(u) = 3. \]

Let \(u = w \cdot u_1 \ldots u_k \) et \(v = w \cdot v_1 \ldots v_l \) with \(u_1 \neq v_1 \), we denote :

\[\Gamma(u, v) = \Gamma(u_1 \ldots u_k) + \Gamma(v_1 \ldots v_l) \]
A language for distances

\[\mathcal{L}_{1,2,3} = \{ \text{words of } \{1, 2, 3\}^* \text{ with at least one occurrence of } 1, 2 \text{ and } 3 \} \]

Let \(u \in \{1, 2, 3\}^* \),

\[\Gamma(u) = \max\{k \text{ such that } u = u_1 \ldots u_k, \ u_i \in \mathcal{L}_{1,2,3} \text{ for } i \in \{1, 2, 3\} \} \]

\[u = 12213 \cdot 213 \cdot 2212232 \Rightarrow \Gamma(u) = 3 \cdot \Gamma(u) = 3. \]

Let \(u = w \cdot u_1 \ldots u_k \) et \(v = w \cdot v_1 \ldots v_l \) with \(u_1 \neq v_1 \), we denote :

\[\Gamma(u, v) = \Gamma(u_1 \ldots u_k) + \Gamma(v_1 \ldots v_l) \]
A language for distances

\[\mathcal{L}_{1,2,3} = \{ \text{words of } \{1, 2, 3\}^* \text{ with at least one occurrence of } 1, 2 \text{ and } 3 \} \]

Let \(u \in \{1, 2, 3\}^* \),

\[\Gamma(u) = \max\{ k \text{ such that } u = u_1 \ldots u_k, \ u_i \in \mathcal{L}_{1,2,3} \text{ for } i \in \{1, 2, 3\} \} \]

\[u = 12213 \cdot 213 \cdot 2212232 \quad \Rightarrow \quad \Gamma(u) = 3. \]

Let \(u = w \cdot u_1 \ldots u_k \) et \(v = w \cdot v_1 \ldots v_l \) with \(u_1 \neq v_1 \), we denote :

\[\Gamma(u, v) = \Gamma(u_1 \ldots u_k) + \Gamma(v_1 \ldots v_l) \]
Convergence of stack-triangulations

Lemma

Let \((X_i)_{i \geq 1}\) be a sequence of independant random variables uniformly distributed on \(\{1, 2, 3\}\). Let \(W_n\) be the word \(X_1 \ldots X_n\) then

\[
\frac{\Gamma(W_n)}{n} \xrightarrow{(a.s.)} \Gamma_\triangle, \text{ where } \Gamma_\triangle = \frac{2}{11}
\]

Distance in the map and in the tree:

\[
|d_{mn}(u, v) - \Gamma(u', v')| \leq 3
\]

We show:

\[
P(\sup |d_{mn}(u, v) - \frac{2}{11} d_{T_n}(u', v')| \geq n^{1/3}) \xrightarrow{n \to \infty} 0
\]
Convergence of stack-triangulations

Lemma

Let \((X_i)_{i \geq 1}\) be a sequence of independent random variables uniformly distributed on \(\{1, 2, 3\}\). Let \(W_n\) be the word \(X_1 \ldots X_n\) then

\[
\frac{\Gamma(W_n)}{n} \xrightarrow{(a.s.)} \Gamma_{\triangle}, \text{ where } \Gamma_{\triangle} = \frac{2}{11}
\]

Distance in the map and in the tree:

\[
|d_{mn}(u, v) - \Gamma(u', v')| \leq 3
\]

We show:

\[
P(\sup |d_{mn}(u, v) - \frac{2}{11} d_{T_n}(u', v')| \geq n^{1/3}) \xrightarrow{n \to \infty} 0
\]
Convergence of scaled stack-triangulations

Theorem

Under the uniform law on \triangle_{2n},

$$
\left(m_n, \frac{D_{m_n}}{\Gamma_\triangle \sqrt{3n/2}} \right) \xrightarrow{(d) n} (T_{2e}, d_{2e}),
$$

for Gromov-Hausdorff topology on the set of compact metric spaces.
<table>
<thead>
<tr>
<th>Stack-triangulations</th>
<th>Quadrangulations uniform law</th>
</tr>
</thead>
<tbody>
<tr>
<td>local convergence</td>
<td></td>
</tr>
<tr>
<td>uniform law</td>
<td>Angel-Schramm. 03</td>
</tr>
<tr>
<td>historical law</td>
<td>Chassaing-Duruss, 06</td>
</tr>
<tr>
<td>scaled convergence</td>
<td></td>
</tr>
<tr>
<td>cvg in law for Gromov-Hausdorff topology towards CRT normalization = \sqrt{n}</td>
<td>Chassaing-Schaeffer, 04</td>
</tr>
<tr>
<td></td>
<td>Marckert-Mokkadem, 06</td>
</tr>
<tr>
<td></td>
<td>Le Gall, 07</td>
</tr>
<tr>
<td></td>
<td>Le Gall-Paulin, 08</td>
</tr>
</tbody>
</table>
Convergence of stack-triangulations according to Q^\triangle

Theorem (A., Marckert ’08)

Let M_n a stack-triangulation according to Q^\triangle_{2n}. Let $k \in \mathbb{N}$ et v_1, \ldots, v_k, k nodes M_n chosen independently and uniformly amongst the internal nodes of M_n, then:

$$
\left(\frac{D_{M_n}(v_i, v_j)}{3\Gamma \triangle \log n}\right)_{(i,j) \in \{1, \ldots, k\}^2} \xrightarrow[n \rightarrow \infty]{\text{proba.}} (1_{i \neq j})(i,j) \in \{1, \ldots, k\}^2.
$$

Study of the trees under the historical law = study of increasing trees

... [Broutin, Devroye, McLeish, de la Salle 08]
Convergence of stack-triangulations according to Q^\triangle

Theorem (A., Marckert '08)

Let M_n a stack-triangulation according to Q^\triangle_{2n}. Let $k \in \mathbb{N}$ et v_1, \ldots, v_k, k nodes M_n chosen independently and uniformly amongst the internal nodes of M_n, then:

$$
\left(\frac{D_{M_n}(v_i, v_j)}{3 \Gamma \triangle \log n} \right)_{(i,j) \in \{1, \ldots, k\}^2} \xrightarrow{\text{proba.}} (1_{i \neq j})_{(i,j) \in \{1, \ldots, k\}^2}.
$$

Study of the trees under the historical law = study of increasing trees

... [Broutin, Devroye, McLeish, de la Salle 08]
<table>
<thead>
<tr>
<th>Stack-triangulations</th>
<th></th>
<th>Quadrangulations</th>
<th>uniform law</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform law</td>
<td>historical law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local convergence</td>
<td></td>
<td></td>
<td>Angel-Schramm. 03</td>
</tr>
<tr>
<td>Scaled convergence</td>
<td>cvg in law for Gromov-Hausdorff topology towards CRT normalization = \sqrt{n}</td>
<td>cvg of fin-dim laws normalization = $\log n$</td>
<td>Chassaing-Schaeffer, 04 \n Marckert-Mokkadem, 06 \n Le Gall, 07 \n Le Gall-Paulin, 08</td>
</tr>
</tbody>
</table>
Local convergence of stack-triangulations: Uniform law

Under \mathbb{U}_n^Δ:

Theorem (A., Marckert ’08)

The sequence (\mathbb{U}_n^Δ) weakly converges towards P_∞^Δ, for the topology of local convergence, where the support of P_∞^Δ is a set of infinite stack-triangulations.

Ingredients:

- Local convergence of Galton-Watson trees towards a tree with a unique infinite spine.
- Definition of an infinite planar map similar to the UIPT of Angel and Schramm.
Local convergence of stack-triangulations: Historical law

Degree of the root = number of white balls in an urn

- Initially: 2 white balls and 1 black ball
- Matrix replacement: \[
\begin{pmatrix}
2 & 1 \\
0 & 3
\end{pmatrix}
\]

[Flajolet, Dumas, Puyhaubert, 06]

⇒ The degree of the root grows to infinity.
⇒ No local convergence.
Local convergence of stack-triangulations: Historical law

Degree of the root = number of white balls in an urn

- Initially: 2 white balls and 1 black ball
- Matrix replacement: \[
\begin{pmatrix}
2 & 1 \\
0 & 3
\end{pmatrix}
\]

[Flajolet, Dumas, Puyhaubert, 06]

⇒ The degree of the root grows to infinity.
⇒ No local convergence.
<table>
<thead>
<tr>
<th>Stack-triangulations</th>
<th>Quadrangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local convergence</td>
<td>uniform law</td>
</tr>
<tr>
<td></td>
<td>cvg in law to a law supported by infinite triangulations</td>
</tr>
<tr>
<td></td>
<td>Chassaing-Durhuss, 06</td>
</tr>
<tr>
<td>Scaled convergence</td>
<td>historical law</td>
</tr>
<tr>
<td></td>
<td>cvg in law for Gromov-Hausdorff topology towards CRT</td>
</tr>
<tr>
<td></td>
<td>normalization = \sqrt{n}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stack-quadrangulations

We managed to deal with a special case of stack-quadrangulations

but more general models resist...
Brownian Map

Convergence of scaled quadrangulations under the uniform law?

[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]

- Universality principle? Convergence of all the “reasonable” models to the same limit?
- Which limit? Brownian map...
Brownian Map

Convergence of scaled quadrangulations under the uniform law?

[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]

• Universality principle? Convergence of all the “reasonable” models to the same limit?
• Which limit? Brownian map...
Thank you!