Triangulations with spins : algebraicity and local limit

Marie Albenque (CNRS and LIX) joint work with Laurent Ménard (Paris Nanterre) and Gilles Schaeffer (CNRS and LIX)

États de la recherche SMF, December 2018

I - Random maps without matter

Planar Maps as discrete planar metric spaces

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

Planar Maps as discrete planar metric spaces

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.

Planar Maps as discrete planar metric spaces

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex. face $=$ connected component of the sphere when the edge are removed p-angulation: each face is bounded by p edges

Planar Maps as discrete planar metric spaces

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex. face $=$ connected component of the sphere when the edge are removed p-angulation: each face is bounded by p edges Plane maps are rooted: by orienting an edge.

Planar Maps as discrete planar metric spaces

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.
face $=$ connected component of the sphere when the edge are removed
p-angulation: each face is bounded by p edges
Plane maps are rooted: by orienting an edge.
Distance between two vertices $=$ number of edges between them.
Planar map $=$ Metric space

"Classical" large random triangulations

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

"Classical" large random triangulations

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Global :

Rescale distances to keep diameter bounded
[Le Gall 13, Miermont 13] :
converges to the Brownian map

- Gromov-Hausdorff topology
- Continuous metric space
- Homeomorphic to the sphere
- Hausdorff dimension 4
- Universality

"Classical" large random triangulations

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root

"Classical" large random triangulations

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root
[Angel - Schramm 03, Krikun 05] :
Converges to the Uniform Infinite Planar Triangulation

- Local topology
- Volume of balls of radius R grow like R^{4}
- "Universality" of the exponent 4.

Local Topology for planar maps

$$
\mathcal{M}_{f}:=\{\text { finite rooted planar maps }\} .
$$

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

Local Topology for planar maps

$\mathcal{M}_{f}:=\{$ finite rooted planar maps $\}$.

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

- $\left(\mathcal{M}, d_{l o c}\right)$: closure of $\left(\mathcal{M}_{f}, d_{l o c}\right)$. It is a Polish space (complete and separable).
- $\mathcal{M}_{\infty}:=\mathcal{M} \backslash \mathcal{M}_{f}$ set of infinite planar maps.

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Root does not matter

Local convergence: simple examples

Root does not matter

Local convergence: more complicated examples

Uniform plane trees with n vertices:

Local convergence: more complicated examples

Uniform plane trees with n vertices:

$n=1000$

Local convergence: more complicated examples

Uniform plane trees with n vertices:

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Courtesy of Igor Kortchemski

Courtesy of Timothy Budd

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel - Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.

For example $\mathbb{E}\left[\left|B_{r}\left(\mathbf{T}_{\infty}\right)\right|\right] \sim \frac{2}{7} r^{4} \quad$ [Angel '04, Curien - Le Gall '12]

- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13]

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel - Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.

For example $\mathbb{E}\left[\left|B_{r}\left(\mathbf{T}_{\infty}\right)\right|\right] \sim \frac{2}{7} r^{4} \quad$ [Angel '04, Curien - Le Gall '12]

- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13]

Universality: we expect the same behavior for slightly different models (e.g. quadrangulations, triangulations without loops, ...)

II - Ising model on random maps

Adding matter: Ising model on triangulations

First, Ising model on a finite deterministic graph:

$$
G=(V, E) \text { finite graph }
$$

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\}
$$

Adding matter: Ising model on triangulations

First, Ising model on a finite deterministic graph:
$G=(V, E)$ finite graph

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\}
$$

Ising model on G: take a random spin configuration with probability

$$
P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v^{\prime}} \mathbf{1}_{\left\{\sigma(v) \neq \sigma\left(v^{\prime}\right)\right\}}}
$$

$\beta>0$: inverse temperature.
$h=0$: no magnetic field.

Adding matter: Ising model on triangulations

First, Ising model on a finite deterministic graph:

$$
G=(V, E) \text { finite graph }
$$

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\} .
$$

Ising model on G: take a random spin configuration with probability

$$
P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v^{\prime}} \mathbf{1}_{\left\{\sigma(v) \neq \sigma\left(v^{\prime}\right)\right\}}}
$$

$\beta>0$: inverse temperature.
$h=0$: no magnetic field.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)=$ number of monochromatic edges and $\nu=e^{\beta}$.

Adding matter: Ising model on triangulations

$\mathcal{T}_{n}=\{$ rooted planar triangulations with $3 n$ edges $\}$.
Random triangulation with spins in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?

Adding matter: Ising model on triangulations

$$
\mathcal{T}_{n}=\{\text { rooted planar triangulations with } 3 n \text { edges }\} .
$$

Random triangulation with spins in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)} \delta_{|e(T)|=3 n}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

where $Q(\nu, t)=$ generating series of Ising-weighted triangulations:

$$
Q(\nu, t)=\sum_{T \in \mathcal{T}_{f}} \sum_{\sigma: V(T) \rightarrow\{-1,+1\}} \nu^{m(T, \sigma)} t^{e(T)}
$$

Adding matter: Ising model on triangulations

$\mathcal{T}_{n}=\{$ rooted planar triangulations with $3 n$ edges $\}$.
Random triangulation with spins in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)} \delta_{|e(T)|=3 n}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

where $Q(\nu, t)=$ generating series of Ising-weighted triangulations:

$$
Q(\nu, t)=\sum_{T \in \mathcal{T}_{f}} \sum_{\sigma: V(T) \rightarrow\{-1,+1\}} \nu^{m(T, \sigma)} t^{e(T)}
$$

Remark: This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps: coeff $\left[t^{n}\right.$] of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5 / 2}$

Note : κ and ρ depend on the combinatorics of the model.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps:

 coeff $\left[t^{n}\right]$ of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5 / 2}$Note : κ and ρ depend on the combinatorics of the model.

Theorem [Bernardi - Bousquet-Mélou 11]

For every ν the series $Q(\nu, t)$ is algebraic, has $\rho_{\nu}>0$ as unique dominant singularity and satisfies

$$
\left[t^{3 n}\right] Q(\nu, t) \underset{n \rightarrow \infty}{\sim} \begin{cases}\kappa \rho_{\nu_{c}}^{-n} n^{-7 / 3} & \text { if } \nu=\nu_{c}=1+\frac{1}{\sqrt{7}} \\ \kappa \rho_{\nu}^{-n} n^{-5 / 2} & \text { if } \nu \neq \nu_{c} .\end{cases}
$$

This suggests an unusual behavior of the underlying maps for $\nu=\nu_{c}$. See also [Boulatov - Kazakov 1987], [Bousquet-Melou - Schaeffer 03] and [Bouttier - Di Francesco - Guitter 04].

Adding matter: link with Liouville Quantum Gravity

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$-LQG

$$
\begin{aligned}
& \text { [Miermont'13],[Le Gall'13], [Miller,Sheffield '15], } \\
& \text { [Holden, Sun '18], [Bernardi, Holden, Sun '18] }
\end{aligned}
$$

The critical Ising model is believed to converge to $\sqrt{3}$-LQG.
Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

Adding matter: link with Liouville Quantum Gravity

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$-LQG

$$
\begin{aligned}
& \text { [Miermont'13],[Le Gall'13], [Miller,Sheffield '15], } \\
& \text { [Holden, Sun '18], [Bernardi, Holden, Sun '18] }
\end{aligned}
$$

The critical Ising model is believed to converge to $\sqrt{3}$-LQG.
Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

For $\gamma \in(0,2)$, there exists $d_{\gamma}=$ "fractal dimension of γ-LQG"
$d_{\gamma}=$ ball volume growth exponent for corresponding maps ??

Adding matter: link with Liouville Quantum Gravity

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$-LQG

$$
\begin{aligned}
& \text { [Miermont'13],[Le Gall'13], [Miller,Sheffield '15], } \\
& \text { [Holden, Sun '18], [Bernardi, Holden, Sun '18] }
\end{aligned}
$$

The critical Ising model is believed to converge to $\sqrt{3}$-LQG.
Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

For $\gamma \in(0,2)$, there exists $d_{\gamma}=$ "fractal dimension of γ-LQG"
$d_{\gamma}=$ ball volume growth exponent for corresponding maps ??
YES, in some cases [Gwynne, Holden, Sun '17], [Ding, Gwynne '18]
Unknown for Ising, but $d_{\sqrt{3}}$ is a good candidate for the volume growth exponent.

What is $d_{\sqrt{3}}$?

Adding matter: link with Liouville Quantum Gravity

Watabiki's prediction:
$d_{\gamma}=1+\frac{\gamma^{2}}{4}+\frac{1}{4} \sqrt{\left(4+\gamma^{2}\right)^{2}+16 \gamma^{2}}$ gives $d_{\sqrt{3}} \approx 4.21 \ldots$
[Ding, Gwynne '18]
Bounds for d_{γ} which give: $4.18 \leq d_{\sqrt{3}} \leq 4.25$.

In particular $d_{\sqrt{3}} \neq 4$ and growth
 volume would then be different than the uniform model.

Green $=$ Watabiki.
Blue and Red = bounds by Ding and Gwynne.

III - Results and idea of proofs

Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_{n} with a spin configuration:

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Theorem [AMS]

As $n \rightarrow \infty$, the sequence \mathbb{P}_{n}^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the local topology.
The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the faces of m with at least one vertex at distance $r-1$ from the root.

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:

To show that \mathbb{P}_{n}^{ν} converges weakly to \mathbb{P}^{ν}, prove

1. For every $r>0$ and every possible ball Δ, show:

$$
\mathbb{P}_{n}^{\nu}\left(\left\{T \in \mathcal{T}_{n}: B_{r}(T)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)
$$

For instance for $r=2, \Delta$ might be equal to:

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
To show that \mathbb{P}_{n}^{ν} converges weakly to \mathbb{P}^{ν}, prove

1. For every $r>0$ and every possible ball Δ, show:
$\mathbb{P}_{n}^{\nu}\left(\left\{T \in \mathcal{T}_{n}: B_{r}(T)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
Problem: the space $\left(\mathcal{T}, d_{l o c}\right)$ is not compact! Ex:

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
To show that \mathbb{P}_{n}^{ν} converges weakly to \mathbb{P}^{ν}, prove

1. For every $r>0$ and every possible ball Δ, show:
$\mathbb{P}_{n}^{\nu}\left(\left\{T \in \mathcal{T}_{n}: B_{r}(T)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
Problem: the space $\left(\mathcal{T}, d_{l o c}\right)$ is not compact! Ex:
2. No loss of mass at the limit:
 the measure \mathbb{P}^{ν} defined by the limits in 1 . is a probability measure.

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
To show that \mathbb{P}_{n}^{ν} converges weakly to \mathbb{P}^{ν}, prove

1. For every $r>0$ and every possible ball Δ, show:
$\mathbb{P}_{n}^{\nu}\left(\left\{T \in \mathcal{T}_{n}: B_{r}(T)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
Problem: the space $\left(\mathcal{T}, d_{l o c}\right)$ is not compact! Ex:
2. No loss of mass at the limit:
 the measure \mathbb{P}^{ν} defined by the limits in 1 . is a probability measure.

$$
\forall r \geq 0, \quad \sum_{r-\text { balls } \Delta} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)=1
$$

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
To show that \mathbb{P}_{n}^{ν} converges weakly to \mathbb{P}^{ν}, prove

1. For every $r>0$ and every possible ball Δ, show:
$\mathbb{P}_{n}^{\nu}\left(\left\{T \in \mathcal{T}_{n}: B_{r}(T)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\nu}\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
Problem: the space $\left(\mathcal{T}, d_{l o c}\right)$ is not compact! Ex:
2. No loss of mass at the limit:
 the measure \mathbb{P}^{ν} defined by the limits in 1 . is a probability measure.
Enough to prove a tightness result, which amounts here to say that deg (root) cannot be too big.

Local convergence and generating series

Need to evaluate, for every possible ball Δ

???

Local convergence and generating series

Need to evaluate, for every possible ball Δ

$$
=\frac{\nu^{m(\Delta)-m(\omega)}\left[t^{3 n-e(\Delta)+|\omega|}\right] \mathbb{Z}_{\omega}(\nu, t)}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Generating series of triangulations with simple
??? boundary and boundary conditions given by ω. Here $\omega=+-+---+-++-$

Local convergence and generating series

Need to evaluate, for every possible ball Δ

???

$$
=\frac{\nu^{m(\Delta)-m(\omega)}\left[t^{3 n-e(\Delta)+|\omega|}\right] \mathbf{Z}_{\omega}(\nu, t)}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Generating series of triangulations with simple boundary and boundary conditions given by ω. Here $\omega=+-+---+-++-$

Theorem [AMS]

For every ω, the series $t^{|\omega|} Z_{\omega}(\nu, t)$ is algebraic, has ρ_{ν} as unique dominant singularity and satisfies

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}(\nu, t) \underset{n \rightarrow \infty}{\sim} \begin{cases}\kappa_{\omega}\left(\nu_{c}\right) \rho_{\nu_{c}}^{-n} n^{-7 / 3} & \text { if } \nu=\nu_{c}=1+\frac{1}{\sqrt{7}} \\ \kappa_{\omega}(\nu) \rho_{\nu}^{-n} n^{-5 / 2} & \text { if } \nu \neq \nu_{c}\end{cases}
$$

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu .
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu \text {. }
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Peeling equation :

$|\omega| \leq 3, \quad Z_{\omega}=\left(Z_{\oplus \omega}+Z_{\ominus \omega}+\sum_{\omega=\omega_{1} a \omega_{2}} Z_{a \omega_{1}} \cdot Z_{a \omega_{2}}\right) \times \nu^{1{ }_{\omega \bar{\omega}}=\bar{\omega}} t$

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu .
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Peeling equation :

$|\omega| \leq 3, \quad Z_{\omega}=\left(Z_{\oplus \omega}+Z_{\ominus \omega}+\sum_{\omega=\omega_{1} a \omega_{2}} Z_{a \omega_{1}} \cdot Z_{a \omega_{2}}\right) \times \nu^{1_{\overleftarrow{\omega}=\bar{\omega}}} t$
Double recursion on $|\omega|$ and number of \ominus 's: enough to prove 1. and 2. for the $t^{p} Z_{\oplus^{p}}$'s

Positive boundary conditions : two catalytic variables

Positive boundary conditions : two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

$$
S(x, y):=\sum_{p, q \geq 1} Z_{\oplus^{p} \ominus^{q}} x^{p} y^{q}
$$

Positive boundary conditions: two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

Positive boundary conditions : two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

$$
\begin{aligned}
& S(x, y):=\sum_{p, q \geq 1} Z_{\oplus^{p} \ominus^{q}} x^{p} y^{q} \\
&=t x y+\frac{t}{x}(S(x, y)-x[x]S(x, y))+\frac{t}{y}(S(x, y)-y[y] S(x, y)) \\
&+\frac{t}{x} S(x, y) A(x)+\frac{t}{y} S(x, y) A(y)
\end{aligned}
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) .
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right)
$$

$$
I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
$$

From two catalytic variables to one: Tutte's invariants

Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\begin{aligned}
& \text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) . \\
& I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
\end{aligned}
$$

2. Work a bit with the help of $R\left(x, Y_{i} / t\right)=0$ to get a second invariant $J(y)$ depending only on $t, \nu, Z_{\oplus}(t), y$ and $A(y / t)$.

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\begin{aligned}
& \text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) . \\
& I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
\end{aligned}
$$

2. Work a bit with the help of $R\left(x, Y_{i} / t\right)=0$ to get a second invariant $J(y)$ depending only on $t, \nu, Z_{\oplus}(t), y$ and $A(y / t)$.
3. Prove that $J(y)=C_{0}(t)+C_{1}(t) I(y)+C_{2}(t) I^{2}(y)$ with C_{i} 's explicit polynomials in $t, Z_{\oplus}(t)$ and $Z_{\oplus^{2}}(t)$.

Equation with one catalytic variable for $A(y)$ with Z_{\oplus} and $Z_{\oplus^{2}}$!

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{aligned}
\frac{\text { Mark a uniform edge conditionally on the triangulation }}{\overline{\mathbb{P}}_{n}}(\delta \in e) & =\sum_{k=1}^{3 n} \overline{\mathbb{P}}(\delta \in e \mid \operatorname{deg}(\delta)=k) \cdot \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k) \\
& \geq \sum_{k=1}^{3 n} \frac{k}{2 \cdot 3 n} \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k)=\frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{aligned}
$$

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{array}{r}
\text { Mark a uniform edge } \\
\underset{\mathbb{P}_{n}}{ }(\delta \in e) \geq \frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{array}
$$

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{aligned}
& \text { Mark a uniform edge conditionally on the triangulation } \\
& \frac{\mathbb{P}_{n}}{(\delta \in e) \geq \frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]}
\end{aligned}
$$

Some cases that contribute to $\overline{\mathbb{P}_{n}}(\delta \in e)$:

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{array}{r}
\text { Mark a uniform edge } \\
\frac{\mathbb{P}_{n}}{}(\delta \in e) \geq \frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{array}
$$

Some cases that contribute to $\overline{\mathbb{P}_{n}}(\delta \in e)$:

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{aligned}
& \text { Mark a uniform edge } \\
& \mathbb{P}_{n}(\delta \in e) \geq \frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{aligned}
$$

Some cases that contribute to $\overline{\mathbb{P}_{n}}(\delta \in e)$:

$$
\begin{aligned}
\overline{\mathbb{P}_{n}}(\delta \in e) & \leq \max \left\{\frac{1}{\nu}, 1\right\}^{2} \frac{\left[t^{3 n+2}\right]\left(Z_{4}+Z_{2}^{2}+Z_{1}^{2}+Z_{1}^{2} Z_{2}+Z_{1} Z_{3}\right)}{3 n\left[t^{3 n}\right] \mathcal{Z}} \\
& =\mathcal{O}(1 / n)
\end{aligned}
$$

A simple tightness argument

A "double counting" argument to study the degree of the root vertex δ :

$$
\begin{array}{r}
\text { Mark a uniform edge } \\
\frac{1}{\mathbb{P}_{n}}(\delta \in e) \geq \frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{array}
$$

Some cases that contribute to $\overline{\mathbb{P}_{n}}(\delta \in e)$:

$$
\mathbb{E}_{n}[\operatorname{deg}(\delta)]=\mathcal{O}(1)
$$

$$
\begin{aligned}
\overline{\mathbb{P}_{n}}(\delta \in e) & \leq \max \left\{\frac{1}{\nu}, 1\right\}^{2} \frac{\left[t^{3 n+2}\right]\left(Z_{4}+Z_{2}^{2}+Z_{1}^{2}+Z_{1}^{2} Z_{2}+Z_{1} Z_{3}\right)}{3 n\left[t^{3 n}\right] \mathcal{Z}} \\
& =\mathcal{O}(1 / n)
\end{aligned}
$$

Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_{n} with a spin configuration:

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Theorem [AMS]

As $n \rightarrow \infty$, the sequence \mathbb{P}_{n}^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the local topology.
The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

Recent related result by [Chen, Turunen, '18]: Local convergence for triangulations of the halfplane by studying the interface between \oplus and \ominus.

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?
- At least volume growth $\neq 4$ at ν_{c} ? Mating of trees ? or another approach ?

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?
- At least volume growth $\neq 4$ at ν_{c} ? Mating of trees ? or another approach ?

Thank you for your attention!

Summer school Random trees and graphs July 1 to 5, 2019 in Marseille France
Org. M. Albenque, J. Bettinelli, J. Rué and L.Menard

Summer school Random walks and models of complex networks July 8 to 19, 2019 in Nice
Org. B. Reed and D. Mitsche

Thank you for your attention!

