Triangulations with spins : algebraicity and local limit

Marie Albenque (CNRS and LIX) joint work with Laurent Ménard (Paris Nanterre) and Gilles Schaeffer (CNRS and LIX)

États de la recherche SMF, December 2018

I - Random maps without matter

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neigbours around each vertex.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neigbours around each vertex. face = connected component of the sphere when the edge are removed p-angulation: each face is bounded by p edges

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neigbours around each vertex. face = connected component of the sphere when the edge are removed *p*-angulation: each face is bounded by *p* edges Plane maps are rooted : by orienting an edge.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neigbours around each vertex. face = connected component of the sphere when the edge are removed *p*-angulation: each face is bounded by *p* edges Plane maps are rooted : by orienting an edge.

Distance between two vertices = number of edges between them. Planar map = **Metric space**

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Global :

Rescale distances to keep diameter bounded [Le Gall 13, Miermont 13] : converges to the **Brownian map**

- Gromov-Hausdorff topology
- Continuous metric space
- Homeomorphic to the sphere
- Hausdorff dimension 4
- Universality

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root

[Angel – Schramm 03, Krikun 05] : Converges to the Uniform Infinite Planar Triangulation

- Local topology
- Volume of balls of radius $R \ {\rm grow} \ {\rm like} \ R^4$
- "Universality" of the exponent 4.

Local Topology for planar maps

 $\mathcal{M}_f := \{ \text{finite rooted planar maps} \}.$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

where $B_r(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

Local Topology for planar maps

 $\mathcal{M}_f := \{ \text{finite rooted planar maps} \}.$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

where $B_r(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

- (\mathcal{M}, d_{loc}) : closure of (\mathcal{M}_f, d_{loc}) . It is a **Polish** space (complete and separable).
- $\mathcal{M}_{\infty} := \mathcal{M} \setminus \mathcal{M}_{f}$ set of infinite planar maps.

Uniformly chosen root

Local convergence: more complicated examples

Uniform plane trees with n vertices:

Local convergence: more complicated examples

Uniform plane trees with n vertices:

Local convergence: more complicated examples

Uniform plane trees with n vertices:

Local convergence of uniform triangulations

Theorem [Angel – Schramm, '03]

As $n \to \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or **UIPT**) for the **local topology**.

Courtesy of Igor Kortchemski

Courtesy of Timothy Budd

Local convergence of uniform triangulations

Theorem [Angel – Schramm, '03]

As $n \to \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or **UIPT**) for the **local topology**.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent. For example $\mathbb{E}[|B_r(\mathbf{T}_{\infty})|] \sim \frac{2}{7}r^4$ [Angel '04, Curien – Le Gall '12]
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13]

Local convergence of uniform triangulations

Theorem [Angel – Schramm, '03]

As $n \to \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or **UIPT**) for the **local topology**.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent. For example $\mathbb{E}[|B_r(\mathbf{T}_{\infty})|] \sim \frac{2}{7}r^4$ [Angel '04, Curien – Le Gall '12]
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13]

Universality: we expect the **same behavior** for slightly different models (e.g. quadrangulations, triangulations without loops, ...)

II - Ising model on random maps

First, Ising model on a finite deterministic graph:

Spin configuration on *G*: $\sigma: V \to \{-1, +1\}.$

First, Ising model on a finite deterministic graph:

G = (V, E) finite graph

Spin configuration on G: $\sigma: V \to \{-1, +1\}.$

Ising model on G: take a random spin configuration with probability

$$P(\sigma) \propto e^{-\frac{\beta}{2}\sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature. h = 0: no magnetic field.

First, Ising model on a finite deterministic graph:

Spin configuration on *G*: $\sigma: V \to \{-1, +1\}.$

Ising model on G: take a random spin configuration with probability

$$P(\sigma) \propto e^{-\frac{\beta}{2}\sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature. h = 0: no magnetic field.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)$ = number of monochromatic edges and $\nu = e^{\beta}$.

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}\delta_{|e(T)|=3n}}{[t^{3n}]Q(\nu,t)}.$$

where $Q(\nu, t) =$ generating series of **lsing-weighted triangulations**:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}$$

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}\delta_{|e(T)|=3n}}{[t^{3n}]Q(\nu,t)}.$$

where $Q(\nu, t) =$ generating series of **lsing-weighted triangulations**:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}.$$

Remark: This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps: coeff $[t^n]$ of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5/2}$

Note : κ and ρ depend on the combinatorics of the model.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps: coeff $[t^n]$ of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5/2}$

Note : κ and ρ depend on the combinatorics of the model.

Theorem [Bernardi – Bousquet-Mélou 11] For every ν the series $Q(\nu, t)$ is algebraic, has $\rho_{\nu} > 0$ as unique dominant singularity and satisfies

$$[t^{3n}]Q(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

This suggests an unusual behavior of the underlying maps for $\nu = \nu_c$. See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$ -LQG

[Miermont'13], [Le Gall'13], [Miller, Sheffield '15],

[Holden, Sun '18], [Bernardi, Holden, Sun '18]

The critical Ising model is *believed* to converge to $\sqrt{3}$ -LQG.

Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$ -LQG

[Miermont'13], [Le Gall'13], [Miller, Sheffield '15],

[Holden, Sun '18], [Bernardi, Holden, Sun '18]

The critical Ising model is *believed* to converge to $\sqrt{3}$ -LQG.

Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

For $\gamma \in (0, 2)$, there exists $d_{\gamma} =$ "fractal dimension of γ -LQG" $d_{\gamma} =$ ball volume growth exponent for corresponding maps ??

Maps without matter "converge" to $\sqrt{\frac{8}{3}}$ -LQG

[Miermont'13], [Le Gall'13], [Miller, Sheffield '15],

[Holden, Sun '18], [Bernardi, Holden, Sun '18]

The critical Ising model is *believed* to converge to $\sqrt{3}$ -LQG.

Similar statements for other models of decorated maps (with a spanning subtree, with a bipolar orientation,...) but no proofs.

For $\gamma \in (0,2)$, there exists $d_{\gamma} =$ "fractal dimension of γ -LQG"

 $d_{\gamma} = \text{ball volume growth exponent for corresponding maps }?$

YES, in some cases [Gwynne, Holden, Sun '17], [Ding, Gwynne '18] Unknown for Ising, but $d_{\sqrt{3}}$ is a good candidate for the volume growth exponent. What is $d_{\sqrt{3}}$?

Watabiki's prediction:

$$d_{\gamma} = 1 + \frac{\gamma^2}{4} + \frac{1}{4}\sqrt{(4+\gamma^2)^2 + 16\gamma^2} \text{ gives } d_{\sqrt{3}} \approx 4.21...$$

[Ding, Gwynne '18] Bounds for d_{γ} which give: $4.18 \leq d_{\sqrt{3}} \leq 4.25$.

In particular $d_{\sqrt{3}} \neq 4$ and growth volume would then be different than the uniform model.

Green = Watabiki.Blue and Red = bounds by Ding and Gwynne.

III - Results and idea of proofs

Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}.$$

Theorem [AMS]

As $n \to \infty$, the sequence \mathbb{P}_n^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the **local topology**. The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_{n}^{\nu} \bigg(\{ T \in \mathcal{T}_{n} : B_{r}(T) = \Delta \} \bigg) \xrightarrow[n \to \infty]{} \mathbb{P}^{\nu} \bigg(\{ T \in \mathcal{T}_{\infty} : B_{r}(T) = \Delta \} \bigg).$$

For instance for $r = 2$, Δ might be equal to:

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_n^{\nu}\bigg(\left\{T\in\mathcal{T}_n\,:\,B_r(T)=\Delta\right\}\bigg)\xrightarrow[n\to\infty]{}\mathbb{P}^{\nu}\bigg(\left\{T\in\mathcal{T}_\infty\,:\,B_r(T)=\Delta\right\}\bigg).$$

Problem: the space (\mathcal{T}, d_{loc}) is **not compact**! Ex:

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_n^{\nu}\bigg(\left\{T\in\mathcal{T}_n\,:\,B_r(T)=\Delta\right\}\bigg)\xrightarrow[n\to\infty]{}\mathbb{P}^{\nu}\bigg(\left\{T\in\mathcal{T}_\infty\,:\,B_r(T)=\Delta\right\}\bigg).$$

Problem: the space (\mathcal{T}, d_{loc}) is **not compact**! Ex:

2. No loss of mass at the limit:

the measure \mathbb{P}^{ν} defined by the limits in 1. is a probability measure.

degree n

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_n^{\nu}\bigg(\left\{T\in\mathcal{T}_n\,:\,B_r(T)=\Delta\right\}\bigg)\xrightarrow[n\to\infty]{}\mathbb{P}^{\nu}\bigg(\left\{T\in\mathcal{T}_\infty\,:\,B_r(T)=\Delta\right\}\bigg).$$

Problem: the space (\mathcal{T}, d_{loc}) is **not compact**! Ex:

degree n

2. No loss of mass at the limit:

the measure \mathbb{P}^{ν} defined by the limits in 1. is a probability measure.

$$\forall r \ge 0, \quad \sum_{r-\text{balls }\Delta} \mathbb{P}^{\nu} \Big(\{ T \in \mathcal{T}_{\infty} : B_r(T) = \Delta \} \Big) = 1.$$

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_n^{\nu}\bigg(\left\{T\in\mathcal{T}_n\,:\,B_r(T)=\Delta\right\}\bigg)\xrightarrow[n\to\infty]{}\mathbb{P}^{\nu}\bigg(\left\{T\in\mathcal{T}_\infty\,:\,B_r(T)=\Delta\right\}\bigg).$$

Problem: the space (\mathcal{T}, d_{loc}) is **not compact**! Ex:

degree n

2. No loss of mass at the limit:

the measure \mathbb{P}^{ν} defined by the limits in 1. is a probability measure.

Enough to prove a **tightness** result, which amounts here to say that deg(root) cannot be too big.

Local convergence and generating series

Need to evaluate, for every possible ball Δ

Local convergence and generating series

Need to evaluate, for every possible ball Δ

$$= \frac{\nu^{m(\Delta)-m(\omega)} \left[t^{3n-e(\Delta)+|\omega|}\right] \mathbf{Z}_{\omega}(\nu,t)}{[t^{3n}]Q(\nu,t)}$$

Generating series of triangulations with simple boundary and boundary conditions given by ω . Here $\omega = + - + - - - + - + - -$

Local convergence and generating series

Need to evaluate, for every possible ball Δ

Theorem [AMS]

For every ω , the series $t^{|\omega|}Z_{\omega}(\nu,t)$ is algebraic, has ρ_{ν} as unique dominant singularity and satisfies

$$[t^{3n}]t^{|\omega|}Z_{\omega}(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa_{\omega}(\nu_c) \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa_{\omega}(\nu) \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

To get exact asymptotics we need, as series in t^3 ,

1. algebraicity,

2. no other dominant singularity than ρ_{ν} .

Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Peeling equation :

Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Peeling equation :

$$A(\mathbf{x}) := \sum_{p>1} Z_{\oplus^p} \mathbf{x}^p = \nu t \mathbf{x}^2 +$$

Peeling equation at interface $\ominus -\oplus$:

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y}) \cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} \left(A(Y_1/t) + 1 \right) = \frac{1}{Y_2} \left(A(Y_2/t) + 1 \right)$.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y}) \cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a second invariant J(y) depending only on $t, \nu, Z_{\bigoplus}(t), y$ and A(y/t).

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a second invariant J(y) depending only on $t, \nu, Z_{\bigoplus}(t), y$ and A(y/t).

3. Prove that $J(y) = C_0(t) + C_1(t)I(y) + C_2(t)I^2(y)$ with C_i 's explicit polynomials in $t, Z_{\bigoplus}(t)$ and $Z_{\bigoplus^2}(t)$.

Equation with one catalytic variable for A(y) with Z_{\oplus} and Z_{\oplus^2} !

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\overbrace{\mathbb{P}_{n}}^{3n} (\delta \in e) = \sum_{k=1}^{3n} \overline{\mathbb{P}} \left(\delta \in e | \deg(\delta) = k \right) \cdot \overline{\mathbb{P}_{n}} \left(\deg(\delta) = k \right)$ $\geq \sum_{k=1}^{3n} \frac{k}{2 \cdot 3n} \overline{\mathbb{P}_{n}} \left(\deg(\delta) = k \right) = \frac{1}{6n} \mathbb{E}_{n} \left[\deg(\delta) \right]$

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\mathbb{P}_n \ (\delta \in e) \ge \frac{1}{6n} \mathbb{E}_n \left[\deg(\delta) \right]$

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\mathbb{P}_n \ (\delta \in e) \ge \frac{1}{6n} \mathbb{E}_n \left[\deg(\delta) \right]$

Some cases that contribute to $\overline{\mathbb{P}_n}$ $(\delta \in e)$:

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\mathbb{P}_n \ (\delta \in e) \ge \frac{1}{6n} \mathbb{E}_n \left[\deg(\delta) \right]$

Some cases that contribute to $\overline{\mathbb{P}_n}$ $(\delta \in e)$:

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\mathbb{P}_n \ (\delta \in e) \ge \frac{1}{6n} \mathbb{E}_n \left[\deg(\delta) \right]$

Some cases that contribute to $\overline{\mathbb{P}_n}$ $(\delta \in e)$:

A "double counting" argument to study the degree of the root vertex δ :

Mark a uniform edge conditionally on the triangulation $\mathbb{P}_n \ (\delta \in e) \ge \frac{1}{6n} \mathbb{E}_n \left[\deg(\delta) \right]$

Some cases that contribute to $\overline{\mathbb{P}_n}$ ($\delta \in e$):

 $\mathbb{E}_n\left[\deg(\delta)\right] = \mathcal{O}(1).$

Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}.$$

Theorem [AMS] As $n \to \infty$, the sequence \mathbb{P}_n^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the **local topology**. The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

Recent related result by [Chen, Turunen, '18]: Local convergence for triangulations of the halfplane by studying the interface between \oplus and \ominus .

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?
- At least volume growth $\neq 4$ at ν_c ? Mating of trees ? or another approach ?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end almost surely.
- Recurrence of the random walk ?

What we would like to know:

- Singularity with respect to the UIPT?
- Some information about the cluster's size.
- Volume growth?
- At least volume growth $\neq 4$ at ν_c ? Mating of trees ? or another approach ?

Thank you for your attention!

Summer school Random trees and graphs July 1 to 5, 2019 in Marseille France Org. M. Albenque, J. Bettinelli, J. Rué and L.Menard

Summer school Random walks and models of complex networks July 8 to 19, 2019 in Nice Org. B. Reed and D. Mitsche Thank you for your attention!