MPRI Year 2025–26

Mid-term exam, November 26, 2025

- You have 1h30. You can write your answers either in French or in English.
- Exercises are independent.
- Questions marked with $a(\star)$ are harder than the other ones.
- In the two exercises any code is linear.

Exercise 1. (1) Give the full list of minimal cyclotomic classes corresponding to cyclic codes of length 15 over \mathbb{F}_4 .

Answer: $\{0\}, \{1,4\}, \{2,8\}, \{3,12\}, \{5\}, \{6,9\}, \{7,13\}, \{10\}, \{11,14\}.$

(2) What is the number of cyclic codes of length 15 over \mathbb{F}_4 ?

Answer : 512.

(3) Prove that there exists a [15, 7, d] cyclic code over \mathbb{F}_4 with $d \ge 7$.

Answer: Consider the cyclotomic class $\{0, 1, 2, 3, 4, 5, 8, 12\}$. It contains 6 consecutive elements hence, by the BCH bound, gives rise to a code of minimum distance ≥ 7 . Since it has cardinality 8 the corresponding code has dimension 7.

- (4) More generally, when classifying cyclic codes of length $q^2 1$ over \mathbb{F}_q ,
 - (a) prove that minimal cyclotomic classes have cardinality either 1 or 2;

Answer: Let $I \subseteq \mathbb{Z}/(q^2-1)\mathbb{Z}$ be a minimal cyclotomic class. Let $a \in I$, then, either $aq \equiv a \mod q^2-1$ and then $I=\{a\}$ or $aq^2=a(1+q^2-1)\equiv a \mod q^2-1$ and hence $I=\{a,aq\}$.

(b) Give the exact number of cyclotomic classes of cardinality 1.

Answer : Let $0 \le a < q^2 - 1$ and denote (by abuse of notation) also by a its class in $\mathbb{Z}/(q^2-1)\mathbb{Z}$. Suppose that $\{a\}$ is a cyclotomic class. Then, $a \equiv aq \mod (q^2-1)$ or equivalently $a(q-1) \equiv 0 \mod (q^2-1)$. Therefore, $a(q-1) = (q^2-1)h$ for some integer h. Equivalently a = (q+1)h for some integer h. Therefore, since $0 \le a < q^2 - 1$, we deduce that $a \in \{0, q+1, 2(q+1), \ldots, (q-2)(q+1)\}$. This yields q-1 classes of cardinality 1.

(5) Give the total number of cyclic codes of length $q^2 - 1$ over \mathbb{F}_q .

Answer: According to Question 4b, there are q-1 minimal cyclotomic classes of cardinality 1. Next, from Question 4a, any other minimal cyclotomic classes has cardinality 2. This gives, $\frac{q^2-q}{2}$ other classes. Therefore, the overall number of minimal cyclotomic classes is

$$q - 1 + \frac{q^2 - q}{2} = \frac{q^2 + q}{2} - 1.$$

Thus, there are $2^{\frac{q^2+q}{2}-1}$ cyclic codes of length q^2-1 over \mathbb{F}_q .

(6) Prove that for any $t < \frac{q^2-1}{2}$, there always exists a $[q^2-1,k,d]$ cyclic code over \mathbb{F}_q with $k \geqslant q^2-2t$ and $d \geqslant t+1$.

Answer: Consider the smallest cyclotomic class I containing $0, 1, \ldots, t-1$. Since $\{0\}$ is a cyclotomic class and that any other element is contained in a minimal class of cardinality 2, we deduce that $|I| \leq 2t-1$. By the BCH bound, it gives rise to a $[q^2-1, \geqslant q^2-2t, \geqslant t+1]$ cyclic code.

Exercise 2.

Note: This exercise is inspired from the article:

Gérard Cohen, Abraham Lempel. *Linear Intersecting codes*. Discrete Mathematics. 56(1). pp 35–43. 1985. https://doi.org/10.1016/0012-365X(85)90190-6.

In this exercise, any code is binary *i.e.* a linear subspace of \mathbb{F}_2^n .

For a vector $\mathbf{x} \in \mathbb{F}_2^n$ we denote by $w_{\mathrm{H}}(\mathbf{x})$ its Hamming weight. We denote by * the component wise product in \mathbb{F}_2^n , namely

$$(x_1, \ldots, x_n) * (y_1, \ldots, y_n) \stackrel{\text{def}}{=} (x_1 y_1, \ldots, x_n y_n).$$

(1) Prove that for any $\mathbf{c}_1 \neq \mathbf{c}_2 \in \mathbb{F}_2^n$, then

$$w_{\mathrm{H}}(\mathbf{c}_{1} + \mathbf{c}_{2}) = w_{\mathrm{H}}(\mathbf{c}_{1}) + w_{\mathrm{H}}(\mathbf{c}_{2}) - 2w_{\mathrm{H}}(\mathbf{c}_{1} * \mathbf{c}_{2}) \tag{1}$$

Answer : The support of $\mathbf{c}_1 + \mathbf{c}_2$ is $(\operatorname{Supp}(\mathbf{c}_1) \cup \operatorname{Supp}(\mathbf{c}_2)) \setminus (\operatorname{Supp}(\mathbf{c}_1) \cap \operatorname{Supp}(\mathbf{c}_2))$. Since $\operatorname{Supp}(\mathbf{c}_1 * \mathbf{c}_2) = \operatorname{Supp}(\mathbf{c}_1) \cap \operatorname{Supp}(\mathbf{c}_2)$, we get the result.

Let r > 0, a code $\mathscr{C} \subset \mathbb{F}_2^n$ is said to be r-intersecting if dim $\mathscr{C} \geqslant 2$ and $\forall \mathbf{c}, \mathbf{c}' \in \mathscr{C} \setminus \{0\}$, $w_{\mathrm{H}}(\mathbf{c} * \mathbf{c}') \geqslant r$.

(2) Prove that the binary code with generator matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

is 1-intersecting.

Answer: The nonzero elements of the code are (110), (011), (101) any two of these words have one 1 in common.

(3) Let $\mathscr{C} \subset \mathbb{F}_2^n$ be a code of minimum distance d_{\min} . Let $d_{\max} \stackrel{\text{def}}{=} \max\{w_{\mathrm{H}}(\mathbf{c}) \mid \mathbf{c} \in \mathscr{C}\}$ and suppose that $d_{\min} > d_{\max}/2$. Prove that \mathscr{C} is r-intersecting for $r = d_{\min} - \frac{d_{\max}}{2}$. (*Hint: Use (1).*)

Answer: Let $\mathbf{c}_1, \mathbf{c}_2$ be two nonzero codewords. If $\mathbf{c}_1 = \mathbf{c}_2$ then their support intersect at $w_{\mathrm{H}}(\mathbf{c}) \geqslant d_{\mathrm{min}} \geqslant d_{\mathrm{min}} - \frac{d_{\mathrm{max}}}{2}$ positions. Otherwise, from Question (1),

$$d_{\text{max}} \geqslant w_{\text{H}}(\mathbf{c}_1 - \mathbf{c}_1) = w_{\text{H}}(\mathbf{c}_1) + w_{\text{H}}(\mathbf{c}_2) - 2w_{\text{H}}(\mathbf{c}_1 * \mathbf{c}_2) \geqslant 2d_{\text{min}} - w_{\text{H}}(\mathbf{c}_1 * \mathbf{c}_2).$$

Thus

$$w_{\rm H}(\mathbf{c}_1 * \mathbf{c}_2) \geqslant 2d_{\rm min} - d_{\rm max}$$

and taking the minimum over all possible pairs $(\mathbf{c}_1, \mathbf{c}_2) \in (\mathscr{C} \setminus \{0\})^2$ yields the result.

(4) If $\mathscr{C} \subseteq \mathbb{F}_2^n$ is an r-intersecting code for some r > 0 and with minimum distance d_{\min} , prove that $r \leqslant \frac{d_{\min}}{2}$. (Hint: $take \ \mathbf{c} \neq 0$ a minimum weight codeword, \mathbf{c}' another codeword and consider $\mathbf{c} * \mathbf{c}'$ and $\mathbf{c} * (\mathbf{c} + \mathbf{c}')$.)

Answer: Take **c** a codeword of weight d and **c**' any other nonzero codeword. Let $s \stackrel{\text{def}}{=} w_{\text{H}}(\mathbf{c} * \mathbf{c}')$. If \mathbf{c}, \mathbf{c}' have supports intersecting at $s \leqslant \frac{d_{\min}}{2}$ positions, then we are done. Otherwise **c** and $\mathbf{c} + \mathbf{c}'$ will have supports that intersect at $w_{\text{H}}(\mathbf{c}) - s \leqslant \frac{d_{\min}}{2}$ positions.

(5) Let K(n,d) be the maximal possible dimension of a linear code in \mathbb{F}_2^n of minimum distance d. Let r > 0, prove that any r-intersecting code $\mathscr{C} \subset \mathbb{F}_2^n$ has parameters [n,k,d] which satisfy

$$k \leqslant K(d,r)$$
.

 $(\textit{Hint: Take } \mathbf{c} \in \mathscr{C} \textit{ of weight } d \textit{ and consider the map} \left\{ \begin{array}{ccc} \mathscr{C} & \longrightarrow & \mathbb{F}_2^d \\ \mathbf{x} & \longmapsto & \mathbf{x} * \mathbf{c} \end{array} \right.,$

where the entries at which \mathbf{c} vanishes are removed.)

Answer : Let $\mathscr C$ be an [n,k,d] r-intersecting code with $k\leqslant K(d,r)$. Let $\mathbf c\in\mathscr C$ of weight d. Consider $\mathbf c\in\mathscr C$ the map

$$\phi: \left\{ \begin{array}{ccc} \mathscr{C} & \longrightarrow & \mathbb{F}_2^d \\ \mathbf{x} & \longmapsto & \mathbf{x} * \mathbf{c}. \end{array} \right.$$

By the intersecting property, the above map is injective and its image has minimum distance $\geq r$. Hence the result.

(6) Let r > 0. Prove that for any [n, k, d] code that is r-intersecting, $d - k + 1 \ge r$.

Hint: Same Hint as for question (5)

Answer: Consider the map ϕ of the previous question. Its image is a $[d, k, \ge r]$ code. The expected result is a direct consequence of Singleton bound applied to that code.

(7) Let $\mathscr{C} \subseteq \mathbb{F}_2^n$ be a 1-intersecting code with parameters [n, k, d]. let $G \in \mathbb{F}_2^{k \times n}$ be a generator matrix of \mathscr{C} . Denote by I_k the $k \times k$ identity matrix. Prove that the code with generator matrix:

									0
									0
			G				I_k		0
			G				1_k		:
									:
									0
0	0	0	• • •	0	1	1	• • •	1	1

is

- (a) 1-intersecting;
- (b) with parameters [n+k+1,k+1,d'] such that $d' \ge \min(d+1,k+1)$.

Answer: The length and dimension of the code are clear from the matrix shape. For the minimum distance, the last row has weight k+1 and any other linear combination of rows has the shape $(\mathbf{c} \mid \mathbf{c}')$ where $\mathbf{c} \in \mathscr{C}$ and \mathbf{c}' is nonzero. Thus, such a word has weight $\geqslant d+1$. There remains to prove the intersecting property. Two **nonzero** codewords have respective shapes $(\mathbf{c}_1, \mathbf{c}'_1)$ and $(\mathbf{c}_2, \mathbf{c}'_2)$ where $\mathbf{c}_1, \mathbf{c}_2 \in \mathscr{C}$ and $\mathbf{c}'_1, \mathbf{c}'_2$ are nonzero. If both $\mathbf{c}_1, \mathbf{c}_2$ are nonzero, the intersecting property is satisfied since \mathscr{C} is intersecting. Now, if for instance $\mathbf{c}_1 = 0$ then $(\mathbf{c}_1, \mathbf{c}'_1) = (0 \cdots 011 \cdots 1)$. Since \mathbf{c}'_2 is nonzero, the two codewords' supports will intersect at least at one position among $n+1,\ldots,n+k+1$. Thus, the resulting code is 1-intersecting.

(8) (*) Prove that there are $(3^n - 2^{n+1} + 1)$ pairs (\mathbf{a}, \mathbf{b}) of nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{F}_2^n$ such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$.

Answer: Fix $a \in \mathbb{F}_2^n \setminus \{0\}$ of weight *i*. Then, there are $2^{n-i} - 1$ nonzero vectors **b** such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$. If we sum these over all possible **a** this gives a number of ordered pairs (\mathbf{a}, \mathbf{b}) such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$ equal to

$$\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n} \setminus \{0\}} (2^{n-w_{\mathbf{H}}(a)} - 1) = \sum_{i=1}^{n} \sum_{\substack{\mathbf{a} \in \mathbb{F}_{2}^{n} \\ w_{\mathbf{H}}(\mathbf{a}) = i}} (2^{n-i} - 1)$$

$$= \sum_{i=1}^{n} \binom{n}{i} (2^{n-i} - 1).$$

$$= \sum_{i=1}^{n} \binom{n}{i} 2^{n-i} - \sum_{i=1}^{n} \binom{n}{i}$$

$$= \left(\sum_{i=0}^{n} \binom{n}{i} 2^{n-i}\right) - 2^{n} - \left(\sum_{i=0}^{n} \binom{n}{i}\right) + 1$$

$$= 3^{n} - 2^{n+1} + 1.$$

(9) (*) Denote by $\begin{bmatrix} n \\ k \end{bmatrix}$ the number of binary codes of length n and dimension k. Given a pair $\mathbf{a}, \mathbf{b} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}$ such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$, prove that there are $\begin{bmatrix} n-2 \\ k-2 \end{bmatrix}$ codes of dimension k containing \mathbf{a} and \mathbf{b} .

(Hint: Prove first that w.l.o.g, one can assume that $\mathbf{a}_1 = 1$, $\mathbf{a}_2 = 0$, $\mathbf{b}_1 = 0$, and $\mathbf{b}_2 = 1$, then look for a smart choice of a complement subspace of $\langle \mathbf{a}, \mathbf{b} \rangle$.)

Answer: The assumption $\mathbf{a} * \mathbf{b} = \mathbf{0}$ entails that \mathbf{a}, \mathbf{b} are non collinear and hence span a code of dimension 2. To characterize codes of dimension k containing \mathbf{a}, \mathbf{b} we have to look for a "canonical" complement subspace of the span $\langle \mathbf{a}, \mathbf{b} \rangle$ of \mathbf{a}, \mathbf{b} . After applying a possible permutation on the entries, one can assume w.l.o.g that $\mathbf{a}_1 \neq \mathbf{0}$ (a's first entry is nonzero) and $\mathbf{b}_2 \neq \mathbf{0}$. Note that the intersecting property entails that $\mathbf{a}_2 = \mathbf{b}_1 = \mathbf{0}$, that is, the code $\langle \mathbf{a}, \mathbf{b} \rangle$ has a generator matrix with shape:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{2}$$

Now, for any code $\mathscr{C} \subseteq \mathbb{F}_2^n$ containing **a**, **b**, define the subcode

$$\mathscr{C}_{1,2} \stackrel{\mathrm{def}}{=} \{ \mathbf{c} \in \mathscr{C} \mid \mathbf{c}_1 = \mathbf{c}_2 = \mathbf{0} \}.$$

Let us prove that $\mathscr{C} = \langle \mathbf{a}, \mathbf{b} \rangle \oplus \mathscr{C}_{1,2}$. Indeed the two codes have zero intersection since any non trivial linear combinations of \mathbf{a}, \mathbf{b} cannot vanish simultaneously at its two leftmost entries (see (2)). Next, for any element $\mathbf{c} = (c_1, c_2, \dots, c_n) \in \mathscr{C}$, we have $\mathbf{c} - c_1 \mathbf{a} - c_2 \mathbf{b} \in \mathscr{C}_{1,2}$ hence \mathbf{c} can be written as the sum of an element of $\langle \mathbf{a}, \mathbf{b} \rangle$ and an element of $\mathscr{C}_{1,2}$.

Note that $\mathscr{C}_{1,2}$ is uniquely determined from \mathscr{C} and, conversely, for any code $\mathscr{C}_{1,2} \in \mathbb{F}_2^n$ of dimension k-2 whose words all vanish at the two first entries, the code $\langle \mathbf{a}, \mathbf{b} \rangle \oplus \mathscr{C}_{1,2}$ gives a code of dimension k containing \mathbf{a}, \mathbf{b} . Thus counting such codes containing \mathbf{a}, \mathbf{b} reduces to count codes of length n and dimension k-2 that are all zero at the two leftmost entries. This is equivalent to count codes of length n-2 and dimension k-2.

(10) Prove that there exist at least $\max \left(\left[\begin{array}{c} n \\ k \end{array} \right] - \left[\begin{array}{c} n-2 \\ k-2 \end{array} \right] (3^n-2^{n+1}+1)/2, \ 0 \right)$ binary codes of length n and dimension k that are 1-intersecting.

(Hint: Take note that Question 9 considered ordered pairs (a, b) while the counting of spaces will be related to unordered pairs.)

Answer: There are $\begin{bmatrix} n \\ k \end{bmatrix}$ codes of length n and dimension k. From Question 9, for any non ordered pair \mathbf{a}, \mathbf{b} such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$, there are $\begin{bmatrix} n-2 \\ k-2 \end{bmatrix}$ codes of parameters [n,k] that contain \mathbf{a}, \mathbf{b} . From Question 8 there are $(3^n-2^{n+1}+1)$ such pairs \mathbf{a}, \mathbf{b} and hence $(3^n-2^{n+1}+1)/2$ such non ordered pairs. This yields an upper bound $\begin{bmatrix} n-2 \\ k-2 \end{bmatrix} (3^n-2^{n+1}+1)/2$ on the number of non intersecting codes. Hence the lower bound

$$\left[\begin{array}{c} n \\ k \end{array}\right] - \left[\begin{array}{c} n-2 \\ k-2 \end{array}\right] (3^n - 2^{n+1} + 1)/2$$

on the number of intersecting codes.

(11) (*) Admit that there is a constant $\kappa > 0$ such that $\begin{bmatrix} n \\ k \end{bmatrix} = \kappa 2^{k(n-k)}(1+\circ(1))$ when $n \to +\infty$ and $k \sim Rn$ for some 0 < R < 1. Prove that for $0 < R < \frac{1}{2}\log_2(\frac{4}{3})$ and for n large enough, there exist 1-intersecting codes of length n and dimension $k = \lfloor Rn \rfloor$.

Answer: From Question 10, intersecting codes exist as soon as

$$\left[\begin{array}{c} n \\ k \end{array}\right] - \left[\begin{array}{c} n-2 \\ k-2 \end{array}\right] (3^n - 2^{n+1} + 1)/2 > 0.$$

Asymptotically, we aim to satisfy the inequality

$$\begin{split} &\kappa \left(2^{k(n-k)} - 2^{(k-2)(n-k)+n\log_2(3)} \right) (1+\circ(1)) > 0 \\ &\kappa \left(2^{k(n-k)} \left(1 - 2^{n\log_2(3)-2(n-k)} \right) \right) (1+\circ(1)) > 0 \\ &\kappa \left(2^{k(n-k)} \left(1 - 2^{n(\log_2(3/4)+2R)} \right) \right) (1+\circ(1)) > 0. \end{split}$$

When $R < \frac{1}{2} \log_2 \left(\frac{4}{3}\right)$, then, $2^{n(\log_2(3/4) + 2R)} < 1$ and the above inequality holds for $n \gg 0$.