Mid-term exam, November 26, 2025

- You have 1h30. You can write your answers either in French or in English.
- $\bullet \ \ Exercises \ are \ independent.$
- Questions marked with $a(\star)$ are harder than the other ones.
- In the two exercises any code is linear.

Exercise 1. (1) Give the full list of minimal cyclotomic classes corresponding to cyclic codes of length 15 over \mathbb{F}_4 .

- (2) What is the number of cyclic codes of length 15 over \mathbb{F}_4 ?
- (3) Prove that there exists a [15,7,d] cyclic code over \mathbb{F}_4 with $d \ge 7$.
- (4) More generally, when classifying cyclic codes of length $q^2 1$ over \mathbb{F}_q ,
 - (a) prove that minimal cyclotomic classes have cardinality either 1 or 2;
 - (b) Give the exact number of cyclotomic classes of cardinality 1.
- (5) Give the total number of cyclic codes of length $q^2 1$ over \mathbb{F}_q .
- (6) Prove that for any $t < \frac{q^2-1}{2}$, there always exists a $[q^2-1,k,d]$ cyclic code over \mathbb{F}_q with $k \ge q^2-2t$ and $d \ge t+1$.

Exercise 2. In this exercise, any code is binary i.e. a linear subspace of \mathbb{F}_2^n .

For a vector $\mathbf{x} \in \mathbb{F}_2^n$ we denote by $w_{\mathrm{H}}(\mathbf{x})$ its Hamming weight. We denote by * the component wise product in \mathbb{F}_2^n , namely

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)\stackrel{\mathrm{def}}{=}(x_1y_1,\ldots,x_ny_n).$$

(1) Prove that for any $\mathbf{c}_1 \neq \mathbf{c}_2 \in \mathbb{F}_2^n$, then

$$w_{\mathrm{H}}(\mathbf{c}_{1} + \mathbf{c}_{2}) = w_{\mathrm{H}}(\mathbf{c}_{1}) + w_{\mathrm{H}}(\mathbf{c}_{2}) - 2w_{\mathrm{H}}(\mathbf{c}_{1} * \mathbf{c}_{2}) \tag{1}$$

Let r > 0, a code $\mathscr{C} \subset \mathbb{F}_2^n$ is said to be r-intersecting if dim $\mathscr{C} \geqslant 2$ and $\forall \mathbf{c}, \mathbf{c}' \in \mathscr{C} \setminus \{0\}, \ w_{\mathrm{H}}(\mathbf{c} * \mathbf{c}') \geqslant r$.

(2) Prove that the binary code with generator matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

is 1-intersecting.

- (3) Let $\mathscr{C} \subset \mathbb{F}_2^n$ be a code of minimum distance d_{\min} . Let $d_{\max} \stackrel{\text{def}}{=} \max\{w_{\mathrm{H}}(\mathbf{c}) \mid \mathbf{c} \in \mathscr{C}\}$ and suppose that $d_{\min} > d_{\max}/2$. Prove that \mathscr{C} is r-intersecting for $r = d_{\min} \frac{d_{\max}}{2}$. (*Hint: Use (1).*)
- (4) If $\mathscr{C} \subseteq \mathbb{F}_2^n$ is an r-intersecting code for some r > 0 and with minimum distance d_{\min} , prove that $r \leqslant \frac{d_{\min}}{2}$. (Hint: take $\mathbf{c} \neq 0$ a minimum weight codeword, \mathbf{c}' another codeword and consider $\mathbf{c} * \mathbf{c}'$ and $\mathbf{c} * (\mathbf{c} + \mathbf{c}')$.)
- (5) Let K(n,d) be the maximal possible dimension of a linear code in \mathbb{F}_2^n of minimum distance d. Let r > 0, prove that any r-intersecting code $\mathscr{C} \subset \mathbb{F}_2^n$ has parameters [n,k,d] which satisfy

$$k \leqslant K(d,r)$$
.

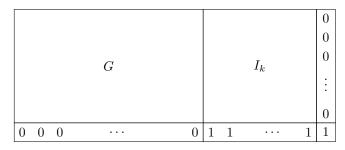
(Hint: Take
$$\mathbf{c} \in \mathscr{C}$$
 of weight d and consider the map $\left\{ \begin{array}{ccc} \mathscr{C} & \longrightarrow & \mathbb{F}_2^d \\ \mathbf{x} & \longmapsto & \mathbf{x} * \mathbf{c} \end{array} \right.$

where the entries at which \mathbf{c} vanishes are removed.)

(6) Let r > 0. Prove that for any [n, k, d] code that is r-intersecting, $d - k + 1 \ge r$.

Hint: Same Hint as for question (5)

(7) Let $\mathscr{C} \subseteq \mathbb{F}_2^n$ be a 1-intersecting code with parameters [n, k, d]. let $G \in \mathbb{F}_2^{k \times n}$ be a generator matrix of \mathscr{C} . Denote by I_k the $k \times k$ identity matrix. Prove that the code with generator matrix:



is

- (a) 1-intersecting;
- (b) with parameters [n+k+1, k+1, d'] such that $d' \ge \min(d+1, k+1)$.
- (8) (*) Prove that there are $(3^n 2^{n+1} + 1)$ pairs (\mathbf{a}, \mathbf{b}) of nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{F}_2^n$ such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$.
- (9) (*) Denote by $\begin{bmatrix} n \\ k \end{bmatrix}$ the number of binary codes of length n and dimension k. Given a pair $\mathbf{a}, \mathbf{b} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}$ such that $\mathbf{a} * \mathbf{b} = \mathbf{0}$, prove that there are $\begin{bmatrix} n-2 \\ k-2 \end{bmatrix}$ codes of dimension k containing \mathbf{a} and \mathbf{b} .

(Hint: Prove first that w.l.o.g, one can assume that $\mathbf{a}_1 = 1$, $\mathbf{a}_2 = 0$, $\mathbf{b}_1 = 0$, and $\mathbf{b}_2 = 1$, then look for a smart choice of a complement subspace of $\langle \mathbf{a}, \mathbf{b} \rangle$.)

(10) Prove that there exist at least $\max\left(\left[\begin{array}{c} n \\ k \end{array}\right] - \left[\begin{array}{c} n-2 \\ k-2 \end{array}\right] (3^n-2^{n+1}+1)/2,\ 0\right)$ binary codes of length n and dimension k that are 1-intersecting.

(Hint: Take note that Question 9 considered ordered pairs (a, b) while the counting of spaces will be related to unordered pairs.)

(11) (*) Admit that there is a constant $\kappa > 0$ such that $\begin{bmatrix} n \\ k \end{bmatrix} = \kappa 2^{k(n-k)}(1+\circ(1))$ when $n \to +\infty$ and $k \sim Rn$ for some 0 < R < 1. Prove that for $0 < R < \frac{1}{2}\log_2(\frac{4}{3})$ and for n large enough, there exist 1-intersecting codes of length n and dimension k = |Rn|.