MPRI Year 202425
Module 2.13.2: Error-correcting codes and applications to cryptography

Mid-term exam, December 4, 2024

o You have 1h30. You can write your answers either in French or in English.
e Fzxercises are independent.

o Questions marked with a (x) are harder than the other ones.

Exercise 1. We study cyclic codes of length 16 over F3.

1°) Give the list of corresponding minimal cyclotomic classes.

Answer : The minimal cyclotomic classes are {0},{1,3,9,11},{2,6}, {4,12},{5,15,13,7}, {8}, {10, 14}.

2°) What is the number of cyclic codes of length 16 over Fs.

Answer : 128.

3°) What is the number of cyclic codes of length 16 and dimension 11 over Fs?

Answer : We need to count the number of cyclotomic classes of size 5. From the minimal ones,
one can have

e A union of a minimal one of size 1 and an minimal one of size 4. Since there are 2 minimal
classes of size 1 and 2 of size 4, this yields 4 possibilities;

e A union one of size 1 and two of size 2. There are 2(2) = 6 possibilities.

In summary there are 10 such codes.

4°) Recall that BCH bound asserts that if a cyclotomic class contains an arithmetic progression of s elements,
i.e. a sequence of the form a,a 4+ b,a + 2b,...,a + (s — 1)b, then the corresponding code has minimum
distance at least s + 1.

Prove the existence of a cyclic code of parameters [16, 8, d]3 with d > 9.

Answer : Consider the cyclotomic class {0,2,4,6,8,10,12,14}. Or {1,3,5,7,9,11,13,15}.



5°) Prove that actually d = 9.

Answer : Singleton bound asserts that d < 9. Thus the code is MDS.

Exercise 2. A linear code ¢’ C Fy is said to be Complementary Dual (CD) if €' N ¢+ ={0}.

1°) Prove that for such a CD code, F = ¢ @ ¢+

Answer : Since dim % + dim €+, the very definition of CD codes entails that the direct sum
€ ® €+ equals Fy.

2°) Let ¢ C FJ be a code of dimension k and G € FF*™. Prove that ¢ is CD if and only if GG is
nonsingular (i.e. invertible).

Answer :  Suppose ¢ is LCD and that there exists u € Fy such that GG'u" = 0. This means
that ©G € € while it is in €. Since ¥ is CD, we deduce that ©G = 0 and hence v = 0 since
G has full rank (¢ has dimension k, G € F£*", its rows form a basis of ). Therefore GG is
nonsingular.

Suppose that GG T is nonsingular. Let uG € ¥NE*, we have G(uG) T = 0 and hence u € ker GG
which entails u = 0. Thus ¢ N ¢+ = {0}.

3°) Let G = (I | A) € F5*"™ be a systematic (I, denotes the k x k identity matrix) generator matrix of a
binary code %.

(a) Prove that
Gi=I:|A|A)

is a generator matrix of a CD code.

Answer :
GG, =1, +2AAT =1,

From Question [2] we get the result.
(b) If € is [n, k, d]2, then prove that the code ¥ with generator matrix Gy is [2n— k, k, d1] with d; > d.

Answer : Clearly G, € IF’;X@"_k) and has full rank (due to the Iy block in G1). Ouly
minimum distance should be checked. Let u € F% such that uG; is a minimum-weight codeword
of 61. Then wt(uG1) > wt(uG). Moreover, if uG = 0 then u = 0. Therefore dy > d



(c) Prove that ¢;- has minimum distance < 2.

Answer : There are pairs of repeated columns in G; which yield codewords of weight 2 in
el

4°) Prove the existence of sequences of binary CD codes which are asymptotically good (i.e. the sequences
of rates and relative distances go to (R, J) where both R and ¢ are positive).

Answer : Since random codes are asymptotically on Gilbert Varshamov bound, we know the
existence of sequences of random codes with asymptotic parameters R, § > 0. After permuting their
columns, which has no influence on the parameters, all these codes have a systematic generator
matrix. Using the previous operation, we obtain sequences of codes with asymptotic parameters

(R1 = 355, 01> 5%5)
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Exercise 3. For y € F§ and 0 < r < n, Bu(y,r) denotes the Hamming ball with center y and radius 7:

Buly,r) € {x € F} : du(x,y) <r} and Vpe[0,1], Vol(n,p) = 1Bu(0, pn).
In what follows C denotes a binary code with minimum distance > dn for some constant ¢ € [0,1/2].

1°) Explain where the Hamming bound, defined as follows, comes from:

4C - Vol(n, 6/2) < 2"

The aim of this exercise is to prove the so-called Flias-Bassalygo bound stating that

iC - Vol(n, J(8)) < (2n)2"  where J(0) “ ﬂ (1)

which asymptotically improves Hamming bound for any § € [0,1/2]. More precisely, we want to prove the
following:
Jdp € (6/2,1/2) such that C - Vol(n, p) < 2n - 2" (2)

2°) Explain why would improve upon the asymptotic Hamming bound.

Answer : We know that
Vol(n, p) = gn(h(p)+o(1))

where h is the binary entropy which is an increasing function over [0,1/2]. Therefore, as p €

[6/2,1/2],
Vol(n,3/2) _ o)

Vol(n, p) - ®)

But Equation (2) can be rewritten as:

» Vol(n,d/2) (2n)

1 Vol(n, 0/2) < 2" — 1=

Therefore using Equation concludes the question.

3°) Given any p € [0, 1], show that there exists at least one yo € F} such that,

#C - Vol(n, p)

ﬁ(BH(yo,pn) mc) > B

Hint: pick y uniformly at random and compute the expected value ofﬁ(BH(y,pn) N C).



Answer :  Let us consider the following random variable (where y is picked uniformly at random
in F3),

def

<t (Buly, pn)nC)

X = Z 1y:c+x

cE?C
x€FY: wt(x)<pn

Notice that,

Therefore, by linearity of the expectation:

Z 1 §% - Vol(n,p)
n on

E(X) = > Py (y=c+x)=
cE? ce?
x€Fy: wt(x)<pn x€FY: wt(x)<pn

where in the second equality we used that y is uniformly distributed. Since this is the expected
value of the size, there must exist at least one yo € F} such that

8% - Vol(n, p)

ﬁ(BH(yO,pn) N c) >Ex) =2

4°) Deduce how is implied by the following property:

dp € (6/2,1/2) such that Vy € FZ, ﬁ(BH(y,pn) ﬂC) < 2n

Answer : We just need to use the result of the question above.

5°) Let us define
Vx EFS, v = ((-1)™, ..., (1)),

Show that,
Vx,y € Fy,  (vx,vy) = n —2du(x,y).

where (-, ) denotes the Euclidean scalar product on R".

Answer : By definition of the Euclidean scalar product,
(Vs vy) Z wz+yL
i=1
=t{iel, }1 —yz—l}—ﬁ{le[l nl:oxi # yi}

concluding the question.



6°) (%) Suppose that C N By (yo, pn) is a set of m codewords: {c1,...,cy}. Show that for a > 0,

26 —1
@

dp<2—a+

VI<i<j<m, (ve, —auy,,ve, —auvy,) < 0.

Answer :  We have the following computation,

<ch‘, - Owyovvcj - QUYO> = <UC1‘,7UC_7‘> -« (<vy07vcj> + <vC1‘,7UYO>) + a2 <UyovaO>
<n—20n—2a(l —2p)n+ o’n
=n(1-26 - 2a+4pa+ o?) (4)

where in the second inequality we used that wt(c; — ¢;) > én and wt(c; — yo) < pn for any i, j.
Notice now that for a > 0,

—a?2+2 26 — 1 26 — 1
1—26—2a+4pa+a2<0(:>4p< aa+a+ ” =—a+2+

To conclude, we just need to plug this into .

7°) Using the previous question, prove that for p < J(9) (defined in ), there exists one o > 0 such that,

VIKi<j<m, (v, —auy,,ve, —auvy,) < 0.

Answer :  Let us show that for all p < J(§) we have 4p < 2 — a + 22=L. Tt will remain to use

the result of the previous question to conclude. Let f :a+— —a+2+ % for a > 0. Let us prove
that for all p < J(J) it exists some o > 0 such that f(a) > 4p. We have,

20 —1 —a?—-25+1
- 2 2

f(e) = -1

(0% «

Therefore f is maximum for «q def v 1 —24. But in that case,

26— 1—al 46— 2 ( 1—25)
_9 _9 —of(1- === ) —o(1-vi=23) = 4J(s
flao) =2+ =2 Vi JI-2 ( ) Q

where in the second equality we used that § < 1/2. It concludes the question.

8°) () Let uq,...,un be m non-zero elements in R™ such that, for all 1 < i < j < m, (u;,u;) < 0. Show
that m < 2n.



Answer :  The result clearly holds for n = 1. Let us suppose that it is true for some n € N\{0}.
Let ui,...,u, € R*"! be non-zero vector and 7 be the orthogonal projection onto Span(ui)=.
Notice that m(u;) = 0 for ¢ > 1 implies that u; = \uy for A < 0. It exists at most one such i,
otherwise we would have (u;,u;) = X; - A; > 0. Therefore, there is at least m — 2 non-zero vectors
in the family (7(ui));¢;,,- Let us show now that (7 (u;), m(u;)) < 0. By induction it will show
that m — 2 < 2n which implies that m < 2(n 4 1) concluding the recurrence.

We have,

(u1,u;) <U17Uj>
Jua? 0T “
<U1,Uj> (g, up) (u1,u;) - <U1,Uj> (u1,u) - <U1,Uj>
[Ju [Ju [ [Ju [

(n(u) w(u5)) = (o

= <uivuj> -

which is < 0 as all the (u;,u;) are <0 for 1 <i<j<m.

Hint: reason by induction over n and consider the orthogonal projection onto Span(u;):. Note that

this projection can be made explicit as: x — x — <<7f11’1fl>>u
9°) Conclude.
Answer : Combining the previous question with question 7 shows that m (the number of

codewords in € N Bu(yo, pn)) is at most 2n for all p < J(§) showing that the inequality from
question 4 holds for the relative radius p < J(6). It concludes the proof of Elias Bassalygo’ bound.



