Mid-term exam, December 4, 2024

- You have 1h30. You can write your answers either in French or in English.
- Exercises are independent.
- Questions marked with $a(\star)$ are harder than the other ones.

Exercise 1. We study cyclic codes of length 16 over \mathbb{F}_3 .

1°) Give the list of corresponding minimal cyclotomic classes.

Answer: The minimal cyclotomic classes are $\{0\}, \{1, 3, 9, 11\}, \{2, 6\}, \{4, 12\}, \{5, 15, 13, 7\}, \{8\}, \{10, 14\}.$

 2°) What is the number of cyclic codes of length 16 over \mathbb{F}_3 .

Answer : 128.

3°) What is the number of cyclic codes of length 16 and dimension 11 over \mathbb{F}_3 ?

Answer : We need to count the number of cyclotomic classes of size 5. From the minimal ones, one can have

- A union of a minimal one of size 1 and an minimal one of size 4. Since there are 2 minimal classes of size 1 and 2 of size 4, this yields 4 possibilities;
- A union one of size 1 and two of size 2. There are $2\binom{3}{2} = 6$ possibilities.

In summary there are 10 such codes.

4°) Recall that BCH bound asserts that if a cyclotomic class contains an arithmetic progression of s elements, *i.e.* a sequence of the form $a, a + b, a + 2b, \ldots, a + (s - 1)b$, then the corresponding code has minimum distance at least s + 1.

Prove the existence of a cyclic code of parameters $[16, 8, d]_3$ with $d \ge 9$.

Answer : Consider the cyclotomic class $\{0, 2, 4, 6, 8, 10, 12, 14\}$. Or $\{1, 3, 5, 7, 9, 11, 13, 15\}$.

5°) Prove that actually d = 9.

Answer : Singleton bound asserts that $d \leq 9$. Thus the code is MDS.

Exercise 2. A linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$ is said to be *Complementary Dual* (CD) if $\mathscr{C} \cap \mathscr{C}^{\perp} = \{0\}$.

1°) Prove that for such a CD code, $\mathbb{F}_q^n = \mathscr{C} \oplus \mathscr{C}^{\perp}$.

Answer : Since dim \mathscr{C} + dim \mathscr{C}^{\perp} , the very definition of CD codes entails that the direct sum $\mathscr{C} \oplus \mathscr{C}^{\perp}$ equals \mathbb{F}_q^n .

2°) Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ be a code of dimension k and $\mathbf{G} \in \mathbb{F}_q^{k \times n}$. Prove that \mathscr{C} is CD if and only if $\mathbf{G}\mathbf{G}^{\top}$ is nonsingular (*i.e.* invertible).

Answer : Suppose \mathscr{C} is LCD and that there exists $u \in \mathbb{F}_q^n$ such that $\mathbf{G}\mathbf{G}^{\top}u^{\top} = 0$. This means that $u\mathbf{G} \in \mathscr{C}^{\perp}$ while it is in \mathscr{C} . Since \mathscr{C} is CD, we deduce that $u\mathbf{G} = 0$ and hence u = 0 since \mathbf{G} has full rank (\mathscr{C} has dimension k, $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, its rows form a basis of \mathscr{C}). Therefore $\mathbf{G}\mathbf{G}^{\top}$ is nonsingular. Suppose that $\mathbf{G}\mathbf{G}^{\top}$ is nonsingular. Let $u\mathbf{G} \in \mathscr{C} \cap \mathscr{C}^{\perp}$, we have $\mathbf{G}(u\mathbf{G})^{\top} = 0$ and hence $u \in \ker \mathbf{G}\mathbf{G}^{\top}$ which entails u = 0. Thus $\mathscr{C} \cap \mathscr{C}^{\perp} = \{0\}$.

- 3°) Let $\mathbf{G} = (\mathbf{I}_k \mid \mathbf{A}) \in \mathbb{F}_2^{k \times n}$ be a systematic (\mathbf{I}_k denotes the $k \times k$ identity matrix) generator matrix of a binary code \mathscr{C} .
 - (a) Prove that

$$\mathbf{G}_1 = (\mathbf{I}_k \mid \mathbf{A} \mid \mathbf{A})$$

is a generator matrix of a CD code.

Answer :

$$\mathbf{G}_1 \mathbf{G}_1^\top = \mathbf{I}_k + 2\mathbf{A}\mathbf{A}^\top = \mathbf{I}_k$$

From Question 2, we get the result.

(b) If \mathscr{C} is $[n, k, d]_2$, then prove that the code \mathscr{C}_1 with generator matrix \mathbf{G}_1 is $[2n - k, k, d_1]$ with $d_1 \ge d$.

Answer: Clearly $\mathbf{G}_1 \in \mathbb{F}_2^{k \times (2n-k)}$ and has full rank (due to the \mathbf{I}_k block in \mathbf{G}_1). Only minimum distance should be checked. Let $u \in \mathbb{F}_2^k$ such that $u\mathbf{G}_1$ is a minimum-weight codeword of \mathscr{C}_1 . Then wt $(u\mathbf{G}_1) \ge \operatorname{wt}(u\mathbf{G})$. Moreover, if $u\mathbf{G} = 0$ then u = 0. Therefore $d_1 \ge d$

(c) Prove that \mathscr{C}_1^{\perp} has minimum distance ≤ 2 .

Answer : There are pairs of repeated columns in \mathbf{G}_1 which yield codewords of weight 2 in \mathscr{C}_1^{\perp} .

4°) Prove the existence of sequences of binary CD codes which are asymptotically good (*i.e.* the sequences of rates and relative distances go to (R, δ) where both R and δ are positive).

Answer : Since random codes are asymptotically on Gilbert Varshamov bound, we know the existence of sequences of random codes with asymptotic parameters $R, \delta > 0$. After permuting their columns, which has no influence on the parameters, all these codes have a systematic generator matrix. Using the previous operation, we obtain sequences of codes with asymptotic parameters $(R_1 = \frac{R}{2-R}, \ \delta_1 \ge \frac{\delta}{2-R})$

Turn the page please \longrightarrow

Exercise 3. For $\mathbf{y} \in \mathbb{F}_2^n$ and $0 \leq r \leq n$, $\mathcal{B}_{\mathrm{H}}(\mathbf{y}, r)$ denotes the Hamming ball with center \mathbf{y} and radius r:

$$\mathcal{B}_{\mathrm{H}}(\mathbf{y}, r) \stackrel{\mathrm{def}}{=} \{ \mathbf{x} \in \mathbb{F}_{2}^{n} : d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}) < r \} \quad \text{and} \quad \forall \rho \in [0, 1], \quad \mathrm{Vol}(n, \rho) \stackrel{\mathrm{def}}{=} \sharp \mathcal{B}_{\mathrm{H}}(\mathbf{0}, \rho n).$$

In what follows C denotes a binary code with minimum distance $\geq \delta n$ for some constant $\delta \in [0, 1/2]$.

 $1^\circ)\,$ Explain where the Hamming bound, defined as follows, comes from:

$$\sharp \mathcal{C} \cdot \operatorname{Vol}(n, \delta/2) \leqslant 2^n$$

The aim of this exercise is to prove the so-called *Elias-Bassalygo* bound stating that

$$\sharp \mathcal{C} \cdot \operatorname{Vol}(n, J(\delta)) \leqslant (2n)2^n \quad \text{where} \quad J(\delta) \stackrel{\text{def}}{=} \frac{1 - \sqrt{1 - 2\delta}}{2} \tag{1}$$

which **asymptotically** improves Hamming bound for any $\delta \in [0, 1/2]$. More precisely, we want to prove the following:

$$\exists \rho \in (\delta/2, 1/2) \text{ such that } \ \ \sharp \mathcal{C} \cdot \operatorname{Vol}(n, \rho) \leqslant 2n \cdot 2^n$$
(2)

2°) Explain why (2) would improve upon the asymptotic Hamming bound.

Answer : We know that

$$Vol(n, \rho) = 2^{n(h(\rho) + o(1))}$$

where h is the binary entropy which is an increasing function over [0, 1/2]. Therefore, as $\rho \in [\delta/2, 1/2]$,

$$\frac{\operatorname{Vol}(n,\delta/2)}{\operatorname{Vol}(n,\rho)} = 2^{-\Omega(n)}$$
(3)

But Equation (2) can be rewritten as:

$$\sharp \mathcal{C} \cdot \operatorname{Vol}(n, \delta/2) \leqslant 2^n \frac{\operatorname{Vol}(n, \delta/2) (2n)}{\operatorname{Vol}(n, \rho)}$$

Therefore using Equation (3) concludes the question.

3°) Given any $\rho \in [0, 1]$, show that there exists at least one $\mathbf{y}_0 \in \mathbb{F}_2^n$ such that,

$$\sharp \Big(\mathcal{B}_{\mathrm{H}}(\mathbf{y}_{0}, \rho n) \cap \mathcal{C} \Big) \geqslant \frac{\sharp \mathcal{C} \cdot \mathrm{Vol}(n, \rho)}{2^{n}}$$

Hint: pick **y** uniformly at random and compute the expected value of $\sharp (\mathcal{B}_{H}(\mathbf{y}, \rho n) \cap \mathcal{C})$.

Answer : Let us consider the following random variable (where **y** is picked uniformly at random in \mathbb{F}_2^n),

$$X \stackrel{\mathrm{def}}{=} \sharp \Big(\mathcal{B}_{\mathrm{H}}(\mathbf{y}, \rho n) \cap \mathcal{C} \Big)$$

Notice that,

$$X = \sum_{\substack{\mathbf{c} \in \mathscr{C} \\ \mathbf{x} \in \mathbb{F}_2^n : \text{ wt}(\mathbf{x}) < \rho n}} 1_{\mathbf{y} = \mathbf{c} + \mathbf{x}}$$

Therefore, by linearity of the expectation:

$$\mathbb{E}(X) = \sum_{\substack{\mathbf{c} \in \mathscr{C} \\ \mathbf{x} \in \mathbb{F}_2^n: \, \text{wt}(\mathbf{x}) < \rho n}} \mathbb{P}_{\mathbf{y}} \left(\mathbf{y} = \mathbf{c} + \mathbf{x} \right) = \sum_{\substack{\mathbf{c} \in \mathscr{C} \\ \mathbf{x} \in \mathbb{F}_2^n: \, \text{wt}(\mathbf{x}) < \rho n}} \frac{1}{2^n} = \frac{\#\mathscr{C} \cdot \text{Vol}(n, \rho)}{2^n}$$

where in the second equality we used that \mathbf{y} is uniformly distributed. Since this is the expected value of the size, there must exist at least one $\mathbf{y}_0 \in \mathbb{F}_2^n$ such that

$$\sharp \Big(\mathcal{B}_{\mathrm{H}}(\mathbf{y}_0, \rho n) \cap \mathcal{C} \Big) \geq \mathbb{E}(X) = \frac{\sharp \mathscr{C} \cdot \mathrm{Vol}(n, \rho)}{2^n}$$

 4°) Deduce how (2) is implied by the following property:

$$\exists \rho \in (\delta/2, 1/2) \text{ such that } \quad \forall \mathbf{y} \in \mathbb{F}_2^n, \ \sharp \Big(\mathcal{B}_{\mathrm{H}}(\mathbf{y}, \rho n) \cap \mathcal{C} \Big) \leqslant 2n.$$

Answer : We just need to use the result of the question above.

 5°) Let us define

$$\forall \mathbf{x} \in \mathbb{F}_2^n, \quad v_{\mathbf{x}} \stackrel{\text{def}}{=} \left((-1)^{x_1}, \dots, (-1)^{x_n} \right).$$

Show that,

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n, \quad \langle v_{\mathbf{x}}, v_{\mathbf{y}} \rangle = n - 2d_{\mathrm{H}}(\mathbf{x}, \mathbf{y}).$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean scalar product on \mathbb{R}^n .

Answer: By definition of the Euclidean scalar product,

$$\begin{aligned} \langle v_{\mathbf{x}}, v_{\mathbf{y}} \rangle &= \sum_{i=1}^{n} (-1)^{x_i + y_i} \\ &= \sharp \{ i \in [1, n] : \ x_i = y_i = 1 \} - \sharp \{ i \in [1, n] : \ x_i \neq y_i \} \\ &= \left(n - d_{\mathbf{H}}(\mathbf{x}, \mathbf{y}) \right) - d_{\mathbf{H}}(\mathbf{x}, \mathbf{y}) \end{aligned}$$

concluding the question.

6°) (*) Suppose that $\mathcal{C} \cap \mathcal{B}_{\mathrm{H}}(\mathbf{y}_{0}, \rho n)$ is a set of *m* codewords: { $\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}$ }. Show that for $\alpha > 0$,

$$4\rho \leqslant 2 - \alpha + \frac{2\delta - 1}{\alpha} \quad \Longrightarrow \quad \forall 1 \leqslant i < j \leqslant m, \quad \langle v_{\mathbf{c}_i} - \alpha v_{\mathbf{y}_0}, v_{\mathbf{c}_j} - \alpha v_{\mathbf{y}_0} \rangle \leqslant 0$$

Answer : We have the following computation,

$$\langle v_{\mathbf{c}_{i}} - \alpha v_{\mathbf{y}_{0}}, v_{\mathbf{c}_{j}} - \alpha v_{\mathbf{y}_{0}} \rangle = \langle v_{\mathbf{c}_{i}}, v_{\mathbf{c}_{j}} \rangle - \alpha \left(\langle v_{\mathbf{y}_{0}}, v_{\mathbf{c}_{j}} \rangle + \langle v_{\mathbf{c}_{i}}, v_{\mathbf{y}_{0}} \rangle \right) + \alpha^{2} \langle v_{\mathbf{y}_{0}}, v_{\mathbf{y}_{0}} \rangle$$

$$\leq n - 2\delta n - 2\alpha (1 - 2\rho)n + \alpha^{2}n$$

$$= n \left(1 - 2\delta - 2\alpha + 4\rho\alpha + \alpha^{2} \right)$$

$$(4)$$

where in the second inequality we used that $\operatorname{wt}(\mathbf{c}_i - \mathbf{c}_j) \ge \delta n$ and $\operatorname{wt}(\mathbf{c}_i - \mathbf{y}_0) < \rho n$ for any i, j. Notice now that for $\alpha > 0$,

$$1 - 2\delta - 2\alpha + 4\rho\alpha + \alpha^2 \leqslant 0 \iff 4\rho \leqslant \frac{-\alpha^2 + 2\alpha}{\alpha} + \frac{2\delta - 1}{\alpha} = -\alpha + 2 + \frac{2\delta - 1}{\alpha}$$

To conclude, we just need to plug this into (4).

7°) Using the previous question, prove that for $\rho \leq J(\delta)$ (defined in (1)), there exists one $\alpha > 0$ such that,

$$\forall 1 \leq i < j \leq m, \quad \langle v_{\mathbf{c}_i} - \alpha v_{\mathbf{y}_0}, v_{\mathbf{c}_j} - \alpha v_{\mathbf{y}_0} \rangle \leq 0.$$

Answer : Let us show that for all $\rho \leq J(\delta)$ we have $4\rho \leq 2 - \alpha + \frac{2\delta - 1}{\alpha}$. It will remain to use the result of the previous question to conclude. Let $f : \alpha \mapsto -\alpha + 2 + \frac{2\delta - 1}{\alpha}$ for $\alpha > 0$. Let us prove that for all $\rho \leq J(\delta)$ it exists some $\alpha > 0$ such that $f(\alpha) \geq 4\rho$. We have,

$$f'(\alpha) = -1 - \frac{2\delta - 1}{\alpha^2} = \frac{-\alpha^2 - 2\delta + 1}{\alpha^2}$$

Therefore f is maximum for $\alpha_0 \stackrel{\text{def}}{=} \sqrt{1-2\delta}$. But in that case,

$$f(\alpha_0) = 2 + \frac{2\delta - 1 - \alpha_0^2}{\alpha_0} = 2 + \frac{4\delta - 2}{\sqrt{1 - 2\delta}} = 2\left(1 - \frac{1 - 2\delta}{\sqrt{1 - 2\delta}}\right) = 2\left(1 - \sqrt{1 - 2\delta}\right) = 4J(\delta)$$

where in the second equality we used that $\delta \leq 1/2$. It concludes the question.

8°) (*) Let u_1, \ldots, u_m be *m* non-zero elements in \mathbb{R}^n such that, for all $1 \leq i < j \leq m$, $\langle u_i, u_j \rangle \leq 0$. Show that $m \leq 2n$.

Answer : The result clearly holds for n = 1. Let us suppose that it is true for some $n \in \mathbb{N} \setminus \{0\}$. Let $u_1, \ldots, u_m \in \mathbb{R}^{n+1}$ be non-zero vector and π be the orthogonal projection onto $\operatorname{Span}(u_1)^{\perp}$. Notice that $\pi(u_i) = 0$ for i > 1 implies that $u_i = \lambda_i u_1$ for $\lambda < 0$. It exists at most one such i, otherwise we would have $\langle u_i, u_j \rangle = \lambda_i \cdot \lambda_j > 0$. Therefore, there is at least m - 2 non-zero vectors in the family $(\pi(u_i))_{1 \leq i \leq m}$. Let us show now that $\langle \pi(u_i), \pi(u_j) \rangle \leq 0$. By induction it will show that $m - 2 \leq 2n$ which implies that $m \leq 2(n + 1)$ concluding the recurrence.

$$\begin{split} \langle \pi(u_i), \pi(u_j) \rangle &= \left\langle u_i - \frac{\langle u_1, u_i \rangle}{\|u_1\|^2} u_1, u_j - \frac{\langle u_1, u_j \rangle}{\|u_1\|^2} u_1 \right\rangle \\ &= \langle u_i, u_j \rangle - \frac{\langle u_1, u_j \rangle \cdot \langle u_i, u_1 \rangle}{\|u_1\|^2} - \frac{\langle u_1, u_i \rangle \cdot \langle u_1, u_j \rangle}{\|u_1\|^2} + \frac{\langle u_1, u_i \rangle \cdot \langle u_1, u_j \rangle}{\|u_1\|^2} \\ &= \langle u_i, u_j \rangle - \frac{\langle u_1, u_j \rangle \cdot \langle u_i, u_1 \rangle}{\|u_1\|^2} \end{split}$$

which is ≤ 0 as all the $\langle u_i, u_j \rangle$ are ≤ 0 for $1 \leq i < j \leq m$.

Hint: reason by induction over n and consider the orthogonal projection onto $\text{Span}(u_1)^{\perp}$. Note that this projection can be made explicit as: $x \mapsto x - \frac{\langle u_1, x \rangle}{\langle u_1, u_1 \rangle} u_1$.

 9°) Conclude.

Answer : Combining the previous question with question 7 shows that m (the number of codewords in $\mathscr{C} \cap \mathcal{B}_{\mathrm{H}}(\mathbf{y}_0, \rho n)$) is at most 2n for all $\rho \leq J(\delta)$ showing that the inequality from question 4 holds for the relative radius $\rho \leq J(\delta)$. It concludes the proof of Elias Bassalygo' bound.