
MPRI Year 2024–25
Module 2.13.2: Error-correcting codes and applications to cryptography

Mid-term exam, December 4, 2024

• You have 1h30. You can write your answers either in French or in English.

• Exercises are independent.

• Questions marked with a (⋆) are harder than the other ones.

Exercise 1. We study cyclic codes of length 16 over F3.

1◦) Give the list of corresponding minimal cyclotomic classes.

Answer : The minimal cyclotomic classes are {0}, {1, 3, 9, 11}, {2, 6}, {4, 12}, {5, 15, 13, 7}, {8}, {10, 14}.

2◦) What is the number of cyclic codes of length 16 over F3.

Answer : 128.

3◦) What is the number of cyclic codes of length 16 and dimension 11 over F3?

Answer : We need to count the number of cyclotomic classes of size 5. From the minimal ones,
one can have

• A union of a minimal one of size 1 and an minimal one of size 4. Since there are 2 minimal
classes of size 1 and 2 of size 4, this yields 4 possibilities;

• A union one of size 1 and two of size 2. There are 2
(
3
2

)
= 6 possibilities.

In summary there are 10 such codes.

4◦) Recall that BCH bound asserts that if a cyclotomic class contains an arithmetic progression of s elements,
i.e. a sequence of the form a, a+ b, a+ 2b, . . . , a+ (s− 1)b, then the corresponding code has minimum
distance at least s+ 1.

Prove the existence of a cyclic code of parameters [16, 8, d]3 with d ⩾ 9.

Answer : Consider the cyclotomic class {0, 2, 4, 6, 8, 10, 12, 14}. Or {1, 3, 5, 7, 9, 11, 13, 15}.
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5◦) Prove that actually d = 9.

Answer : Singleton bound asserts that d ⩽ 9. Thus the code is MDS.

Exercise 2. A linear code C ⊆ Fn
q is said to be Complementary Dual (CD) if C ∩ C⊥ = {0}.

1◦) Prove that for such a CD code, Fn
q = C ⊕ C⊥.

Answer : Since dimC + dimC⊥, the very definition of CD codes entails that the direct sum
C ⊕ C⊥ equals Fn

q .

2◦) Let C ⊆ Fn
q be a code of dimension k and G ∈ Fk×n

q . Prove that C is CD if and only if GG⊤ is
nonsingular (i.e. invertible).

Answer : Suppose C is LCD and that there exists u ∈ Fn
q such that GG⊤u⊤ = 0. This means

that uG ∈ C⊥ while it is in C . Since C is CD, we deduce that uG = 0 and hence u = 0 since
G has full rank (C has dimension k, G ∈ Fk×n

q , its rows form a basis of C ). Therefore GG⊤ is
nonsingular.
Suppose that GG⊤ is nonsingular. Let uG ∈ C∩C⊥, we have G(uG)⊤ = 0 and hence u ∈ kerGG⊤

which entails u = 0. Thus C ∩ C⊥ = {0}.

3◦) Let G = (Ik | A) ∈ Fk×n
2 be a systematic (Ik denotes the k × k identity matrix) generator matrix of a

binary code C .

(a) Prove that
G1 = (Ik | A | A)

is a generator matrix of a CD code.

Answer :
G1G

⊤
1 = Ik + 2AA⊤ = Ik

From Question 2, we get the result.

(b) If C is [n, k, d]2, then prove that the code C1 with generator matrix G1 is [2n−k, k, d1] with d1 ⩾ d.

Answer : Clearly G1 ∈ Fk×(2n−k)
2 and has full rank (due to the Ik block in G1). Only

minimum distance should be checked. Let u ∈ Fk
2 such that uG1 is a minimum-weight codeword

of C1. Then wt(uG1) ⩾ wt(uG). Moreover, if uG = 0 then u = 0. Therefore d1 ⩾ d
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(c) Prove that C⊥
1 has minimum distance ⩽ 2.

Answer : There are pairs of repeated columns in G1 which yield codewords of weight 2 in
C⊥
1 .

4◦) Prove the existence of sequences of binary CD codes which are asymptotically good (i.e. the sequences
of rates and relative distances go to (R, δ) where both R and δ are positive).

Answer : Since random codes are asymptotically on Gilbert Varshamov bound, we know the
existence of sequences of random codes with asymptotic parameters R, δ > 0. After permuting their
columns, which has no influence on the parameters, all these codes have a systematic generator
matrix. Using the previous operation, we obtain sequences of codes with asymptotic parameters
(R1 = R

2−R , δ1 ⩾ δ
2−R )

Turn the page please −→
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Exercise 3. For y ∈ Fn
2 and 0 ⩽ r ⩽ n, BH(y, r) denotes the Hamming ball with center y and radius r:

BH(y, r)
def
= {x ∈ Fn

2 : dH(x,y) < r} and ∀ρ ∈ [0, 1], Vol(n, ρ) def
= ♯BH(0, ρn).

In what follows C denotes a binary code with minimum distance ⩾ δn for some constant δ ∈ [0, 1/2].

1◦) Explain where the Hamming bound, defined as follows, comes from:

♯C · Vol(n, δ/2) ⩽ 2n.

The aim of this exercise is to prove the so-called Elias-Bassalygo bound stating that

♯C · Vol(n, J(δ)) ⩽ (2n)2n where J(δ)
def
=

1−
√
1− 2δ

2
(1)

which asymptotically improves Hamming bound for any δ ∈ [0, 1/2]. More precisely, we want to prove the
following:

∃ρ ∈ (δ/2, 1/2) such that ♯C · Vol(n, ρ) ⩽ 2n · 2n (2)

2◦) Explain why (2) would improve upon the asymptotic Hamming bound.

Answer : We know that
Vol(n, ρ) = 2n(h(ρ)+o(1))

where h is the binary entropy which is an increasing function over [0, 1/2]. Therefore, as ρ ∈
[δ/2, 1/2],

Vol(n, δ/2)
Vol(n, ρ)

= 2−Ω(n) (3)

But Equation (2) can be rewritten as:

♯C · Vol(n, δ/2) ⩽ 2n
Vol(n, δ/2) (2n)

Vol(n, ρ)

Therefore using Equation (3) concludes the question.

3◦) Given any ρ ∈ [0, 1], show that there exists at least one y0 ∈ Fn
2 such that,

♯
(
BH(y0, ρn) ∩ C

)
⩾

♯C · Vol(n, ρ)
2n

·

Hint: pick y uniformly at random and compute the expected value of ♯
(
BH(y, ρn) ∩ C

)
.
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Answer : Let us consider the following random variable (where y is picked uniformly at random
in Fn

2 ),
X

def
= ♯

(
BH(y, ρn) ∩ C

)
Notice that,

X =
∑
c∈C

x∈Fn
2 : wt(x)<ρn

1y=c+x

Therefore, by linearity of the expectation:

E(X) =
∑
c∈C

x∈Fn
2 : wt(x)<ρn

Py (y = c+ x) =
∑
c∈C

x∈Fn
2 : wt(x)<ρn

1

2n
=

♯C · Vol(n, ρ)
2n

where in the second equality we used that y is uniformly distributed. Since this is the expected
value of the size, there must exist at least one y0 ∈ Fn

2 such that

♯
(
BH(y0, ρn) ∩ C

)
⩾ E(X) =

♯C · Vol(n, ρ)
2n

4◦) Deduce how (2) is implied by the following property:

∃ρ ∈ (δ/2, 1/2) such that ∀y ∈ Fn
2 , ♯

(
BH(y, ρn) ∩ C

)
⩽ 2n.

Answer : We just need to use the result of the question above.

5◦) Let us define
∀x ∈ Fn

2 , vx
def
= ((−1)x1 , . . . , (−1)xn) .

Show that,
∀x,y ∈ Fn

2 , ⟨vx, vy⟩ = n− 2dH(x,y).

where ⟨·, ·⟩ denotes the Euclidean scalar product on Rn.

Answer : By definition of the Euclidean scalar product,

⟨vx, vy⟩ =
n∑

i=1

(−1)xi+yi

= ♯{i ∈ [1, n] : xi = yi = 1} − ♯{i ∈ [1, n] : xi ̸= yi}

=
(
n− dH(x,y))

)
− dH(x,y)

concluding the question.

5



6◦) (⋆) Suppose that C ∩ BH (y0, ρn) is a set of m codewords: {c1, . . . , cm}. Show that for α > 0,

4ρ ⩽ 2− α+
2δ − 1

α
=⇒ ∀1 ⩽ i < j ⩽ m, ⟨vci

− αvy0
, vcj

− αvy0
⟩ ⩽ 0.

Answer : We have the following computation,

⟨vci − αvy0 , vcj − αvy0⟩ = ⟨vci , vcj ⟩ − α
(
⟨vy0 , vcj ⟩+ ⟨vci , vy0⟩

)
+ α2⟨vy0 , vy0⟩

⩽ n− 2δn− 2α(1− 2ρ)n+ α2n

= n
(
1− 2δ − 2α+ 4ρα+ α2

)
(4)

where in the second inequality we used that wt(ci − cj) ⩾ δn and wt(ci − y0) < ρn for any i, j.
Notice now that for α > 0,

1− 2δ − 2α+ 4ρα+ α2 ⩽ 0 ⇐⇒ 4ρ ⩽
−α2 + 2α

α
+

2δ − 1

α
= −α+ 2 +

2δ − 1

α

To conclude, we just need to plug this into (4).

7◦) Using the previous question, prove that for ρ ⩽ J(δ) (defined in (1)), there exists one α > 0 such that,

∀1 ⩽ i < j ⩽ m, ⟨vci
− αvy0

, vcj
− αvy0

⟩ ⩽ 0.

Answer : Let us show that for all ρ ⩽ J(δ) we have 4ρ ⩽ 2 − α + 2δ−1
α . It will remain to use

the result of the previous question to conclude. Let f : α 7→ −α+2+ 2δ−1
α for α > 0. Let us prove

that for all ρ ⩽ J(δ) it exists some α > 0 such that f(α) ⩾ 4ρ. We have,

f ′(α) = −1− 2δ − 1

α2
=

−α2 − 2δ + 1

α2

Therefore f is maximum for α0
def
=

√
1− 2δ. But in that case,

f(α0) = 2 +
2δ − 1− α2

0

α0
= 2 +

4δ − 2√
1− 2δ

= 2

(
1− 1− 2δ√

1− 2δ

)
= 2

(
1−

√
1− 2δ

)
= 4J(δ)

where in the second equality we used that δ ⩽ 1/2. It concludes the question.

8◦) (⋆) Let u1, . . . , um be m non-zero elements in Rn such that, for all 1 ⩽ i < j ⩽ m, ⟨ui, uj⟩ ⩽ 0. Show
that m ⩽ 2n.
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Answer : The result clearly holds for n = 1. Let us suppose that it is true for some n ∈ N\{0}.
Let u1, . . . , um ∈ Rn+1 be non-zero vector and π be the orthogonal projection onto Span(u1)

⊥.
Notice that π(ui) = 0 for i > 1 implies that ui = λiu1 for λ < 0. It exists at most one such i,
otherwise we would have ⟨ui, uj⟩ = λi · λj > 0. Therefore, there is at least m− 2 non-zero vectors
in the family (π(ui))1⩽i⩽m. Let us show now that ⟨π(ui), π(uj)⟩ ⩽ 0. By induction it will show
that m− 2 ⩽ 2n which implies that m ⩽ 2(n+ 1) concluding the recurrence.
We have,

⟨π(ui), π(uj)⟩ =
〈
ui −

⟨u1, ui⟩
∥u1∥2

u1, uj −
⟨u1, uj⟩
∥u1∥2

u1

〉
= ⟨ui, uj⟩ −

⟨u1, uj⟩ · ⟨ui, u1⟩
∥u1∥2

− ⟨u1, ui⟩ · ⟨u1, uj⟩
∥u1∥2

+
⟨u1, ui⟩ · ⟨u1, uj⟩

∥u1∥2

= ⟨ui, uj⟩ −
⟨u1, uj⟩ · ⟨ui, u1⟩

∥u1∥2

which is ⩽ 0 as all the ⟨ui, uj⟩ are ⩽ 0 for 1 ⩽ i < j ⩽ m.

Hint: reason by induction over n and consider the orthogonal projection onto Span(u1)
⊥. Note that

this projection can be made explicit as: x 7→ x− ⟨u1,x⟩
⟨u1,u1⟩u1.

9◦) Conclude.

Answer : Combining the previous question with question 7 shows that m (the number of
codewords in C ∩ BH(y0, ρn)) is at most 2n for all ρ ⩽ J(δ) showing that the inequality from
question 4 holds for the relative radius ρ ⩽ J(δ). It concludes the proof of Elias Bassalygo’ bound.
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