Mid-term exam, November 29, 2023

You have 1h30. You can write your answers either in French or in English.

Notes.

— In any exercise, any code is linear.

- Questions marked with a (\star) are harder than the other ones.

Exercise 1. A code $\mathscr{C} \subseteq \mathbb{F}_q^n$ of dimension k is said to be *systematic* if it has a generator matrix of the form

 $(\mathbf{I}_k \mid \mathbf{R}),$

for some matrix $\mathbf{R} \in \mathbb{F}_q^{k \times (n-k)}$ and where \mathbf{I}_k denotes the $k \times k$ identity matrix.

1. Prove that a code $\mathscr{C} \subseteq \mathbb{F}_q^n$ with generator matrix **G** is systematic if and only if the k leftmost columns of **G** are linearly independent.

Answer : Suppose that **G**'s k leftmost columns are independent. Then, they form an invertible square matrix denoted by **S**. Next, the matrix $\mathbf{S}^{-1}\mathbf{G}$ has the expected shape. Conversely, suppose that \mathscr{C} is systematic. Then, it has a generator matrix :

$$\mathbf{G}' = \left(\begin{array}{cc} \mathbf{I}_k & | & \mathbf{R} \end{array} \right).$$

Since **G** and **G'** are generator matrices of the same code, there exists an invertible matrix **S** such that $\mathbf{G} = \mathbf{SG'}$. Hence $\mathbf{G} = (\mathbf{S} \mid \mathbf{SR})$. Thus, the k leftmost columns of **G** are those of **S** which are independent since **S** is invertible.

2. Prove that $(-\mathbf{R}^{\top} | \mathbf{I}_{n-k})$ is a parity check matrix of \mathscr{C} .

Answer: The matrix has rank n - k, hence it suffices to prove that it generates a code contained in \mathscr{C}^{\perp} . A simple calculation gives :

$$\begin{pmatrix} \mathbf{I}_k & | & \mathbf{R} \end{pmatrix} \begin{pmatrix} -\mathbf{R}^\top & | & \mathbf{I}_{n-k} \end{pmatrix}^{\perp} = \begin{pmatrix} \mathbf{I}_k & | & \mathbf{R} \end{pmatrix} \begin{pmatrix} -\mathbf{R} \\ \mathbf{I}_{n-k} \end{pmatrix} = -\mathbf{R} + \mathbf{R} = 0.$$

3. Give an example of non systematic code of length 4 and dimension 2 over \mathbb{F}_2 .

Answer: For instance, the code with generator matrix

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

For any permutation $\sigma \in \mathfrak{S}_n$ (the permutation group over *n* elements), denote by \mathbf{P}_{σ} the corresponding permutation matrix. Then, for a code \mathscr{C} , denote by $\mathscr{C}\mathbf{P}_{\sigma}$ the *permuted code* defined by

$$\mathscr{C}\mathbf{P}_{\sigma} \stackrel{\text{der}}{=} \{\mathbf{c}\mathbf{P}_{\sigma} \mid \mathbf{c} \in \mathscr{C}\}.$$

4. Prove that for any linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$, there exists $\sigma \in \mathfrak{S}_n$ such that $\mathscr{C}\mathbf{P}_{\sigma}$ is systematic.

Answer : Let $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ be a generator matrix of \mathscr{C} . It has rank k and hence has k linearly independent columns with indexes i_1, \ldots, i_k . Let $\sigma \in \mathfrak{S}_n$ be a permutation sending i_1, \ldots, i_k on $1, \ldots, k$. Then, the k leftmost columns of \mathbf{GP}_{σ} are linearly independent and Question 1 permits to conclude.

5. Prove that an [n, k, n - k + 1]-code (*i.e.* a code achieving Singleton bound) is systematic.

Answer : Let $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ be a generator matrix of such a code \mathscr{C} . Denote by $\mathbf{S} \in \mathbb{F}_q^{k \times k}$ the submatrix formed by these k leftmost columns of \mathbf{G} . Suppose that the k leftmost columns of \mathbf{G} of the code are not independent. Then, \mathbf{S} has not full rank and hence, there exists $\mathbf{T} \in \mathbf{GL}_k(\mathbb{F}_q)$ such that the last row of \mathbf{TS} is zero. Since \mathbf{TG} is another generator matrix of \mathscr{C} with independent rows, the last row of \mathbf{TG} is a nonzero codeword of \mathscr{C} with at least k zero entries, *i.e.*, with Hamming weight $\leq n - k$. A contradiction.

6. Prove that a cyclic code is systematic.

Answer: Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ be a cyclic code of dimension k. Let $g \in \mathbb{F}_q[X]/(X^n - 1)$ be a generating polynomial of \mathscr{C} with degree n - k and whose constant coefficient is nonzero. Then, the generator matrix below has its k leftmost columns which are independent :

$\int g_0$	g_1	•••	g_{n-k+1}	0	•••	$\begin{pmatrix} 0 \end{pmatrix}$	
0	·	·.		·	·	÷	
	·	·	·		۰.	0	•
$\int 0$		0	g_0	g_1		g_{n-k+1}	

A code of length $n = 2n_0$ for some positive integer n_0 is doubly circulant if it is stable by a "double cyclic shift". *i.e.*, it has a generator matrix of the form :

(f_0	f_1	•••	•••	f_{n_0-1}	g_0	g_1	•••	•••	g_{n_0-1}	
	f_{n_0-1}	f_0	f_1		f_{n_0-2}	g_{n_0-1}	g_0	g_1	• • •	g_{n_0-2}	
	÷	·	·	·	÷	:	·	·	·	÷	.
	÷		۰.	·	f_1	÷		۰.	·	g_1	
l	f_1	f_2		f_{n_0-1}	f_0	g_1	g_2		g_{n_0-1}	g_0)

Similarly to cyclic codes, doubly circulant codes can be represented as a pair of polynomials $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0}-1))^2$. In particular, any element of the code is represented by a pair $(u(X)f(X) \mid u(X)g(X))$ for some $u \in \mathbb{F}_q[X]/(X^{n_0}-1)$.

7. (*) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0} - 1))^2$ has dimension n_0 if and only if $gcd(f, g, X^{n_0} - 1) = 1$.

Hint. One could consider the map

$$\left\{ \begin{array}{ccc} \mathbb{F}_q[X]/(X^{n_0}-1) & \longrightarrow & \mathscr{C} \\ u(X) & \longmapsto & (u(X)f(X)) \mid u(X)g(X)) \end{array} \right.$$

which turns out to be injective if and only if the code has dimension n_0 .

Answer : Suppose that the map

$$\begin{cases} \mathbb{F}_q[X]/(X^{n_0}-1) & \longrightarrow & \mathscr{C} \\ u(X) & \longmapsto & (u(X)f(X)) \mid u(X)g(X)) \end{cases}$$

is not injective. Let u(X) such that $u(X)f(X) \equiv u(X)g(X) \equiv 0 \mod X^{n_0} - 1$.

Choose representatives of u, f, g of degree $\langle n_0$. We allow ourselves to denote also these representatives as u, f, g. Thus, $X^{n_0} - 1$ divides both uf and ug. For degree reasons, $X^{n_0} - 1$ cannot divide u. Let P be a irreducible factor of $X^{n_0} - 1$ that does not divide u, then this factor divides both f and g. Thus $gcd(f, g, X^{n_0} - 1)$ is nontrivial.

Conversely, suppose this gcd is 1, then the aforementioned map is injective, yielding a code of dimension n_0 .

8. (*) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0} - 1))^2$ is systematic if and only if f is invertible in $(\mathbb{F}_q[X]/(X^{n_0} - 1))^2$.

Answer : First observe that the product of two circulant matrices associated to polynomials a(X) and b(X) is nothing but the circulant matrix associated to the product $ab \mod X^{n_0}-1$. Thus, if f is invertible, then the n_0 leftmost columns form an invertible matrix and hence, from Question 1 the code is systematic. Conversely, if the code is systematic, we deduce that the circulant matrix associated to f is invertible and hence that f is invertible modulo $X^{n_0} - 1$.

Exercise 2. Let *n* be a positive integer prime to *q*. Let $\mathscr{C}, \mathscr{D} \subseteq \mathbb{F}_q^n$ be cyclic codes with generating polynomials $g_{\mathscr{C}}, g_{\mathscr{D}}$ which both divide $(X^n - 1)$ and cyclotomic classes $I_C, I_D \subseteq \mathbb{Z}/n\mathbb{Z}$.

1. (a) Prove that $\mathscr{C} \cap \mathscr{D}$ is cyclic;

Answer : Let σ denote the cyclic shift. Let $\mathbf{c} \in \mathscr{C} \cap \mathscr{D}$, then, by cyclicity of the codes, $\sigma(\mathbf{c}) \in \mathscr{C}$ and $\sigma(\mathbf{c}) \in \mathscr{D}$.

(b) express its generating polynomial in terms of $g_{\mathscr{C}}, g_{\mathscr{D}}$;

Answer: Regarded as a polynomial, a codeword $\mathbf{c}(X) \in \mathscr{C} \cap \mathscr{D}$ is divisible by both $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$. Hence it is divisible by $\operatorname{lcm}(g_{\mathscr{C}}, g_{\mathscr{D}})$. Conversely, a word divisible by $\operatorname{lcm}(g_{\mathscr{C}}, g_{\mathscr{D}})$ is both in \mathscr{C} and \mathscr{D} .

(c) express its cyclotomic classes in terms of I_C, I_D .

Answer : $I_{\mathscr{C}} \cup I_{\mathscr{D}}$.

2. Same questions ((a), (b), (c)) for $\mathscr{C} + \mathscr{D}$.

Answer :

- (a) If $\mathbf{c} + \mathbf{d} \in \mathscr{C} + \mathscr{D}$, then $\sigma(\mathbf{c} + \mathbf{d}) = \sigma(\mathbf{c}) + \sigma(\mathbf{d})$ which is in $\mathscr{C} + \mathscr{D}$ by cyclicity of the two codes.
- (b) Let g be a greatest common divisor of $\mathscr{C} + \mathscr{D}$ and denote by $g_{\mathscr{C}+\mathscr{D}}$ the generating polynomial of $\mathscr{C} + \mathscr{D}$ dividing $X^n 1$. One sees easily that g divides any word in $\mathscr{C} + \mathscr{D}$. Hence $g|g_{\mathscr{C}+\mathscr{D}}$. Moreover, by Bézout Theorem, there exist u, v such that

$$ug_{\mathscr{C}} + vg_{\mathscr{D}} = g.$$

Therefore, $g \in \mathscr{C} + \mathscr{D}$ and hence $g_{\mathscr{C} + \mathscr{D}}|g$. Consequently $g_{\mathscr{C} + \mathscr{D}} = \gcd(g_{\mathscr{C}}, g_{\mathscr{D}})$.

(c) $I_{\mathscr{C}} \cap I_{\mathscr{D}}$.

3. (\star) Consider the code

$$\mathscr{E} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \{ (u(X)v(X)) \mid u \in \mathscr{C}, \ v \in \mathscr{D} \} \}$$

where the product is performed in the ring $\mathbb{F}_q[X]/(X^n-1)$, and the code

$$\mathscr{F} \stackrel{\mathrm{def}}{=} \{ (g_{\mathscr{D}}(X)u(X)) \mid u(X) \in \mathscr{C} \}.$$

Prove that both \mathscr{E} and \mathscr{F} equal $\mathscr{C} \cap \mathscr{D}$.

Hint. One can first suppose that $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$ are prime to each other.

Answer : Clearly, both \mathscr{E} and \mathscr{F} are contained in $\mathscr{C} \cap \mathscr{D}$. Therefore, there remains to prove that the generating polynomial $g = \operatorname{lcm}(g_{\mathscr{C}}, g_{\mathscr{D}})$ of $\mathscr{C} \cap \mathscr{D}$ is in \mathscr{E} (resp. \mathscr{F}). If $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$ are prime to each other, one sees easily that both codes contain the product

 $g_{\mathscr{C}}g_{\mathscr{D}}$ is in \mathscr{E} (resp. \mathscr{F}). If the two generating polynomials are not prime to each other, then, one can observe that, since both $g_{\mathscr{C}}, g_{\mathscr{D}}$ divide $X^n - 1$ and $X^n - 1$ is squarefree (we assumed n to be prime with q), then

$$gcd(g_{\mathscr{C}}g_{\mathscr{D}}, X^n - 1) = lcm(g_{\mathscr{C}}, g_{\mathscr{D}}) = g.$$

Next, by Bézout's Theorem, there exist polynomials u, v such that

$$u(X)(X^n - 1) + v(X)g_{\mathscr{C}}g_{\mathscr{D}} = g,$$

which proves that $g \in \mathscr{E}$ (resp. \mathscr{F}).

Exercise 3. For a vector $\mathbf{c} \in \mathbb{F}_q^n$ denote by $\operatorname{Supp}(\mathbf{c})$ the set $\operatorname{Supp}(\mathbf{c}) \stackrel{\text{def}}{=} \{i \in \{1, \ldots, n\} \mid c_i \neq 0\}$. Given a linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $I \subseteq \{1, \ldots, n\}$, we denote by

$$\mathscr{C}_{|I} \stackrel{\text{def}}{=} \{ \mathbf{c} \in \mathscr{C} \mid \text{Supp}(\mathbf{c}) \subseteq I \}.$$

For a positive integer $r \leq n$, the *r*-th generalised Hamming weight of \mathscr{C} is defined as

$$d_r(\mathscr{C}) \stackrel{\text{def}}{=} \min\{ \sharp I \mid I \subseteq \{1, \dots, n\} \text{ and } \dim \mathscr{C}_{|I} = r \}.$$

1. Prove that $d_1(\mathscr{C})$ is nothing but the minimum distance.

Answer: Let *d* be the minimum distance and **c** be a minimum weight codeword with support *I*, *i.e.*, $\sharp I = d$. Then, dim $\mathscr{C}_{|I} \ge 1$. If dim $\mathscr{C}_{|I} \ge 2$, then, by elimination, one could construct a nonzero codeword whose support would be a proper subset of *I*, which contradicts the fact that *d* is the minimum distance. Thus, dim $\mathscr{C}_{|I} = 1$ and dim $\mathscr{C}_{|J} = 0$ for any *J* with cardinality < d. Hence the result.

2. Let k be the dimension of \mathscr{C} , prove that

$$1 \leq d_1(\mathscr{C}) < d_2(\mathscr{C}) < \dots < d_k(\mathscr{C}) \leq n.$$

Answer : Clearly, there is no weight above $d_k(\mathscr{C})$. Let $1 < t \leq k$ and $I \subseteq \{1, \ldots, n\}$ such that $\sharp I = d_t(\mathscr{C})$ and dim $\mathscr{C}_{|I} = t$. Let $i \in I$, by definition of $d_t(\mathscr{C})$ the subspace $\mathscr{C}_{I \setminus \{i\}}$ of codewords of $\mathscr{C}_{|I}$ whose *i*-th entry vanishes is a proper subspace of $\mathscr{C}_{|I}$ of codimension 1. Therefore

$$d_t(\mathscr{C}) > \sharp I \setminus \{a\} \ge d_{t-1}(\mathscr{C}).$$

This proves that the sequence is strictly increasing.

3. Prove that for an [n, k] code and any $r \leq k$, we have

$$d_r(\mathscr{C}) \leqslant n - k + r.$$

Answer: This a direct consequence of Singleton bound together with Question 2.

4. Deduce the sequence of generalised Hamming weights for a code achieving Singleton bound.

Answer : Due to Question 1, we have $d = d_1(\mathscr{C})$. Then, from Question 2, we deduce that the sequence of generalised Hamming weights cannot be something else but

$$n-k+1, n-k+2, \ldots, n-1, n.$$