MPRI
Module 2.13.2 : Error-correcting codes and applications to cryptography

Year 202324

Mid-term exam, November 29, 2023

You have 1h30. You can write your answers either in French or in English.

Notes.
— In any exercise, any code is linear.
— Questions marked with a (x) are harder than the other ones.

Exercise 1. A code ¢ C [ of dimension £ is said to be systematic if it has a generator matrix of the form

(I | R),

for some matrix R € F’;X(n_k) and where I, denotes the k x k identity matrix.

1. Prove that a code ¢ C Fy with generator matrix G is systematic if and only if the & leftmost columns

of G are linearly independent.

Answer : Suppose that G’s k leftmost columns are independent. Then, they form an
invertible square matrix denoted by S. Next, the matrix S™!G has the expected shape.

Conversely, suppose that € is systematic. Then, it has a generator matrix :

G'=(L | R).

Since G and G’ are generator matrices of the same code, there exists an invertible matrix S
such that G = SG’. Hence G = (S | SR). Thus, the k leftmost columns of G are those of

S which are independent since S is invertible.

2. Prove that ( —RT | I,,_;) is a parity check matrix of €.

Answer : The matrix has rank n — k, hence it suffices to prove that it generates a code

contained in 4. A simple calculation gives :

(o | R)(-RT | Ty = (1 | R)(I:IZ>R+RO.

3. Give an example of non systematic code of length 4 and dimension 2 over Fs.

Answer : For instance, the code with generator matrix

1110
001 1/°

For any permutation o € &,, (the permutation group over n elements), denote by P, the corresponding

permutation matrix. Then, for a code &, denote by €P, the permuted code defined by

¢p, X {cP, | c € ¢}



4. Prove that for any linear code ¥ C F”, there exists o € &,, such that ¥P,, is systematic.

q

Answer : Let G € IE";X” be a generator matrix of €. It has rank k and hence has k linearly

independent columns with indexes i1, . .

.,i,. Let 0 € &,, be a permutation sending i1, . .

'7ik

on 1,...,k. Then, the k leftmost columns of GP, are linearly independent and Question

permits to conclude.

5. Prove that an [n,k,n — k + 1]-code (i.e. a code achieving Singleton bound) is systematic.

Answer : Let G € F’;X” be a generator matrix of such a code ¥. Denote by S € F’;Xk the
submatrix formed by these k leftmost columns of G. Suppose that the k leftmost columns
of G of the code are not independent. Then, S has not full rank and hence, there exists
T € GLg(F,) such that the last row of TS is zero. Since TG is another generator matrix
of € with independent rows, the last row of TG is a nonzero codeword of ¢ with at least k
zero entries, i.e., with Hamming weight < n — k. A contradiction.

6. Prove that a cyclic code is systematic.

Answer :

Let ¥ C I} be a cyclic code of dimension k. Let g € Fy[X]/(X™ — 1) be a

generating polynomial of ¥ with degree n — k and whose constant coefficient is nonzero.
Then, the generator matrix below has its k leftmost columns which are independent :

do g1 In—k+1 0 - 0
0 ) . .
0
o - 0 90 g1 Gn—k+1

A code of length n = 2ng for some positive integer ng is doubly circulant if it is stable by a “double cyclic

shift”. i.e., it has a generator matrix of the form :

fo i o Jno—
fno—l fO fl fno—
bil
fl f2 fnofl fO

1 gJo 91 Ino—1
2 | 9no—1 Go G1 9no—2
. g1
g1 g2 9ng—1 90

Similarly to cyclic codes, doubly circulant codes can be represented as a pair of polynomials (f(X), g(X)) €
(F,[X]/(X™ —1))2. In particular, any element of the code is represented by a pair (u(X)f(X) | u(X)g(X))

for some u € Fy[X]/(X™ —1).

7. (%) Prove that a doubly circulant code defined by the pair (f(X),g(X)) € (F,[X]/(X™ —

1))? has

dimension ng if and only if ged(f, g, X™ — 1) = 1.

Hint. One could consider the map

{

F,[X]/(X™ — 1)
u(X)

4
(u(X) (X)) | u(X)g(X))

—
—

which turns out to be injective if and only if the code has dimension ng.



Answer : Suppose that the map

{ F,[X]/(X™ -1) — €
u(X) — (u(X) (X)) [ u(X)g(X))

is not injective. Let w(X) such that «(X)f(X) = u(X)g(X) =0 mod X" — 1.

Choose representatives of u, f, g of degree < ng. We allow ourselves to denote also these
representatives as u, f,g. Thus, X" — 1 divides both uf and ug. For degree reasons, X" —1
cannot divide u. Let P be a irreducible factor of X™ — 1 that does not divide u, then this
factor divides both f and g. Thus ged(f, g, X™ — 1) is nontrivial.

Conversely, suppose this ged is 1, then the aforementioned map is injective, yielding a code
of dimension ng.

8. (x) Prove that a doubly circulant code defined by the pair (f(X),g(X)) € (Fy[X]/(X™ —1))? is
systematic if and only if f is invertible in (Fy[X]/(X™ —1))2.

Answer : First observe that the product of two circulant matrices associated to polynomials
a(X) and b(X) is nothing but the circulant matrix associated to the product ab mod X™ —1.
Thus, if f is invertible, then the ng leftmost columns form an invertible matrix and hence,
from Question [I] the code is systematic. Conversely, if the code is systematic, we deduce
that the circulant matrix associated to f is invertible and hence that f is invertible modulo
X —1.

Exercise 2. Let n be a positive integer prime to q. Let ¢’, 2 C Fy be cyclic codes with generating polyno-
mials g, g which both divide (X™ — 1) and cyclotomic classes I, Ip C Z/nZ.

1. (a) Prove that € N 2 is cyclic;

Answer : Let o denote the cyclic shift. Let ¢ € € N 2, then, by cyclicity of the codes,
o(c) € € and o(c) € 2.

(b) express its generating polynomial in terms of g, g% ;
Answer : Regarded as a polynomial, a codeword ¢(X) € €N Z is divisible by both g«

and gg. Hence it is divisible by lem(g¢, g»). Conversely, a word divisible by lem(g¢, g2)
is both in % and 2.

(c) express its cyclotomic classes in terms of I, Ip.

Answer : IoUIg.



2. Same questions ((a), (b), (c)) for ¥ + 2.

Answer :

(a) Ifc+d € €+ Z, then o(c+d) = o(c) + o(d) which is in € + Z by cyclicity of the
two codes.

(b) Let g be a greatest common divisor of ¥ + 2 and denote by g¢+9 the generating
polynomial of ¥ + Z dividing X™ — 1. One sees easily that g divides any word in
€ + 9. Hence g|gw+2. Moreover, by Bézout Theorem, there exist u, v such that

uge +v99 = g.

Therefore, g € € + 2 and hence g#+9|g. Consequently g¢+o = ged(g%, 92)-
(¢) IgNIg.

3. (%) Counsider the code
& < Spang, {(w(X)v(X)) [ue ¥, ve 7},
where the product is performed in the ring F,[X]/(X™ — 1), and the code

F L {(go(X)u(X)) | u(X) € ©).

Prove that both & and .% equal € N 2.
Hint. One can first suppose that g¢ and go are prime to each other.

Answer : Clearly, both & and .% are contained in ¢ N 2. Therefore, there remains to
prove that the generating polynomial g = lem(ge, go) of € N 2 is in & (resp. .F).
If g4 and g4 are prime to each other, one sees easily that both codes contain the product
g¢9go is in & (resp. F).
If the two generating polynomials are not prime to each other, then, one can observe that,
since both g¢, g divide X™ — 1 and X™ — 1 is squarefree (we assumed n to be prime with
q), then

ged(9w 99, X" — 1) = lem(ge, 99) = g.

Next, by Bézout’s Theorem, there exist polynomials u,v such that
w(X)(X" = 1) +v(X)geg2 = 9,

which proves that g € & (resp. F).

Exercise 3. For a vector ¢ € Fy denote by Supp(c) the set Supp(c) def {i €{l,...,n} | ¢; # 0}. Given a
linear code ¢ C Fy and I C {1,...,n}, we denote by

% < {c € € | Supp(c) C I}.

For a positive integer r < n, the r—th generalised Hamming weight of € is defined as

d, (%) f min{fl | I € {1,...,n} and dim%); =r}.



1. Prove that d;(%) is nothing but the minimum distance.

Answer : Let d be the minimum distance and ¢ be a minimum weight codeword with
support I, i.e., {1 = d. Then, dim%j; > 1. If dim%]; > 2, then, by elimination, one could
construct a nonzero codeword whose support would be a proper subset of I, which contradicts
the fact that d is the minimum distance. Thus, dim 4j; = 1 and dim %}; = 0 for any J with
cardinality < d. Hence the result.

2. Let k be the dimension of ¥, prove that

Answer : Clearly, there is no weight above d(€). Let 1 <t < kand I C {1,...,n} such
that I = dy(¥¢’) and dim%j; = t. Let 7 € I, by definition of d;(¢’) the subspace 7\ ;; of
codewords of %]; whose i—th entry vanishes is a proper subspace of 4]; of codimension 1.
Therefore

de(€¢) > 41\ {a} > di—1 ().

This proves that the sequence is strictly increasing.

3. Prove that for an [n, k] code and any r < k, we have

d-(€)<n—k+r

Answer : This a direct consequence of Singleton bound together with Question [2}

4. Deduce the sequence of generalised Hamming weights for a code achieving Singleton bound.

Answer : Due to Question [1} we have d = d;(%). Then, from Question [2| we deduce that
the sequence of generalised Hamming weights cannot be something else but

n—k+1ln—k+2,....,n—1,n.



