Module 2.13.2 : Error-correcting codes and applications to cryptography

Mid-term exam, November 29, 2023

You have 1h30. You can write your answers either in French or in English.

Notes.

- In any exercise, any code is linear.
- Questions marked with $a(\star)$ are harder than the other ones.

Exercise 1. A code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ of dimension k is said to be systematic if it has a generator matrix of the form

$$
\left(\mathbf{I}_{k} \mid \mathbf{R}\right),
$$

for some matrix $\mathbf{R} \in \mathbb{F}_{q}^{k \times(n-k)}$ and where \mathbf{I}_{k} denotes the $k \times k$ identity matrix.

1. Prove that a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ with generator matrix \mathbf{G} is systematic if and only if the k leftmost columns of \mathbf{G} are linearly independent.

Answer : Suppose that G's k leftmost columns are independent. Then, they form an invertible square matrix denoted by \mathbf{S}. Next, the matrix $\mathbf{S}^{-1} \mathbf{G}$ has the expected shape. Conversely, suppose that \mathscr{C} is systematic. Then, it has a generator matrix :

$$
\mathbf{G}^{\prime}=\left(\begin{array}{l|l}
\mathbf{I}_{k} & \mathbf{R}
\end{array}\right) .
$$

Since \mathbf{G} and \mathbf{G}^{\prime} are generator matrices of the same code, there exists an invertible matrix \mathbf{S} such that $\mathbf{G}=\mathbf{S G}^{\prime}$. Hence $\mathbf{G}=(\mathbf{S} \mid \mathbf{S R})$. Thus, the k leftmost columns of \mathbf{G} are those of \mathbf{S} which are independent since \mathbf{S} is invertible.
2. Prove that $\left(-\mathbf{R}^{\top} \mid \mathbf{I}_{n-k}\right)$ is a parity check matrix of \mathscr{C}.

Answer : The matrix has rank $n-k$, hence it suffices to prove that it generates a code contained in $\mathscr{C}{ }^{\perp}$. A simple calculation gives :

$$
\left(\begin{array}{l|l}
\mathbf{I}_{k} & \mid
\end{array} \mathbf{R} .\right)\left(\begin{array}{ccc}
-\mathbf{R}^{\top} & \mid & \mathbf{I}_{n-k}
\end{array}\right)^{\perp}=\left(\begin{array}{lll}
\mathbf{I}_{k} & \mid & \mathbf{R}
\end{array}\right)\binom{-\mathbf{R}}{\mathbf{I}_{n-k}}=-\mathbf{R}+\mathbf{R}=0 .
$$

3. Give an example of non systematic code of length 4 and dimension 2 over \mathbb{F}_{2}.

Answer : For instance, the code with generator matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

For any permutation $\sigma \in \mathfrak{S}_{n}$ (the permutation group over n elements), denote by \mathbf{P}_{σ} the corresponding permutation matrix. Then, for a code \mathscr{C}, denote by $\mathscr{C} \mathbf{P}_{\sigma}$ the permuted code defined by

$$
\mathscr{C} \mathbf{P}_{\sigma} \stackrel{\text { def }}{=}\left\{\mathbf{c} \mathbf{P}_{\sigma} \mid \mathbf{c} \in \mathscr{C}\right\} .
$$

4. Prove that for any linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$, there exists $\sigma \in \mathscr{S}_{n}$ such that $\mathscr{C} \mathbf{P}_{\sigma}$ is systematic.

Answer : Let $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ be a generator matrix of \mathscr{C}. It has rank k and hence has k linearly independent columns with indexes i_{1}, \ldots, i_{k}. Let $\sigma \in \mathfrak{S}_{n}$ be a permutation sending i_{1}, \ldots, i_{k} on $1, \ldots, k$. Then, the k leftmost columns of $\mathbf{G} \mathbf{P}_{\sigma}$ are linearly independent and Question 1 permits to conclude.
5. Prove that an $[n, k, n-k+1]$-code (i.e. a code achieving Singleton bound) is systematic.

Answer : Let $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ be a generator matrix of such a code \mathscr{C}. Denote by $\mathbf{S} \in \mathbb{F}_{q}^{k \times k}$ the submatrix formed by these k leftmost columns of \mathbf{G}. Suppose that the k leftmost columns of \mathbf{G} of the code are not independent. Then, \mathbf{S} has not full rank and hence, there exists $\mathbf{T} \in \mathbf{G} \mathbf{L}_{k}\left(\mathbb{F}_{q}\right)$ such that the last row of $\mathbf{T S}$ is zero. Since $\mathbf{T G}$ is another generator matrix of \mathscr{C} with independent rows, the last row of TG is a nonzero codeword of \mathscr{C} with at least k zero entries, i.e., with Hamming weight $\leqslant n-k$. A contradiction.
6. Prove that a cyclic code is systematic.

Answer : Let $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ be a cyclic code of dimension k. Let $g \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ be a generating polynomial of \mathscr{C} with degree $n-k$ and whose constant coefficient is nonzero. Then, the generator matrix below has its k leftmost columns which are independent :

$$
\left(\begin{array}{ccccccc}
g_{0} & g_{1} & \cdots & g_{n-k+1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & & \ddots & 0 \\
0 & \cdots & 0 & g_{0} & g_{1} & \cdots & g_{n-k+1}
\end{array}\right)
$$

A code of length $n=2 n_{0}$ for some positive integer n_{0} is doubly circulant if it is stable by a "double cyclic shift". i.e., it has a generator matrix of the form :

$$
\left(\begin{array}{ccccc|ccccc}
f_{0} & f_{1} & \cdots & \cdots & f_{n_{0}-1} & g_{0} & g_{1} & \cdots & \cdots & g_{n_{0}-1} \\
f_{n_{0}-1} & f_{0} & f_{1} & \cdots & f_{n_{0}-2} & g_{n_{0}-1} & g_{0} & g_{1} & \cdots & g_{n_{0}-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & f_{1} & \vdots & & \ddots & \ddots & g_{1} \\
f_{1} & f_{2} & \cdots & f_{n_{0}-1} & f_{0} & g_{1} & g_{2} & \cdots & g_{n_{0}-1} & g_{0}
\end{array}\right)
$$

Similarly to cyclic codes, doubly circulant codes can be represented as a pair of polynomials $(f(X), g(X)) \in$ $\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$. In particular, any element of the code is represented by a pair $(u(X) f(X) \mid u(X) g(X))$ for some $u \in \mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)$.
7. (\star) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$ has dimension n_{0} if and only if $\operatorname{gcd}\left(f, g, X^{n_{0}}-1\right)=1$.

Hint. One could consider the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right) & \longrightarrow & \mathscr{C} \\
u(X) & \longmapsto & (u(X) f(X)) \mid u(X) g(X))
\end{array}\right.
$$

which turns out to be injective if and only if the code has dimension n_{0}.

Answer : Suppose that the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right) & \longrightarrow & \mathscr{C} \\
u(X) & \longmapsto & (u(X) f(X)) \mid u(X) g(X))
\end{array}\right.
$$

is not injective. Let $u(X)$ such that $u(X) f(X) \equiv u(X) g(X) \equiv 0 \bmod X^{n_{0}}-1$.
Choose representatives of u, f, g of degree $<n_{0}$. We allow ourselves to denote also these representatives as u, f, g. Thus, $X^{n_{0}}-1$ divides both $u f$ and $u g$. For degree reasons, $X^{n_{0}}-1$ cannot divide u. Let P be a irreducible factor of $X^{n_{0}}-1$ that does not divide u, then this factor divides both f and g. Thus $\operatorname{gcd}\left(f, g, X^{n_{0}}-1\right)$ is nontrivial.
Conversely, suppose this gcd is 1 , then the aforementioned map is injective, yielding a code of dimension n_{0}.
8. (\star) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$ is systematic if and only if f is invertible in $\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$.

Answer : First observe that the product of two circulant matrices associated to polynomials $a(X)$ and $b(X)$ is nothing but the circulant matrix associated to the product $a b \bmod X^{n_{0}}-1$. Thus, if f is invertible, then the n_{0} leftmost columns form an invertible matrix and hence, from Question 1 the code is systematic. Conversely, if the code is systematic, we deduce that the circulant matrix associated to f is invertible and hence that f is invertible modulo $X^{n_{0}}-1$.

Exercise 2. Let n be a positive integer prime to q. Let $\mathscr{C}, \mathscr{D} \subseteq \mathbb{F}_{q}^{n}$ be cyclic codes with generating polynomials $g_{\mathscr{C}}, g_{\mathscr{D}}$ which both divide $\left(X^{n}-1\right)$ and cyclotomic classes $I_{C}, I_{D} \subseteq \mathbb{Z} / n \mathbb{Z}$.

1. (a) Prove that $\mathscr{C} \cap \mathscr{D}$ is cyclic;

Answer : Let σ denote the cyclic shift. Let $\mathbf{c} \in \mathscr{C} \cap \mathscr{D}$, then, by cyclicity of the codes, $\sigma(\mathbf{c}) \in \mathscr{C}$ and $\sigma(\mathbf{c}) \in \mathscr{D}$.
(b) express its generating polynomial in terms of $g_{\mathscr{C}}, g_{\mathscr{D}}$;

Answer : Regarded as a polynomial, a codeword $\mathbf{c}(X) \in \mathscr{C} \cap \mathscr{D}$ is divisible by both $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$. Hence it is divisible by $\operatorname{lcm}\left(g_{\mathscr{C}}, g_{\mathscr{D}}\right)$. Conversely, a word divisible by $\operatorname{lcm}\left(g_{\mathscr{C}}, g_{\mathscr{D}}\right)$ is both in \mathscr{C} and \mathscr{D}.
(c) express its cyclotomic classes in terms of I_{C}, I_{D}.

Answer : $I_{\mathscr{C}} \cup I_{\mathscr{D}}$.
2. Same questions $((\mathrm{a}),(\mathrm{b}),(\mathrm{c}))$ for $\mathscr{C}+\mathscr{D}$.

Answer :

(a) If $\mathbf{c}+\mathbf{d} \in \mathscr{C}+\mathscr{D}$, then $\sigma(\mathbf{c}+\mathbf{d})=\sigma(\mathbf{c})+\sigma(\mathbf{d})$ which is in $\mathscr{C}+\mathscr{D}$ by cyclicity of the two codes.
(b) Let g be a greatest common divisor of $\mathscr{C}+\mathscr{D}$ and denote by $g_{\mathscr{C}+\mathscr{D}}$ the generating polynomial of $\mathscr{C}+\mathscr{D}$ dividing $X^{n}-1$. One sees easily that g divides any word in $\mathscr{C}+\mathscr{D}$. Hence $g \mid g_{\mathscr{C}+\mathscr{D}}$. Moreover, by Bézout Theorem, there exist u, v such that

$$
u g_{\mathscr{C}}+v g_{\mathscr{D}}=g
$$

Therefore, $g \in \mathscr{C}+\mathscr{D}$ and hence $g_{\mathscr{C}+\mathscr{D}} \mid g$. Consequently $g_{\mathscr{C}+\mathscr{D}}=\operatorname{gcd}\left(g_{\mathscr{C}}, g_{\mathscr{D}}\right)$.
(c) $I_{\mathscr{C}} \cap I_{\mathscr{D}}$.
3. (\star) Consider the code

$$
\mathscr{E} \stackrel{\text { def }}{=} \operatorname{Span}_{\mathbb{F}_{q}}\{(u(X) v(X)) \mid u \in \mathscr{C}, v \in \mathscr{D}\}
$$

where the product is performed in the ring $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$, and the code

$$
\mathscr{F} \stackrel{\text { def }}{=}\left\{\left(g_{\mathscr{D}}(X) u(X)\right) \mid u(X) \in \mathscr{C}\right\} .
$$

Prove that both \mathscr{E} and \mathscr{F} equal $\mathscr{C} \cap \mathscr{D}$.
Hint. One can first suppose that $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$ are prime to each other.
Answer : Clearly, both \mathscr{E} and \mathscr{F} are contained in $\mathscr{C} \cap \mathscr{D}$. Therefore, there remains to prove that the generating polynomial $g=\operatorname{lcm}\left(g_{\mathscr{C}}, g_{\mathscr{D}}\right)$ of $\mathscr{C} \cap \mathscr{D}$ is in \mathscr{E} (resp. $\left.\mathscr{F}\right)$.
If $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$ are prime to each other, one sees easily that both codes contain the product $g_{\mathscr{C}} g_{\mathscr{D}}$ is in \mathscr{E} (resp. \mathscr{F}).
If the two generating polynomials are not prime to each other, then, one can observe that, since both $g_{\mathscr{C}}, g_{\mathscr{D}}$ divide $X^{n}-1$ and $X^{n}-1$ is squarefree (we assumed n to be prime with q), then

$$
\operatorname{gcd}\left(g_{\mathscr{C}} g_{\mathscr{D}}, X^{n}-1\right)=\operatorname{lcm}\left(g_{\mathscr{C}}, g_{\mathscr{D}}\right)=g
$$

Next, by Bézout's Theorem, there exist polynomials u, v such that

$$
u(X)\left(X^{n}-1\right)+v(X) g_{\mathscr{C}} g_{\mathscr{D}}=g
$$

which proves that $g \in \mathscr{E}$ (resp. $\mathscr{F})$.

Exercise 3. For a vector $\mathbf{c} \in \mathbb{F}_{q}^{n}$ denote by $\operatorname{Supp}(\mathbf{c})$ the set $\operatorname{Supp}(\mathbf{c}) \stackrel{\text { def }}{=}\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right\}$. Given a linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ and $I \subseteq\{1, \ldots, n\}$, we denote by

$$
\mathscr{C}_{\mid I} \stackrel{\text { def }}{=}\{\mathbf{c} \in \mathscr{C} \mid \operatorname{Supp}(\mathbf{c}) \subseteq I\}
$$

For a positive integer $r \leqslant n$, the r-th generalised Hamming weight of \mathscr{C} is defined as

$$
d_{r}(\mathscr{C}) \stackrel{\text { def }}{=} \min \left\{\sharp I \mid I \subseteq\{1, \ldots, n\} \quad \text { and } \quad \operatorname{dim} \mathscr{C}_{\mid I}=r\right\}
$$

1. Prove that $d_{1}(\mathscr{C})$ is nothing but the minimum distance.

Answer : Let d be the minimum distance and \mathbf{c} be a minimum weight codeword with support I, i.e., $\sharp I=d$. Then, $\operatorname{dim} \mathscr{C}_{I I} \geqslant 1$. If $\operatorname{dim} \mathscr{C}_{\mid I} \geqslant 2$, then, by elimination, one could construct a nonzero codeword whose support would be a proper subset of I, which contradicts the fact that d is the minimum distance. Thus, $\operatorname{dim} \mathscr{C}_{\mid I}=1$ and $\operatorname{dim} \mathscr{C}_{\mid J}=0$ for any J with cardinality $<d$. Hence the result.
2. Let k be the dimension of \mathscr{C}, prove that

$$
1 \leqslant d_{1}(\mathscr{C})<d_{2}(\mathscr{C})<\cdots<d_{k}(\mathscr{C}) \leqslant n
$$

Answer : Clearly, there is no weight above $d_{k}(\mathscr{C})$. Let $1<t \leqslant k$ and $I \subseteq\{1, \ldots, n\}$ such that $\sharp I=d_{t}(\mathscr{C})$ and $\operatorname{dim} \mathscr{C}_{I I}=t$. Let $i \in I$, by definition of $d_{t}(\mathscr{C})$ the subspace $\mathscr{C}_{I \backslash\{i\}}$ of codewords of $\mathscr{C}_{\mid I}$ whose i-th entry vanishes is a proper subspace of $\mathscr{C}_{I I}$ of codimension 1. Therefore

$$
d_{t}(\mathscr{C})>\sharp I \backslash\{a\} \geqslant d_{t-1}(\mathscr{C})
$$

This proves that the sequence is strictly increasing.
3. Prove that for an $[n, k]$ code and any $r \leqslant k$, we have

$$
d_{r}(\mathscr{C}) \leqslant n-k+r
$$

Answer : This a direct consequence of Singleton bound together with Question 2
4. Deduce the sequence of generalised Hamming weights for a code achieving Singleton bound.

Answer : Due to Question 1, we have $d=d_{1}(\mathscr{C})$. Then, from Question 2, we deduce that the sequence of generalised Hamming weights cannot be something else but

$$
n-k+1, n-k+2, \ldots, n-1, n
$$

