Module 2.13.2 : Error-correcting codes and applications to cryptography

Mid-term exam, November 29, 2023

You have 1h30. You can write your answers either in French or in English.

Notes.

- In any exercise, any code is linear.
- Questions marked with $a(\star)$ are harder than the other ones.

Exercise 1. A code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ of dimension k is said to be systematic if it has a generator matrix of the form

$$
\left(\begin{array}{l|l}
\mathbf{I}_{k} & \mathbf{R}
\end{array}\right),
$$

for some matrix $\mathbf{R} \in \mathbb{F}_{q}^{k \times(n-k)}$ and where \mathbf{I}_{k} denotes the $k \times k$ identity matrix.

1. Prove that a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ with generator matrix \mathbf{G} is systematic if and only if the k leftmost columns of \mathbf{G} are linearly independent.
2. Prove that $\left(-\mathbf{R}^{\top} \mid \mathbf{I}_{n-k}\right)$ is a parity check matrix of \mathscr{C}.
3. Give an example of non systematic code of length 4 and dimension 2 over \mathbb{F}_{2}.

For any permutation $\sigma \in \mathfrak{S}_{n}$ (the permutation group over n elements), denote by \mathbf{P}_{σ} the corresponding permutation matrix. Then, for a code \mathscr{C}, denote by $\mathscr{C} \mathbf{P}_{\sigma}$ the permuted code defined by

$$
\mathscr{C} \mathbf{P}_{\sigma} \stackrel{\text { def }}{=}\left\{\mathbf{c} \mathbf{P}_{\sigma} \mid \mathbf{c} \in \mathscr{C}\right\} .
$$

4. Prove that for any linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$, there exists $\sigma \in \mathscr{S}_{n}$ such that $\mathscr{C} \mathbf{P}_{\sigma}$ is systematic.
5. Prove that an $[n, k, n-k+1]$-code (i.e. a code achieving Singleton bound) is systematic.
6. Prove that a cyclic code is systematic.

A code of length $n=2 n_{0}$ for some positive integer n_{0} is doubly circulant if it is stable by a "double cyclic shift". i.e., it has a generator matrix of the form :

$$
\left(\begin{array}{ccccc|ccccc}
f_{0} & f_{1} & \cdots & \cdots & f_{n_{0}-1} & g_{0} & g_{1} & \cdots & \cdots & g_{n_{0}-1} \\
f_{n_{0}-1} & f_{0} & f_{1} & \cdots & f_{n_{0}-2} & g_{n_{0}-1} & g_{0} & g_{1} & \cdots & g_{n_{0}-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & f_{1} & \vdots & & \ddots & \ddots & g_{1} \\
f_{1} & f_{2} & \cdots & f_{n_{0}-1} & f_{0} & g_{1} & g_{2} & \cdots & g_{n_{0}-1} & g_{0}
\end{array}\right) .
$$

Similarly to cyclic codes, doubly circulant codes can be represented as a pair of polynomials $(f(X), g(X)) \in$ $\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$. In particular, any element of the code is represented by a pair $(u(X) f(X) \mid u(X) g(X))$ for some $u \in \mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)$.

Turn the page please \longrightarrow
7. (\star) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$ has dimension n_{0} if and only if $\operatorname{gcd}\left(f, g, X^{n_{0}}-1\right)=1$.
Hint. One could consider the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right) & \longrightarrow & \mathscr{C} \\
u(X) & \longmapsto & \left.(u(X) f(X))^{\mid} \mid u(X) g(X)\right)
\end{array}\right.
$$

which turns out to be injective if and only if the code has dimension n_{0}.
8. (\star) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$ is systematic if and only if f is invertible in $\left(\mathbb{F}_{q}[X] /\left(X^{n_{0}}-1\right)\right)^{2}$.

Exercise 2. Let n be a positive integer prime to q. Let $\mathscr{C}, \mathscr{D} \subseteq \mathbb{F}_{q}^{n}$ be cyclic codes with generating polynomials $g_{\mathscr{C}}, g_{\mathscr{D}}$ which both divide $\left(X^{n}-1\right)$ and cyclotomic classes $I_{C}, I_{D} \subseteq \mathbb{Z} / n \mathbb{Z}$.

1. (a) Prove that $\mathscr{C} \cap \mathscr{D}$ is cyclic ;
(b) express its generating polynomial in terms of $g_{\mathscr{C}}, g_{\mathscr{D}}$;
(c) express its cyclotomic classes in terms of I_{C}, I_{D}.
2. Same questions $((\mathrm{a}),(\mathrm{b}),(\mathrm{c}))$ for $\mathscr{C}+\mathscr{D}$.
3. (\star) Consider the code

$$
\mathscr{E} \stackrel{\text { def }}{=} \operatorname{Span}_{\mathbb{F}_{q}}\{(u(X) v(X)) \mid u \in \mathscr{C}, v \in \mathscr{D}\},
$$

where the product is performed in the ring $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$, and the code

$$
\mathscr{F} \stackrel{\text { def }}{=}\left\{\left(g_{\mathscr{D}}(X) u(X)\right) \mid u(X) \in \mathscr{C}\right\} .
$$

Prove that both \mathscr{E} and \mathscr{F} equal $\mathscr{C} \cap \mathscr{D}$.
Hint. One can first suppose that $g_{\mathscr{C}}$ and $g_{\mathscr{D}}$ are prime to each other.

Exercise 3. For a vector $\mathbf{c} \in \mathbb{F}_{q}^{n}$ denote by $\operatorname{Supp}(\mathbf{c})$ the set $\operatorname{Supp}(\mathbf{c}) \stackrel{\text { def }}{=}\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right\}$. Given a linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ and $I \subseteq\{1, \ldots, n\}$, we denote by

$$
\mathscr{C}_{\mid I} \stackrel{\text { def }}{=}\{\mathbf{c} \in \mathscr{C} \mid \operatorname{Supp}(\mathbf{c}) \subseteq I\}
$$

For a positive integer $r \leqslant n$, the r-th generalised Hamming weight of \mathscr{C} is defined as

$$
d_{r}(\mathscr{C}) \stackrel{\text { def }}{=} \min \left\{\sharp I \mid I \subseteq\{1, \ldots, n\} \quad \text { and } \quad \operatorname{dim} \mathscr{C}_{\mid I}=r\right\}
$$

1. Prove that $d_{1}(\mathscr{C})$ is nothing but the minimum distance.
2. Let k be the dimension of \mathscr{C}, prove that

$$
1 \leqslant d_{1}(\mathscr{C})<d_{2}(\mathscr{C})<\cdots<d_{k}(\mathscr{C}) \leqslant n
$$

3. Prove that for an $[n, k]$ code and any $r \leqslant k$, we have

$$
d_{r}(\mathscr{C}) \leqslant n-k+r .
$$

4. Deduce the sequence of generalised Hamming weights for a code achieving Singleton bound.
