Mid-term exam, November 29, 2023

You have 1h30. You can write your answers either in French or in English.

Notes.

- In any exercise, any code is linear.
- Questions marked with a (\star) are harder than the other ones.

Exercise 1. A code $\mathscr{C} \subseteq \mathbb{F}_q^n$ of dimension k is said to be *systematic* if it has a generator matrix of the form

 $(\mathbf{I}_k \mid \mathbf{R}),$

for some matrix $\mathbf{R} \in \mathbb{F}_q^{k \times (n-k)}$ and where \mathbf{I}_k denotes the $k \times k$ identity matrix.

- 1. Prove that a code $\mathscr{C} \subseteq \mathbb{F}_q^n$ with generator matrix **G** is systematic if and only if the k leftmost columns of **G** are linearly independent.
- 2. Prove that $(-\mathbf{R}^{\top} | \mathbf{I}_{n-k})$ is a parity check matrix of \mathscr{C} .
- 3. Give an example of non systematic code of length 4 and dimension 2 over \mathbb{F}_2 .

For any permutation $\sigma \in \mathfrak{S}_n$ (the permutation group over *n* elements), denote by \mathbf{P}_{σ} the corresponding permutation matrix. Then, for a code \mathscr{C} , denote by $\mathscr{C}\mathbf{P}_{\sigma}$ the *permuted code* defined by

$$\mathscr{C}\mathbf{P}_{\sigma} \stackrel{\mathrm{def}}{=} \{\mathbf{c}\mathbf{P}_{\sigma} \mid \mathbf{c} \in \mathscr{C}\}$$

- 4. Prove that for any linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$, there exists $\sigma \in \mathfrak{S}_n$ such that $\mathscr{C}\mathbf{P}_{\sigma}$ is systematic.
- 5. Prove that an [n, k, n k + 1]-code (*i.e.* a code achieving Singleton bound) is systematic.
- 6. Prove that a cyclic code is systematic.

A code of length $n = 2n_0$ for some positive integer n_0 is doubly circulant if it is stable by a "double cyclic shift". *i.e.*, it has a generator matrix of the form :

$$\begin{pmatrix} f_0 & f_1 & \cdots & f_{n_0-1} & g_0 & g_1 & \cdots & g_{n_0-1} \\ f_{n_0-1} & f_0 & f_1 & \cdots & f_{n_0-2} & g_{n_0-1} & g_0 & g_1 & \cdots & g_{n_0-2} \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & f_1 & \vdots & \ddots & \ddots & g_1 \\ f_1 & f_2 & \cdots & f_{n_0-1} & f_0 & g_1 & g_2 & \cdots & g_{n_0-1} & g_0 \end{pmatrix}.$$

Similarly to cyclic codes, doubly circulant codes can be represented as a pair of polynomials $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0}-1))^2$. In particular, any element of the code is represented by a pair $(u(X)f(X) \mid u(X)g(X))$ for some $u \in \mathbb{F}_q[X]/(X^{n_0}-1)$.

Turn the page please \longrightarrow

7. (*) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0} - 1))^2$ has dimension n_0 if and only if $gcd(f, g, X^{n_0} - 1) = 1$.

Hint. One could consider the map

$$\left\{ \begin{array}{ccc} \mathbb{F}_q[X]/(X^{n_0}-1) & \longrightarrow & \mathscr{C} \\ u(X) & \longmapsto & (u(X)f(X)) \mid u(X)g(X)) \end{array} \right.$$

which turns out to be injective if and only if the code has dimension n_0 .

8. (*) Prove that a doubly circulant code defined by the pair $(f(X), g(X)) \in (\mathbb{F}_q[X]/(X^{n_0} - 1))^2$ is systematic if and only if f is invertible in $(\mathbb{F}_q[X]/(X^{n_0} - 1))^2$.

Exercise 2. Let *n* be a positive integer prime to *q*. Let $\mathscr{C}, \mathscr{D} \subseteq \mathbb{F}_q^n$ be cyclic codes with generating polynomials $g_{\mathscr{C}}, g_{\mathscr{D}}$ which both divide $(X^n - 1)$ and cyclotomic classes $I_C, I_D \subseteq \mathbb{Z}/n\mathbb{Z}$.

- 1. (a) Prove that $\mathscr{C} \cap \mathscr{D}$ is cyclic;
 - (b) express its generating polynomial in terms of $g_{\mathscr{C}}, g_{\mathscr{D}}$;
 - (c) express its cyclotomic classes in terms of I_C, I_D .
- 2. Same questions ((a), (b), (c)) for $\mathscr{C} + \mathscr{D}$.
- 3. (\star) Consider the code

$$\mathscr{E} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_{q}} \{ (u(X)v(X)) \mid u \in \mathscr{C}, \ v \in \mathscr{D} \},\$$

where the product is performed in the ring $\mathbb{F}_q[X]/(X^n-1)$, and the code

$$\mathscr{F} \stackrel{\mathrm{def}}{=} \{ (g_{\mathscr{D}}(X)u(X)) \mid u(X) \in \mathscr{C} \}.$$

Prove that both \mathscr{E} and \mathscr{F} equal $\mathscr{C} \cap \mathscr{D}$.

Hint. One can first suppose that $g_{\mathscr{C}}$ *and* $g_{\mathscr{D}}$ *are prime to each other.*

Exercise 3. For a vector $\mathbf{c} \in \mathbb{F}_q^n$ denote by $\operatorname{Supp}(\mathbf{c})$ the set $\operatorname{Supp}(\mathbf{c}) \stackrel{\text{def}}{=} \{i \in \{1, \ldots, n\} \mid c_i \neq 0\}$. Given a linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $I \subseteq \{1, \ldots, n\}$, we denote by

$$\mathscr{C}_{|I} \stackrel{\text{def}}{=} \{ \mathbf{c} \in \mathscr{C} \mid \text{Supp}(\mathbf{c}) \subseteq I \}$$

For a positive integer $r \leq n$, the *r*-th generalised Hamming weight of \mathscr{C} is defined as

$$d_r(\mathscr{C}) \stackrel{\text{def}}{=} \min\{ \sharp I \mid I \subseteq \{1, \dots, n\} \text{ and } \dim \mathscr{C}_{|I} = r \}.$$

- 1. Prove that $d_1(\mathscr{C})$ is nothing but the minimum distance.
- 2. Let k be the dimension of \mathscr{C} , prove that

$$1 \leq d_1(\mathscr{C}) < d_2(\mathscr{C}) < \dots < d_k(\mathscr{C}) \leq n.$$

3. Prove that for an [n, k] code and any $r \leq k$, we have

$$d_r(\mathscr{C}) \leqslant n - k + r$$

4. Deduce the sequence of generalised Hamming weights for a code achieving Singleton bound.