MPRI Year 2017-18
Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 23

You have 1h30. Any document including personal lecture notes is authorized.
The exercises are independent.
You can answer either in French or in English.

Exercise 1 (Quizz). Answer the questions. You should justify your answers.

(1) Which of these codes do exist ? If they do not, explain why, if they do, explain how they can be construc-
ted.

(a) A [32,16,17] Reed—Solomon code over Fs, ;

Answer : Exists. Over F,, there exists [n,k,n — k + 1] RS codes for any n < ¢ and any
k< n.

(b) A [32,15,18] Generalised Reed-Solomon code over Fig;

Answer : Does not exist since the length should be less than or equal to the size of the
field.

(¢) A [7,5,3] binary code;
Answer : Does not exist, since it doesn’t satisfy the Hamming bound.
(d) A [64,34,> 6] alternant code over Fa.

Answer : Exists : subfield subcode of a [64, 59, 6] Generalized Reed-Solomon.

(2) Which of these statements is true ?
(a) There is no [n, k, d] code such that d >n —k+1;

Answer : True, Singleton bound.

(b) For all € > 0, for any sequence of binary codes whose relative distance sequence converges to § and
rate converges to R we have R > 1 — Hy(d) —e.

Answer : False, not every sequence of codes approaches Gilbert Varshamov bound.

(c) No [n,k,d], linear code satisfies
¢"Vol,(d,n) > ¢"

(where Vol,(d,n) denotes the number of elements in a Hamming ball of radius d in Fy).

Answer : False, Gilbert Varshamov bound asserts that such a code exists.
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There exists an [n, k, d] code over F, such that

k19— 1

d< :
nq qkf]_

Answer : True, actually, any code does, since it should satisfy Plotkin bound.

(3) How many binary cyclic codes of length 8 do there exist ?

Answer : We need to compute the number of divisors of 28 — 1 = ( — 1)8. This polynomial
has 9 divisors : (z — 1)%, i € {0,...,8}, Hence, there is 9 such codes.

(4) Suppose that one has a list decoding algorithm for any [32, 20, 11] Reed-Solomon code over F3s correcting
up to 10 errors.

(a)

(b)

Deduce the existence of a list decoder correcting up to 10 errors for any [32, k] Reed-Solomon code
with £ < 20.

Answer : One can apply the decoder to any subcode of the [32,20] RS code. In particular
to any sub—Reed—Solomon code.

For which values of k£ can one make sure the decoding is unique ?

Answer : As soon as 10 is less than half the minimum distance. i.e. as soon as the
minimum distance exceeds 21. Equivalently, this decoding is unique for any k£ < 12.

Exercise 2. Cyclic codes. You are allowed to skip any question and assume its result to be true in the
subsequent questions.

Let n be an odd integer. Let C C F5 be a linear cyclic code of dimension k. Let T" be the corresponding
cyclotomic class in Z/nZ and g¢ be the generating polynomial of C.

(1) What is the cardinality of T'? the degree of g 7

Answer : |T| =deggec =n—k.

(2) Let C' be the subset of C of all words of even weight.

(a)

(b)

Prove that C’ is a linear code.

Answer : It is the intersection of two binary linear codes : the code C' and the parity
code.

What is its dimension ?

Answer : Either C' = C, or dimC’ = dim C — 1. Indeed, C’ is the kernel of the linear
Fg — o

form n . Hence it is either equal to C' or has codimension 1
(xla 73:71) — Zi:l T

in C.

Prove that C’ is cyclic.

Answer : Both C and the parity code are cyclic. Hence their intersection is cyclic.



(d) Prove that the following conditions are equivalent :
i) c=0c"y
(i) 0 € T;
(i) go(1) =0.
Answer : Suppose (i);i.e. C = C’, then C is contained in the parity code, hence for any
m € C, we have mg +mq + -+ + my,_1 = 0. Regarding m € C as a polynomial, this is

equivalent to m(1) = 0. Thus, (z — 1) divides any element of C' (viewed as polynomials)
and in particular, (z — 1) divides g¢. Therefore, go(1) = 0. This proves (i) = ().

Clearly if (iii), i.e. if gc(1) = 0, then 1 = ¢ is a root of the code and hence 0 € T', which
proves (iii) = (it).

Finally, suppose (i7). Then 1 is a root of the code, hence any element m of C satisfies
m(1l) =mg+ -+ + myu—1 = 0. That is, m has even weight, which entails (7).

(e) If C' # ' describe the generating polynomial of C’ and its cyclotomic class.
Answer : g, = (z —1)gc and Ter = T U {0}.
(3) Prove that C contains the all-one codeword (1,1,...,1) if and only if 0 ¢ T'.

Answer : First note that

ltz+-+a" = [ @-¢)
1€(Z/nZ)\{0}

Therefore, £ 0 ¢ T, then go(x) = [[;ep(z — ¢*) divides 1 + 2 + --- + 2"~ . Conversely, if
l+z+---4+2"1 €, then 0 cannot be in 7.

(4) List the minimal 2 cyclotomic classes in Z/217Z (i.e. the smallest subsets stable by multiplication by 2).
Answer : {0}, {1,2,4,8,16,11}, {3,6,12}, {5,10,20,19,17,13}, {7,14}, {9,18,15}.

(5) How many binary cyclic codes of length 21 do there exist ?
Answer : There are 6 minimal cyclotomic classes, hence 26 = 64 cyclic codes.

(6) Prove the existence of a [21,12,> 5] binary cyclic code which contains the all-one codeword (you can
use Question 3).

Answer : The BCH code associated to the cyclotomic class {1,2,3,4,6,8,11,12,16}.

Let
21
Po(X,Y) =) pX'Y"
=0

be the weight enumerator of C. That is, p; is the number of words of weight 7 in C.



(7) Prove that the weight enumerator of such a [21,12,> 5] binary cyclic code is self reciprocal, i.e.
Po(X,Y) = Po(Y, X). In particular, prove that there is no codeword of weight w € {17,...,20}.

Answer : Since the code contains the all-one codeword ans is linear, it contains the com-
plement of any code. Thus for any codeword c of weight w the code also contains the word
¢+ (11 ... 1) of weight 21 — w. Therefore, for any nonnegative integer w, the number of
codewords of weight w equals that of codewirds of weight 21 —w. Hence the weight enumerator
is self reciprocal. Finally, since, the minimum distance is at least 5 there is no codeword of
weight 1, 2, 3, 4 and, by self-reciprocity, no codeword of weight 20, 19, 18, 17.

(8) Let

21 21
o Fy — Fy
(1, 2n) — (Tp, 1, ., Tp_1)

be the cyclic shift. Prove that if ¢ € F? satisfies o¢(c) = c for some £ > 1 and 07 (c) # cforall 1 < j < 4,
then :

(a) ¢ divides 21;

Answer : ! generates a subgroup of the group generated by o, namely, the stabilizer of
c. By Lagrange Theorem, ¢ divides the order of o.

(b) 2! divides the weight of c.

Answer : Let A C {0,...,20}, be the support of ¢, i.e. the set of indexes i such that
¢; = 1. The group generated by o % acts freely on A, hence A is a disjoint union of orbits of
this group and each orbit has cardinaly the order of ¢ 7 i.e. £. Thus £ divides the cardinality
of A, which equals the weight of c.

(9) Prove that
(a) ps;Pp10,p11,p13 are divisible by 21;

Answer : 8, 10, 11, 13 are prime to 21, hence no words of such weight have non trivial
stabilizers. Thus, for any such word, its orbit under the action of ¢ has cardinality 21.
Since the set of words of fixed weight is a disjoint union of orbits, we get the result.

(b) pe; P9, P12, p15 are divisible by 3;

Answer : Such words may be stabilized by ¢7, hence their orbit has cardinality either
21 or 3. Thus, any orbit has cardinality divisible by 3.

(¢) pr,p14 are divisible by 7.

Answer : Same reasoning.



