Mid-term exam, November 23

You have 1h30. Any document including personal lecture notes is authorized. The exercises are independent. You can answer either in French or in English.

Exercise 1 (Quizz). Answer the questions. You should justify your answers.

- (1) Which of these codes do exist? If they do not, explain why, if they do, explain how they can be constructed.
 - (a) A [32, 16, 17] Reed–Solomon code over \mathbb{F}_{32} ;
 - (b) A [32, 15, 18] Generalised Reed-Solomon code over \mathbb{F}_{19} ;
 - (c) A [7, 5, 3] binary code;
 - (d) A $[64, 34, \ge 6]$ alternant code over \mathbb{F}_2 .
- (2) Which of these statements is true?
 - (a) There is no [n, k, d] code such that d > n k + 1;
 - (b) For all $\epsilon > 0$, for any sequence of binary codes whose relative distance sequence converges to δ and rate converges to R we have $R \ge 1 H_2(\delta) \epsilon$.
 - (c) No $[n, k, d]_q$ linear code satisfies

$$q^k Vol_q(d,n) \ge q^n$$

(where $Vol_q(d, n)$ denotes the number of elements in a Hamming ball of radius d in \mathbb{F}_q^n).

(d) There exists an [n, k, d] code over \mathbb{F}_q such that

$$d \leqslant nq^{k-1} \frac{q-1}{q^k - 1} \cdot$$

- (3) How many binary cyclic codes of length 8 do there exist?
- (4) Suppose that one has a list decoding algorithm for any [32, 20, 11] Reed-Solomon code over \mathbb{F}_{32} correcting up to 10 errors.
 - (a) Deduce the existence of a list decoder correcting up to 10 errors for any [32, k] Reed-Solomon code with k < 20.
 - (b) For which values of k can one make sure the decoding is unique?

Turn the page please.

Exercise 2. Cyclic codes. You are allowed to skip any question and assume its result to be true in the subsequent questions.

Let n be an odd integer. Let $C \subseteq \mathbb{F}_2^n$ be a linear cyclic code of dimension k. Let T be the corresponding cyclotomic class in $\mathbb{Z}/n\mathbb{Z}$ and g_C be the generating polynomial of C.

- (1) What is the cardinality of T? the degree of g_C ?
- (2) Let C' be the subset of C of all words of even weight.
 - (a) Prove that C' is a linear code.
 - (b) What is its dimension?
 - (c) Prove that C' is cyclic.
 - (d) Prove that the following conditions are equivalent :
 - (i) C = C';
 - (ii) $0 \in T$;
 - (iii) $g_C(1) = 0.$

(e) If $C \neq C'$ describe the generating polynomial of C' and its cyclotomic class.

- (3) Prove that C contains the all-one codeword (1, 1, ..., 1) if and only if $0 \notin T$.
- (4) List the minimal 2 cyclotomic classes in $\mathbb{Z}/21\mathbb{Z}$ (i.e. the smallest subsets stable by multiplication by 2).
- (5) How many binary cyclic codes of length 21 do there exist?
- (6) Prove the existence of a $[21, 12, \ge 5]$ binary cyclic code which contains the all-one codeword (you can use Question 3).

Let

$$P_C(X,Y) = \sum_{i=0}^{21} p_i X^i Y^{n-i}$$

be the weight enumerator of C. That is, p_i is the number of words of weight i in C.

- (7) Prove that the weight enumerator of such a $[21, 12, \ge 5]$ binary cyclic code is self reciprocal, i.e. $P_C(X, Y) = P_C(Y, X)$. In particular, prove that there is no codeword of weight $w \in \{17, \ldots, 20\}$.
- (8) Let

$$\sigma: \left\{ \begin{array}{ccc} \mathbb{F}_q^{21} & \longrightarrow & \mathbb{F}_q^{21} \\ (x_1, \dots, x_n) & \longmapsto & (x_n, x_1, \dots, x_{n-1}) \end{array} \right\}$$

be the cyclic shift. Prove that if $c \in \mathbb{F}_q^{21}$ satisfies $\sigma^{\ell}(c) = c$ for some $\ell > 1$ and $\sigma^j(c) \neq c$ for all $1 \leq j < \ell$, then :

(a) ℓ divides 21;

 σ^{ℓ} generates a subgroup of the group generated by σ , namely, the *stabilizer* of c. By Lagrange Theorem, ℓ divides the order of σ .

(b) $\frac{21}{\ell}$ divides the weight of c.

(9) Prove that

- (a) $p_8, p_{10}, p_{11}, p_{13}$ are divisible by 21;
- (b) p_6, p_9, p_{12}, p_{15} are divisible by 3;
- (c) p_7, p_{14} are divisible by 7.