
MPRI Year 2016–17
Module 2.13.2 : Error correcting codes and applications to cryptography

Mid term exam, November 24 — Solutions

Exercise 1 (Quizz). Answer the questions. You should justify your answers.
(1) (a) A [7, 4, 3] Reed Solomon code over F8 does not exist since a Reed-Solomon is MDS, hence with this

length and dimension it should have minimum distance 4.
(b) A [9, 6, 4] Reed Solomon code over F9 exists since for any n 6 9 and any k 6 n there exists an

[n, k, n− k + 1] code.
(c) A [11, 9, 3] Reed Solomon code over F7 does not exist since the length of a Reed Solomon code over

F7 is upper bounded by 7.
(2) Such a Reed Solomon code has dimension 20 since a Reed Solomon code is MDS. Since F25 is an extension

of F5 of degree m = 2. The dimension of the subfield subcode is at least n −m(n − k) which gives a
subfield subcode of dimension at least 15.

(3) (a) Using a majority voting algorithm one can correct up to 4 errors.
(b) One can correct up to 9 erasures : as soon as we have one non erased digit we can recover the

complete codeword by copying the non erased digit.
(4) The algorithm presented in the lecture notes which is nothing but the syndrome decoder permits to

correct one error. It is not possible to correct 2 errors : the code is perfect and hence if one receives
y = c+ e where c is in the Hamming code and e has weight 2, then there is a codeword c′ different from
c in the Hamming code which is at distance 1 from y.

(5) Since the code is self dual, its dimension k satisfies :

k = dimC = dimC⊥ = 10− dimC.

Therefore, k = 5.
(6) No, the asymptotic Plotkin bound shows that sequence of codes whose asymptotic rate is nonzero have

an asymptotic δ < 0.8.
(7) The most difficult problem is (b) which has been proved to be NP-Hard. (a) and (c) can be solved by

Gaussian elimination and (d) can be solved using McWilliams identity.
(8) Answer (c), according to the lecture notes, there exists a code reaching or exceeding Gilbert Varshamov

bound
(9) Swapping to rows does not change the code since the code is the vector space spanned by the rows.

The way rows are sorted is not worth. Swapping columns may change the code (the obtained code is
isometric to C).

(10) No, correcting d = n − k + 1 errors is far beyond Johnson bound. In particular, given a word y ∈ Fn
q ,

then, one can check that the number of codewords at distance less than n− k + 1 is exponential in k.

Exercise 2. (1) Since there is no zero column, the minimum distance is > 1. Since there is no two column
which are equal, the minimum distance is > 2. Finally, any column has weight 3. Thus the sum of two
distinct columns has weight either 2 (if the columns match at two positions) or 4 or 6. Thus the sum of
3 distinct columns is always nonzero and hence, the minimum distance is > 3.

(2) (1 1 0 0 0 0 0 0 0 0 0 0 1 1).
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(3) It suffices to check that the sum of r distinct columns of H with r odd is never 0. For this sake we will
prove that the sum of an odd number of columns is odd. Note that the weight of a word of F6

2 modulo
2 equals the inner product of the word with u := (1 1 1 1 1 1 1). Any column of H has odd weight and
hence an inner product 1 with u. By linearity, the sum of an odd number of columns of H has also inner
product 1 with u and hence has odd weight.
According to the lecture notes, codewords are in correspondence with tuples of columns of a parity–check
matrix which sum to zero. Therefore, the code C has only even weights.

(4) Since v = (1 1 1 1 1 1 1 1 1 1 1 1) ∈ C, for any codeword c ∈ C of weight a there exists v − c which
has weight 12− a. Thus the number of codewords of weight a equals that of codewords of weight 12− a.
This is translated by the identity P (x, y) = P (y, x).

(5) Since C has dimension 6, it has 26 = 64 codewords, It contains the codewords (0 0 0 0 0 0 0 0 0 0 0 0 0 0)
and (1 1 1 1 1 1 1 1 1 1 1 1). Since P (x, y) = P (y, x) and since there is no codeword of weight 2 (the
minimum distance is 4), there is no codeword of weight 10 either. Then, the possible weights are 0, 4, 6, 8
and 12. Using again the property P (x, y) = P (y, x) we get that

P (x, y) = y12 + ax4y8 + bx6y6 + ax8y4 + x12.

Finally, since we know that b = 16 and that the code has 64 codewords we conclude that a = 23. That
is :

P (x, y) = y12 + 23x4y8 + 16x6y6 + 23x8y4 + x12.

Exercise 3 (Concatenated codes). (1) Each F2m–digit is represented by an n–tuple of elements of F2,
hence the new length is Nn.
For the dimension, consider the map{

C0 −→ FNn
2

(c1, . . . , cN ) 7−→ (φ(c1), . . . , φCN
)
.

Since φ is F2–linear and injective, then so is the above map and Co�Ci is the image of the above map.
Therefore, the dimension of Co�Ci equals the dimension of Co regarded as an F2–vector space. Thus
the dimension equals Km.
Finally, let a ∈ Co�Ci \ {0}. Then, there exists c ∈ Co \ {0} such that a = (φ(c1), . . . , φ(cn)). There are
at least D of the cj ’s which are nonzero. By definition of Ci for j such that cj 6= 0, the weight of φ(cj)
is at least d. Thus, the minimum distance is at least equal to Dd.

(2) Let a ∈ C⊥i \ {0} be a minimum weight codeword. Then, the word, (a, φ(0), . . . , φ(0)) is nonzero and is
in (Co�Ci)

⊥.
(3) According to the course, since random code are close to Gilbert Varshamov bound with a probability

tending to 1 when m tends to infinity, the code Ci has distance > n/4 with a probability tending to 1
when m tends to infinity. According to question (1), the parameters of the code Co�Ci are[

Nn,Km,>
Nn

8

]
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with a probability which tends to 1 when m tends to infinity.
(4) With the very same reasoning, let δ ∈ [0, 1/2] be such that R = 1−H2(δ), i.e.

δ = H−12 (1−R)

we get asymptotic parameters [
Nn,Km,>

δNn

2

]
2
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