Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the discrete Fourier Transform.

Let n be an integer and \mathbb{F}_q a finite field with q prime to n. Let $\mathbb{F}_q(\zeta_n)$ be a finite extension of \mathbb{F}_q containing all the n–th roots of 1, ζ_n denotes a primitive n–th root of 1. The discrete Fourier transform is defined as

$$\mathcal{F} : \mathbb{F}_q(\zeta_n)[X]/(X^n - 1) \to \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$$

$$f \mapsto \sum_{i=0}^{n-1} f(\zeta_n^{-i})X^i.$$

1. Prove that \mathcal{F} is an \mathbb{F}_q–linear map.

2. Prove that

$$\sum_{i=0}^{n-1} \zeta_n^{ij} = \begin{cases} n & \text{if } n|j \\ 0 & \text{else} \end{cases}.$$

3. Prove that \mathcal{F} is an isomorphism with inverse:

$$\mathcal{F}^{-1} : \mathbb{F}_q(\zeta_n)[X]/(X^n - 1) \to \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$$

$$f \mapsto \frac{1}{n} \sum_{i=0}^{n-1} f(\zeta_n^i)X^i.$$

Indication: it suffices to prove that $\mathcal{F}^{-1}(\mathcal{F}(X^i)) = X^i$ for all $i = 0, \ldots, n - 1$.

4. For all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$, denote by $f \ast g$ the coefficientwise product:

if $f = \sum_{i=0}^{n-1} f_iX^i$ and $g = \sum_{i=0}^{n-1} g_iX^i$, then $f \ast g = \sum_{i=0}^{n-1} f_ig_iX^i$.

Prove that for all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$, then

(i) $\mathcal{F}(fg) = \mathcal{F}(f) \ast \mathcal{F}(g)$;

(ii) $\mathcal{F}(f \ast g) = \frac{1}{n} \mathcal{F}(f) \mathcal{F}(g)$;

(iii) $\mathcal{F}^{-1}(fg) = n(\mathcal{F}^{-1}(f) \ast \mathcal{F}^{-1}(g))$;

(iv) $\mathcal{F}^{-1}(f \ast g) = \mathcal{F}^{-1}(f) \mathcal{F}^{-1}(g)$.
5. Let $g \in \mathbb{F}_q[X]/(X^n - 1)$ be a nonzero polynomial vanishing at $1, \zeta_n, \ldots, \zeta_n^{\delta - 2}$ (in particular, it vanishes at $\delta - 1$ roots of $X^n - 1$ with consecutive exponents). Prove that

$$\mathcal{F}^{-1}(g) \equiv X^{\delta - 1}h(X) \mod (X^n - 1)$$

for some $h \in \mathbb{F}_q[\zeta_n][X]$ where h is nonzero and has degree $\leq n - \delta$.

6. Using $\mathcal{F}(\mathcal{F}^{-1}(g))$ prove that g has at least δ nonzero coefficients.

7. Prove that if $g \in \mathbb{F}_q[X]/(X^n - 1)$ vanishes at $\zeta_n^a, \zeta_n^{a+1}, \ldots, \zeta_n^{a+\delta - 2}$, then g also has at least δ nonzero coefficients.

8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let \mathbb{F}_q be a finite field and n be an integer prime to q. Let $\mathbb{F}_q(\zeta_n)$ be the smallest extension of \mathbb{F}_q containing all the n–th roots of 1. Let $g \in \mathbb{F}_q[x]$ be a polynomial of degree $< n$ vanishing at $\zeta_n, \ldots, \zeta_n^{\delta - 1}$ for some positive integer δ. Let C be the BCH code with generating polynomial g. The BCH bound asserts that C has minimum distance at least equal to δ. We will prove that the code is t–correcting, where $2t + 1 = \delta$ if δ is odd and $2t + 1 = \delta - 1$ if δ is even.

Let $y \in \mathbb{F}_q^n$ be a word such that

$$y = c + e$$

where $c \in C$ and e is a word of weight f with $f \leq t$. In what follows, all the words of \mathbb{F}_q^n are canonically associated to polynomials in $\mathbb{F}_q[z]/(z^n - 1)$. For instance

$$e(z) = e_{i_1}z^{i_1} + \cdots + e_{i_f}z^{i_f}$$

where the e_{i_j}’s are nonzero elements of \mathbb{F}_q.

We introduce some notation and terminology.

- The **syndrome** polynomial $S \in \mathbb{F}_q(\zeta_n)[z]$:

 $$S(z) \equiv \sum_{i=1}^{2t} y(\zeta_n^i) z^{i-1}.$$

- The **error locator polynomial** $\sigma \in \mathbb{F}_q(\zeta_n)[z]$:

 $$\sigma(z) \equiv \prod_{j=1}^{f} (1 - \zeta_n^{i_j} z).$$

1. Among the polynomials S and σ, which one is known and which one is unknown from the point of view of the decoder?
2. Prove that
\[S(z) = \sum_{i=1}^{2t} e(\zeta_n^i) z^{i-1} \]
and hence depends only on the error vector \(e \).

3. Let \(\omega \) be the polynomial defined as
\[\omega(z) = \sum_{j=1}^{f} c_{ij} \zeta_n^{ij} \prod_{k \neq j}(1 - \zeta_n^{ik} z) \]
Prove that
(i) \(\deg \omega < t \);
(ii) \(S(z)\sigma(z) \equiv \omega(z) \mod (z^{2t}) \);
(iii) \(\sigma \) and \(\omega \) are prime to each other.

\textit{Indication: to prove that two polynomials are prime to each other, it is sufficient to prove that no root of one is a root of the other.}

4. Prove that if another pair \((\sigma', \omega') \) of polynomials satisfying \(\deg \sigma' \leq t \), \(\deg \omega' < t \) and \(S(z)\sigma'(z) \equiv \omega'(z) \mod (z^{2t}) \) then, there exists a polynomial \(H \in \mathbb{F}_q(\zeta_n)[z] \) such that \(\sigma' = H\sigma \) and \(\omega' = H\omega \).

5. Let \(h \) be the largest integer such that \(z^h | S(z) \). Prove that \(h < t \). Deduce that the greatest common divisor of \(S \) and \(z^{2t} \) has degree \(< t \).

6. By proceeding to the extended Euclidean algorithm to the pair \((S, z^{2t}) \), there exist sequences of polynomials \(P_0 = z^{2t}, P_1 = S, P_2, \ldots, P_r \) with \(\deg P_0 > \deg P_1 > \deg P_2 > \cdots \) where \(P_r \) is the GCD of \((S, z^{2t}) \) and \(A_0, A_1, \ldots, B_0, B_1, \ldots \) such that for all \(i \),
\[P_i = A_i z^{2t} + B_i S. \]
In particular, we have \(A_0 = B_1 = 1 \) and \(B_0 = A_1 = 0 \).
Prove the existence of a polynomial \(H \) and an index \(i \) such that \(P_i = H\omega \) and \(A_i = H\sigma \).
\textit{Indication: You need to analyze Euclid algorithm, and in particular to prove that for all \(i \geq 2 \), \(\deg B_i = \deg P_0 - \deg P_{i-1} \).}
\textit{Remark: Actually a deeper analysis of extends Euclid algorithm makes possible to prove that \(H \) has degree 0 and equals \(B_1(0) \).}

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

\textbf{Exercise 3.} The goal of the exercise is to observe the strong relations between BCH and Reed-Solomon codes. Let \(\mathbb{F}_q \) be a finite field and \(n \) be an integer prime to \(q \).
1. We first consider the case \(n = q - 1 \).

(a) Prove that if \(n = q - 1 \) then \(\mathbb{F}_q \) contains all the \(n \)-th roots of 1.

Let \(\zeta_n \) be such an \(n \)-th root, from now on the elements of \(\mathbb{F}_q \setminus \{0\} \) are denoted by
\[1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}. \]

(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic classes in general.

(c) Still in case where \(n = (q - 1) \), let \(C \) be a BCH whose set of roots contains
\(\zeta_n, \ldots, \zeta_n^{\delta-1} \). Prove that \(C \) has dimension \(n - \delta + 1 \). Then prove that \(C \) is MDS.

(d) Let \(C' \) be the generalised Reed–Solomon code \(C' \overset{\text{def}}{=} \text{GRS}_{\delta-1}(x, x) \) where \(x \overset{\text{def}}{=} (1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}) \). Recall that this code is defined as the image of the map
\[
\begin{align*}
\mathbb{F}_q[z]_{<\delta-1} & \longrightarrow \mathbb{F}_q^n \\
f & \longmapsto (f(1), \zeta_n f(\zeta_n), \zeta_n^2 f(\zeta_n^2), \ldots, \zeta_n^{n-1} f(\zeta_n^{n-1}))
\end{align*}
\]

Prove that \(C' = C'\perp \).

Indication : a nice basis for \(C' \) can be obtained from the images by the above map of the monomials \(1, z, z^2, \ldots, z^{\delta-2} \).

(e) Conclude that \(C \) is a generalised Reed Solomon (GRS in short) code.

2. Now, consider the general case : \(n \) is prime to \(q \) and \(C \) denotes the BCH code whose set of roots contains \(\zeta_n, \ldots, \zeta_n^{\delta-1} \). Prove that \(C \) is contained in the subfield subcode of a GRS code with minimum distance \(\delta \).

3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Compare its complexity with that of the algorithm presented in Exercise 2.
Solution to Exercise 1

1. For all \(f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n - 1) \) and all \(\lambda, \mu \in \mathbb{F}_q \),

\[
\mathcal{F}(\lambda f + \mu g) = \sum_{i=0}^{n-1} (\lambda f(\zeta_n^{-i}) + \mu g(\zeta_n^{-i}))X^i = \lambda \mathcal{F}(f) + \mu \mathcal{F}(g).
\]

2. If \(n \mid j \), then \(\zeta_n^{ij} = 1 \) for all integer \(i \) and hence

\[
\sum_{i=0}^{n-1} \zeta_n^{ij} = n.
\]

Else, then the classical formula on the sum of elements of geometric sequence yields

\[
\sum_{i=0}^{n-1} \zeta_n^{ij} = \frac{1 - \zeta_n^j}{1 - \zeta_n^1} = 0.
\]

3. Let \(j \in \{0, \ldots, n-1\} \). Then

\[
\mathcal{F}(X^j) = \sum_{i=0}^{n-1} \zeta_n^{-ij} X^i.
\]

Set

\[
\mathcal{G} : \left\{ \begin{array}{c}
\mathbb{F}_q(\zeta_n)[X]/(X^n - 1) \longrightarrow \mathbb{F}_q(\zeta_n)[X]/(X^n - 1) \\
f \longmapsto \frac{1}{n} \sum_{h=0}^{n-1} f(\zeta_n^h)X^h
\end{array} \right.
\]

\[
\mathcal{G} \circ \mathcal{F}(X^j) = \frac{1}{n} \sum_{h=0}^{n-1} \sum_{i=0}^{n-1} \zeta_n^{-ij} \zeta_n^{hi} X^h
\]

\[
= \frac{1}{n} \sum_{h=0}^{n-1} \left(\sum_{i=0}^{n-1} \zeta_n^{i(h-j)} \right) X^h.
\]

And from Question 2, \(\sum_{i=0}^{n-1} \zeta_n^{i(h-j)} = 0 \) if \(h \neq j \) and \(n \) else. Thus,

\[
\mathcal{G} \circ \mathcal{F}(X^j) = X^j.
\]

4. (4i) Obvious, since for all \(i \), \(f g(\zeta_n^{-i}) = f(\zeta_n^{-i})g(\zeta_n^{-i}) \). By the very same manner, one proves (4ii). (4ii) can be obtained from (4i) and (4iii) as follows

\[
\mathcal{F}(f \star g) = \mathcal{F}(\mathcal{F}^{-1}(\mathcal{F}(f)) \star \mathcal{F}^{-1}(\mathcal{F}(g)))
\]

\[
= \mathcal{F}\left(\frac{1}{n} \mathcal{F}^{-1}(\mathcal{F}(f)\mathcal{F}(g)) \right)
\]

\[
= \frac{1}{n} \mathcal{F}(f)\mathcal{F}(g),
\]

where the second equality is a consequence of (4i). Identity (4iv) can be obtained by the very same manner by exchanging \(\mathcal{F} \) and \(\mathcal{F}^{-1} \).
5. By the very definition of F^{-1}, the $\delta - 1$ first coefficients of $F^{-1}(g)$ are zero. This yields the result.

6. From (4i) and from the previous question, we get:

$$F(F^{-1}(g)) = F(X^\delta h(X)) = F(X^\delta) \ast F(h(X))$$

Now, observe that $F(X^\delta) = \sum i \zeta_i^{-\delta} X^i$ and hence has only nonzero coefficients. Therefore, the i-th coefficient of $F(F^{-1}(g)) = F(X^\delta) \ast F(h(X))$ is zero if and only if that of $F(h)$ is zero. Assume now that $F(F^{-1}(g))$ has strictly less than δ nonzero coefficients, which means that it has strictly more than $n - \delta$ zero coefficients. This entails that $F(h)$ has strictly more than $n - \delta$ zero coefficients. By definition of F, it means that h vanishes at strictly more than $n - \delta$ distinct elements among the $\zeta_i^{-\delta}$’s which cannot happen since h is nonzero and has degree $\leq n - \delta$ and hence has at most $n - \delta$ distinct roots.

7. In the general case, use the cyclic structure and observe that in this situation,

$$X^{n-a}F^{-1}(g) = X^\delta h(x)$$

for some polynomial h of degree $\leq n - \delta$ and hence

$$F^{-1}(g) = X^{a+\delta} h(X).$$

The rest of the proof is exactly as in the previous question.

8. A nonzero polynomial vanishing at $\delta - 1$ roots with consecutive exponents has at least δ nonzero coefficients. This provides another proof of the BCH bound.

Solution to Exercise 2

1. S is known and σ is unknown.

2. We have,

$$S(z) = \sum_{i=1}^{2t} y(\zeta_i^n) z^{i-1} = \sum_{i=1}^{2t} c(\zeta_i^n) z^{i-1} + \sum_{i=1}^{2t} e(\zeta_i^n) z^{i-1}. $$

Then, by the very definition of the BCH code C, the term $\sum_{i=1}^{2t} c(\zeta_i^n) z^{i-1}$ is zero.

3. (i) Clearly, ω has degree $< f$ and since $f \leq t$, we get the result.
(ii) We have
\[
\omega(z) = \sum_{j=1}^{f} e_{ij} \zeta_{ij}^j \prod_{k \neq j} (1 - \zeta_{ik}^j z)
\]
\[
= \sigma(z) \sum_{j=1}^{f} e_{ij} \zeta_{ij}^j \frac{1}{1 - \zeta_{ij}^j z}
\]
\[
= \sigma(z) \sum_{j=1}^{f} e_{ij} \zeta_{ij}^j \sum_{k=0}^{+\infty} \zeta_{ij}^k z^k
\]
\[
= \sigma(z) \sum_{k=0}^{+\infty} z^k \left(\sum_{j=1}^{f} e_{ij} \zeta_{ij}^j (k+1) \right)
\]
\[
= \sigma(z) \sum_{k=0}^{+\infty} z^k e(\zeta_n^{k+1})
\]
\[
= \sigma(z) \sum_{\ell=1}^{+\infty} z^{\ell-1} e(\zeta_n^{\ell})
\]
\[
\equiv \sigma(z) S(z) \mod (z^{2t}).
\]

(iii) The polynomial \(\sigma \) is separable with \(f \) distinct roots which are \(\zeta_n^{-i_1}, \ldots, \zeta_n^{-i_f} \). Now, let \(1 \leq \ell \leq f \).
\[
\omega(\zeta_n^{-i_\ell}) = \sum_{j=1}^{f} e_{ij} \zeta_{ij}^j \prod_{k \neq j} (1 - \zeta_{ik}^j \zeta_n^{-i_\ell}).
\]
and the product \(\prod_{k \neq j} (1 - \zeta_{ik}^j \zeta_n^{-i_\ell}) \) is zero unless \(j = \ell \). Therefore,
\[
\omega(\zeta_n^{-i_\ell}) = e_{i_\ell} \zeta_{i_\ell}^\ell \prod_{k \neq \ell} (1 - \zeta_{ik}^j \zeta_n^{-i_\ell})
\]
which is nonzero. Thus no root of \(\sigma \) cancels \(\omega \); hence the two polynomials are prime to each other.

4. We have,
\[
\omega(z) \sigma'(z) \equiv S(z) \sigma(z) \sigma'(z) \equiv \omega'(z) \sigma(z) \mod (z^{2t})
\]
Therefore, \(z^{2t} | \omega(z) \sigma'(z) - \omega'(z) \sigma(z) \). But the polynomial \(\omega \sigma' - \omega' \sigma \) has degree < 2t and hence is zero. Thus we have,
\[
\omega(z) \sigma'(z) = \omega'(z) \sigma(z)
\]
and since \(\sigma \) and \(\omega \) are prime to each other, we get \(\sigma | \sigma' \) which yields the existence of a polynomial \(H \) such that \(\sigma' = H \sigma \). Next one deduce easily that \(\omega' = H \omega \).
5. The coefficients of S are obtained by evaluating e which has degree $f \leq t$. Therefore, the number of roots of e is less than or equal to t. Thus, $h < t$.

6. From Question 5, the GCD P_r of S and z^{2t} equals up to multiplication by a nonzero scalar) z^h for some $h < t$. Consequently, in the sequence $(P_i)_i$ of polynomials given by the Euclidian algorithm, there exists an index i such that $\deg P_{i-1} \geq t$ and $\deg P_i < t$.

Set $\omega \overset{\text{def}}{=} P_i$. By construction, we have $\deg \omega < t$, moreover, the i–th step of Euclid Algorithm yields

$$\omega(z) \equiv B_i(z)S(z) \mod (z^{2t})$$

To conclude by applying the result of Question 4, we need to prove that $\deg A_i \leq t$. For this sake, we proceed to a deeper analysis of Euclid algorithm. Remind that there exists a sequence of quotients Q_1, Q_2, \ldots such that for all $i \geq 2$,

$$P_i = Q_{i-1}P_{i-1} - P_{i-2} \quad (1)$$
$$B_i = Q_{i-1}B_{i-1} - B_{i-2}. \quad (2)$$

By induction, one proves that the sequence of degrees $\deg B_i$ is increasing for $i \geq 1$. Indeed, since $B_2 = Q_1B_1$ (remind that $B_0 = 0$), we clearly have $\deg B_2 \leq \deg B_1$. Then, by induction, for all $i \geq 2$, we assume that $\deg B_{i-1} \geq \deg B_{i-2}$ and hence from (2), we get

$$\deg(B_i) = \deg Q_{i-1} + \deg(B_{i-1}) \geq \deg B_{i-1} \quad (3)$$

since Q_i is nonzero (it is a quotient in an Euclidian division).

Now, as specified in (1), for all $i \geq 2$, we have the Euclidian division $P_{i-2} = Q_{i-1}P_{i-1} + P_i$ where P_i is the remainder. By the very definition of Euclidian division, we have

$$\forall i \geq 2, \quad \deg P_{i-2} = \deg(Q_{i-1}P_{i-1}) = \deg Q_{i-1} + \deg(P_{i-1}) \quad (4)$$

and, putting (3) and (4) together, we get

$$\forall i \geq 2, \quad \deg B_i = \deg B_{i-1} + \deg P_{i-2} - \deg P_{i-1}. \quad (5)$$

Finally, using (2) again, and since $B_1 = 0$, by induction, (5) leads to

$$\forall i \geq 2, \quad \deg B_i = \deg P_0 - \deg P_{i-1} = 2t - \deg P_{i-1}.$$

Next, by definition of i we have $\deg P_{i-1} \geq t$ which leads to $\deg B_i \leq t$. Thus, from Question 4 we get the result.

7. Step 1. Compute S from the received word y.

Step 2. Proceed to Euclid Algorithm to compute P_i and B_i.

Step 3. Compute the GCD H of P_i and B_i and set $\omega = \frac{P_i}{H}$, $\sigma = \frac{B_i}{H}$ (actually a deeper analysis of Euclidian Algorithm would lead to $\deg H = 1$).
Step 4. Compute the inverse of the roots of σ in $\mathbb{F}_q(\zeta_n)$. Call them $\zeta_{i_1}^n, \ldots, \zeta_{i_f}^n$.

Step 5. Compute the vector e defined as $e_k = 0$ for all $k \notin \{i_1, \ldots, i_f\}$ and

$$\forall j \in \{1, \ldots, f\}, \quad e_{i_j} \overset{\text{def}}{=} \frac{\omega(\zeta_n^{-i_j})\zeta_n^{-i_j}}{\prod_{k \neq j}(1 - \zeta_n^{i_k}\zeta_n^{-i_j})}.$$

Step 6. Return $y - e$.

The most expensive part of the algorithm is Euclid algorithm whose complexity is $O(t^2)$ operations in $\mathbb{F}_q(\zeta_n)$.

Solution to Exercise 3

1. (a) It is well-known in finite field theory that

$$z^{q-1} - 1 = \prod_{a \in \mathbb{F}_q^*} (z - a).$$

(b) Cyclotomic classes are any subset of $\mathbb{Z}/(q - 1)\mathbb{Z}$ and minimal cyclotomic classes are subsets of cardinality 1.

(c) Let g be the polynomial $g(z) \overset{\text{def}}{=} \prod_{i=1}^{\delta-1}(z - \zeta_n^i)$. Since the ζ_n^i are all in \mathbb{F}_q, $g \in \mathbb{F}_q[z]$ and is a generating polynomial of the code. Since its degree is $\delta - 1$ its dimension is $n - \delta + 1$ and by the BCH bound its minimum distance is $\geq \delta$. Thanks to Singleton bound we see that its distance is actually equal to δ and hence it is an MDS code.

(d) From the basis of polynomials $1, z, z^2, \ldots, z^{\delta-2}$, the code C' has a basis given by

$$v_i \overset{\text{def}}{=} (1, \zeta_n^{i+1}, \zeta_n^{2i+2}, \ldots, \zeta_n^{i(n-1)+(n-1)})$$

for $i \in \{0, \ldots, \delta - 2\}$. Let $c \in C$, then the inner product $\langle c, v_i \rangle$ is nothing but $c(\zeta_n^{i+1})$ regarding c as a polynomial. Then, since, by definition of C, we know that $c(\zeta_n^j) = 0$ for all $j \in \{1, \ldots, \delta - 1\}$, which proves that

$$\forall i \in \{0, \ldots, \delta - 2\}, \quad \langle c, v_i \rangle = 0.$$

Therefore, $C' \subset C^\perp$. Next, since C' has dimension $\delta - 1$ and C has dimension $n - \delta + 1$, we conclude that

$$C' = C^\perp.$$

(e) The dual of a GRS code is a GRS code. Hence C is GRS code.

2. Consider the BCH code D over $\mathbb{F}_q(\zeta_n)$ (and not \mathbb{F}_q) associated to the roots $\zeta_n, \ldots, \zeta_n^{\delta-1}$. The code C is contained in $D|_{\mathbb{F}_q}$. Moreover, from the previous question, D is a GRS code.

3. The code D considered in the previous question has minimum distance δ. Thus an approach to correct up to $\lfloor \frac{\delta - 1}{2} \rfloor$ errors would be to proceed as follows:
- Given a received word $y = c + e$ where $c \in C$ and $w_H(e) \leq \frac{\delta - 1}{2}$. Solve the decoding problem in D using Berlekamp Welch algorithm.

By uniqueness of the solution of this decoding problem in C and in D, we know that the solution is the closest element in C to y and hence is c.

Compared to the algorithm presented in Exercise 2 whose complexity was quadratic in δ, the present algorithm includes a part of linear algebra which will be cubic.