
EXERCISES N◦ 3, MDS AND REED–SOLOMON CODES, WITH
SOLUTIONS

Exercise 1 (Singleton bound for nonlinear codes). Let C ⊂ Fnq be a nonlinear code of
minimum distance d. Prove that

|C| 6 qn−d+1.

Indication: use the restriction to C of the map
{
Fnq −→ Fn−d+1

q

x 7−→ (xd, . . . , xn)
.

Exercise 2 (Extended Reed–Solomon Codes). Let α def
= (α1, . . . , αq) ∈ Fnq be such that the

αi’s are pairwise distinct. That is, the set of elements of Fq is {α1, . . . , αq}. Let k 6 q be
an integer and Fq[z]<k be the space of polynomials of degree strictly less than k. For all f ∈
Fq[z]<k, we define ev∞,k−1(f), the evaluation at infinity of f as ev∞,k−1(f) := (zk−1f(1/z))z=0

Let ERSk(α) be the Extended Reed Solomon (ERS) code defined as the image of the linear
map {

Fq[z]<k −→ Fq+1
q

f 7−→ (f(α1), . . . , f(αq), ev∞,k−1(f))
.

(1) Prove that for all f ∈ Fq[z]<k, ev∞,k−1(f) is the coefficient fk−1 of xk−1 in f . In
particular, it is 0 if and only if f has degree < k − 1.

(2) Prove that ERSk(α) is MDS.
(3) Prove that the dual of an ERS code is an ERS code.

Exercise 3 (Higher weights). Let C ⊆ Fnq be an [n, k, d]q code. Let I = {i1, . . . , ir} ⊆
{1, . . . , n}. Recall that the shortening of C at I is defined as

SI (C)
def
= {(ci1 , . . . , cir) | c ∈ C, such that ∀i /∈ I, ci = 0} .

Let 1 6 r 6 k, we denote the r–th generalised Hamming weight dr of C as the minimal size
of a subset I ⊆ {1, . . . , n} such that the subcode of words whose support is contained in I
has dimension r. That is,

dr
def
= min

{
|I|
∣∣ dimSI (C) = r

}
.

(1) Prove that d1 is nothing but the minimum distance d of C.
(2) Prove that the sequence d1, d2, . . . , dk is strictly increasing.
(3) Prove that if C is an [n, k, d] Reed-Solomon code, then for all i 6 k,

di = n− k + i.

(4) Prove that the previous result actually holds for every MDS code.
Indication : First prove that every shortening of an MDS code is MDS.

Exercise 4 (Hamming isometries). The goal of this exercise is to classify the set of Hamming
isometries of Fnq , that is the set of maps ϕ : Fnq → Fnq such that

∀x, y ∈ Fnq , dH(ϕ(x), ϕ(y)) = dH(x, y),

where dH denotes the Hamming distance.
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(1) Prove that isometries are bijective and that the set Isom(Fnq ) of isometries of Fnq is
a group for the composition law.

(2) We first focus on linear isometries of Fnq . Let Aut(Fnq ) be the subgroup of Isom(Fnq )
of linear isometries of Fnq . These isometries are represented by n × n matrices. Let
Dn be the group of invertible diagonal matrices and Sn be the group of permutation
matrices.
(a) Prove that Dn and Sn are subgroups of Aut(Fnq ).
(b) Prove that Aut(Fnq ) is spanned by Dn and Sn.

More precisely (stop the question here if you don’t know anything about the
semi-direct product), prove that

Aut(Fnq ) = Dn oSn

where the action of Sn on Dn is the action by permutation on the diagonal
coefficients.

(3) Let u ∈ Fnq , prove that the translation by u :

tu :

{
Fnq −→ Fnq
x 7−→ x+ u

is an isometry.
(4) Let Isom0(Fnq ) be the subgroup of Isom(Fnq ) of isometries sending 0 to 0. Prove that

every isometry of Fnq is the composition of a translation and an element of Isom0(Fnq ).
(5) Let Pn be the group of maps of the form

φ :

{
Fnq −→ Fnq

(x1, . . . , xn) 7−→ (φ1(x1), . . . , φn(xn))
,

where, for all i ∈ {1, . . . , n}, the map φi is a permutation of Fq which fixes 0.
(a) Prove that Pn is a subgroup of Isom0(Fnq ).
(b) Prove that Isom0(Fnq ) is generated by Pn and Sn.

Indication: Prove that a weight 1 codeword is sent on a weight 1 one and then
reason by induction on higher weights.

More precisely (same remark about the semi-direct product) that
Isom0(Fnq ) = Pn oSn,

and describe the corresponding action of Sn on Pn.
(6) Give the description of a general Hamming isometry.



Solution to Exercise 1 Let ϕ be the map

ϕ :

{
C −→ Fn−d+1

q

x 7−→ (xd, . . . , xn)
.

We will prove that φ is injective. Be careful that, since C is nonlinear, one cannot use any
linearity argument. We need to prove injectivity by by classical arguments: let c, c′ ∈ C such
that ϕ(c) = ϕ(c′). Then, by definition of ϕ, we get

dH(c, c
′) 6 d− 1.

Hence, by definition of the minimum distance for nonlinear codes1, we get c = c′ and hence
ϕ is injective, which proves that

|C| 6 |Fn−d+1
q | = qn−d+1.

Solution to Exercise 2
(1) Let f ∈ Fq[z]<k:

f(z) = f0 + f1z + · · ·+ fk−1z
k,

with f0, f1, . . . fk−1 ∈ Fq (possibly zero). Then, a brief computation gives

zk−1f(1/z) = fk−1 + fk−2z + · · ·+ f1z
k−2 + f0z

k−1

which yields the result.
(2) Such a code has length n

def
= q + 1. We need to compute the minimum distance of

this code. Let c ∈ ERSk(α) \ {0}, if c corresponds to a polynomial of degree k − 1,
then, since it has at most k − 1 distinct roots among the elements of Fq and that,
from the previous question, ev∞,k−1(f) 6= 0, we get

n− wH(c) 6 k − 1 =⇒ wH(c) > n− k + 1.

Now, if deg f 6 k − 2, then it has less than k − 2 distinct roots and vanishes at
infinity, which yields also

n− wH(c) 6 k − 1 =⇒ wH(c) > n− k + 1.

Thus, the minimum distance of C is bounded below by n−k+1 and this lower bound
is reached thanks to the Singleton bound. Thus, ERS codes are MDS.

(3) We will prove that ERSq+1−k(α) = ERSk(α)
⊥. Notice that the sum of the dimen-

sions of these codes equals their length, hence to prove their duality, it is enough
to prove that one is included in the other’s dual, or equivalently to prove that any
element of ERSk(α) is orthogonal to any element of ERSq+1−k(α).

The code RSk(α) is a full support Reed-Solomon code and it is known that its
dual is RSq−k(α) (a complete proof of that fact is given after the present exercise’s
solution). From the duality for Reed–Solomon codes, one gets easily the orthogonality
of c ∈ ERSk(α) and c′ ∈ ERSq+1−k(α), corresponding respectively to polynomials f
and g, then

〈c, c′〉 =

(
q∑
i=1

f(αi)g(αi)

)
+ ev∞,k−1(f)ev∞,q−k(g).

1 d
def
= minx6=y∈C{dH(x, y)}.



Notice that the term between parentheses is the scalar product of two words in
RSk(α) and RSq+1−k(α), which by duality is zero if either c ∈ RSk−1(α) or c′ ∈
RSq−k(α). The second term (the product of evaluations at infinity) also vanishes, by
definition of evaluation at infinity if either deg f < k − 1 or deg g < q + 1 − k, that
is if either c ∈ RSk−1(α) or c′ ∈ RSq−k(α). Thus, we have

〈c, c′〉 = 0, if c ∈ RSk−1(α) or c′ ∈ RSq−k(α).

By linearity, to conclude we only have to prove the orthogonality of c, c′ corresponding
respectively to the polynomials zk−1 and zq−k. Indeed, every codeword of RSk(α)
is a linear combination of c and a codeword of RSk−1(α) and every codeword of
RSq+1−k(α) is a linear combination of c′ and a word of RSq−k(α) and one could
conclude by the bilinearity of the scalar product. Thus let us prove that 〈c, c′〉 = 0.

〈c, c′〉 =

(
q∑
i=1

αk−1i αq−ki

)
+ ev∞,k−1(z

k−1)ev∞,q−k(z
q−k)(1)

=

(
q∑
i=1

αq−1i

)
+ 1(2)

=

∑
α∈Fq

αq−1

 .(3)

Finally, recall that

∀α ∈ Fq, αq−1 =
{

1 if α 6= 0
0 if α = 0

Thus, ∑
α∈Fq

αq−1 = q − 1 = −1

since q ≡ 0 modulo the characteristic of the field. Back to (3), we get

〈c, c′〉 = −1 + 1 = 0.

This concludes the proof.
Solution to exercise 3

(1) Let c be a minimum weight codeword. Then, its support has d elements i1, . . . , id. If
there exists another codeword c′ ∈ C non collinear to c and supported by i1, . . . , id,
then, by eliminiation, one could construct a linear combination of c, c′ which is sup-
ported by i2, . . . , id. This would give a nonzero codeword of C of weight smaller
than the minimum distance, which contradicts the existence of c′. Therefore, the
subspace of C of vectors supported by i1, . . . , id has dimension 1 and is spanned by
c. Thus, d1 6 d. Conversely, by definition of the minimum distance, for every subset
I ⊆ {1, . . . , n} with |I| < d, the subspace of codewords of C supported by I is {0},
thus d1 > d, which concludes the proof.



(2) We prove that for all i > 1, di < di+1. Let I ⊆ {1, . . . , n} with |I| = i + 1 and
such that SI (C) has dimension i+ 1. Then, by Gaussian elimination, there exists a
subcode of SI (C) supported by I ′  I and of dimension i. Thus,

di 6 |I ′| < di+1.

(3) Let C = RSk(α) for some support α = (α1, . . . , αn), where the αi’s are pairwise
distinct elements of Fq. Since the minimum distance of an RS code is n− k + 1, the
result is true for i = 1. By induction, assume the result to be true for i > 1, that is
di = n−k+i. From the previous question, since the sequence (di) is strictly increasing
then di+1 > n − k + i + 1. Now, consider a set I = {i1, . . . , in−k+i+1} ⊆ {1, . . . , n}
and consider SI (C), which corresponds to the evaluation of the space polynomials
vanishing at αj for j ∈ {1, . . . , n} \ I, that is, the polynomials of the form(∏

i/∈I

(z − αi)

)
g(z)

with deg g < k − (n− |I|). The corresponding space has dimension

k − (n− |I|) = i+ 1.

Therefore, di+1 = n− k + i+ 1.
(4) Let C be an MDS code of dimension k. By the previous questions, we have d1 = d =

n − k + 1. Since the sequence of generalised weights, is strictly increasing, then we
have for all i,

(4) di > n− k + i.

Finally, let I ⊂ {1, . . . , n} with |I| = n− k + i. By Gaussian elimination, the space
of codewords supported by I has dimension at least

k − (n− |I|) = k − (n− (n− k + i)) = i.

which entails di 6 |I| and hence, thanks to (4), we get the result.
Solution to Exercise 4

(1) Let x, y ∈ Fnq such that ϕ(x) = ϕ(y), then dH(ϕ(x), ϕ(y)) = 0 and hence dH(x, y) = 0,
which entails x = y. Thus, ϕ is injective and since Fnq is a finite set, the map is
surjective too. Thus, it is bijective.

To prove that isometries form a group with respect to the composition, we need
that the composition of isometries is an isometry and that the inverse map of an
isometry is an isometry too. Both assertions are direct consequences of the definition
of an isometry.

(2) (a) Notice that a linear isometry is a linear map which preserves the distance, which
for linear maps is equivalent with preserving the Hamming weight. It is elemen-
tary to prove that the elements of the groups Dn and Sn preserve the weight.

(b) Such an automorphism sends 0 to 0, then let e1, . . . , en be the canonical basis of
Fnq , these words have weight 1 and hence their images by ϕ also have weight 1.
Moreover, since for all i 6= j, dH(ei, ej) = 2, then

(5) dH(ϕ(ei), ϕ(ej)) = 2.



Therefore, one sees easily that for all i ∈ {1, . . . , n}, there exists σ(i) ∈ {1, . . . , n}
and λi ∈ F×q such that

ϕ(ei) = λieσ(i)

and, from (5), the σ(i)’s are pairwise distinct. Thus, the map σ is a permutation
in Sn. Now, let D be the linear map represented by the invertible diagonal
matrix Diag(λ1, . . . , λn), then the map D ◦ σ coincides with ϕ on the canonical
basis. Since they are both linear and coincide on a basis, then they are equal.
Thus, every element of Aut(Fnq ) is a composition of an element of Dn and an
element of Sn.
To conclude (if you like semi-direct products), one can check that Dn is a normal
subgroup of Aut(Fnq ) (it suffices to check that the conjugation of a diagonal
matrix by a permutation matrix is diagonal) there is a short exact sequence

{1} −→ Dn −→ Aut(Fnq ) −→ Sn −→ {1}

This sequence splits: a section Sn → Aut(Fnq ) is given by the natural injection.
Thus the automorphism group is a semi-direct product of the left and right
operands of the short exact sequence.

(3) Let x, y ∈ Fq. Then
dH(x+ u, y + u) = wH(x+ u− (y + u)) = wH(x, y) = dH(x, y).

(4) Given an isometry ϕ, then t−ϕ(0) ◦ ϕ fixes 0. Thus

ϕ = tϕ(0) ◦ (t−ϕ(0) ◦ ϕ)
where t−ϕ(0) ◦ ϕ ∈ Isom0(Fnq ).

(5) (a) Let φ ∈ Pn. One sees easily that φ fixes 0. Then, let x, y ∈ Fnq . The distance
dH(φ(x), φ(y)) is the number of positions i at which φi(xi) 6= phii(yi). Since the
φi’s are permutations, these positions are the positions at which xi 6= yi whose
number is dH(x, y). Thus, φ is an isometry fixing 0.

(b) Let ϕ ∈ Isom0(Fnq ). Then, as in the linear case, we consider the vectors e1, . . . , en
of the canonical basis. Since their distance to 0 is 1 and the distance between
two distinct such words is 2, then so does their images. Thus, as in the linear
case, there exists a permutation σ ∈ Sn and λ1, . . . , λn ∈ F×q such that

∀i ∈ {1, . . . , n}, ϕ(ei) = λieσ(i).

Moreover, for i ∈ {1, . . . , n}, and for α ∈ Fq \ {0, 1},
dH(ei, αei) = 1,

thus, ϕ(αei) has distance 1 with ϕ(ei) = λieσ(i). By this manner we obtain the
existence of a permutation φi of Fq fixing 0 and such that

∀α ∈ Fq, ϕ(αei) = φi(α)eσ(i).

Set φ def
= (φ1, . . . , φn) ∈ Pn. Then, ϕ and φ ◦ σ coincide on the set of words

of weight 0 and 1. To prove their equality, we prove that ϕ and φ ◦ σ on the
set of words of weight k for all k. For that, we reason by induction on k. The
result holds for k = 0, 1 (it is what we just proved). Let k > 1, assume the



result to be true for all weights 6 k. Let x ∈ Fnq of weight k + 1. Its support is
{i1, . . . , ik+1} ⊆ {1, . . . , n} and its decomposition in the canonical basis is:

x = xi1ei1 + · · ·+ xik+1
eik+1

Set y def
= xi1ei1 + · · ·+ xikeik such that

x = y + xik+1
eik+1

.

We have
(i) dH(x, 0) = k + 1;
(ii) dH(x, y) = 1;
(iii) dH(x, xik+1

eik+1
) = k;

(iv) dH(y, xik+1
eik+1

) = k + 1.
Using the above distances and the induction hypothesis, we prove that

(I) dH(ϕ(x), 0) = k + 1;
(II) dH(ϕ(x), φσ(y)) = 1;
(III) dH(ϕ(x), φik+1

(xik+1
)eσ(ik+1)) = k;

(IV) dH(φσ(y), φik+1
(xik+1

)eσ(ik+1)) = k + 1.
And one checks easily, that the only possible value for ϕ(x) = φσ(x).
Thus every element of Isom0(Fnq ) can be written as the composition φσ with
φ ∈ Pn and σ ∈ Sn. The semi-direct product is obtained by proving that Pn is
a normal subgroup of Isom0(Fnq ). Then the short exact sequence:

{1} −→ Pn −→ Isom0(Fnq ) −→ Sn −→ {1}
splits, using the same section as in the linear case and this yields the structure
of semi-direct product.

(6) Every isometry can be written as the composition t◦φ◦σ with t a translation, φ ∈ Pn

and σ ∈ Sn.


