Exercises n° 4, Cyclic and BCH codes

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the
discrete Fourier Transform.

Let n be an integer and F, a finite field with ¢ prime to n. Let F,({,) be a finite extension
of IF, containing all the n—th roots of 1, (,, denotes a primitive n-th root of 1. The discrete
Fourier transform is defined as
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1. Prove that F is an F,-linear map.

2. Prove that
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3. Prove that F is an isomorphism with inverse:
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Indication: it suffices to prove that F~'(F(X")) = X" for alli=0,...,n — 1.

4. For all f,g € Fy(¢,)[X]/(X™ —1), denote by f % g the coeflicientwise product:
n—1 n—1 n—1
if f= ZfZX’ and g = ZgiXi, then fxg = ZfigiXi.
=0 i=0 i=0

Prove that for all f, g € F,((,)[X]/(X™ — 1), then

(i) F(fg) = F(f) F(g);

(it) F(f*g) = 3 F(f)F(9);

(i) F=1(fg) =n(FH(f) * F(9));
(iv) F7H(f*g) = FH(HF9);



5. Let g € F,[X]/(X™ — 1) be a nonzero polynomial vanishing at 1,(,,...,¢2~2 (in par-
ticular, it vanishes at § — 1 roots of X™ — 1 with consecutive exponents). Prove that

FHg)=X"""h(X) mod (X" —1)
for some h € F,((,)[X] where h is nonzero and has degree < n — 4.

6. Using F(F*(g)) prove that g has at least d nonzero coefficients.

7. Prove that of g € F,[X]/(X™ — 1) vanishes at %, ¢*™,... (%72 then g also has at
least 0 nonzero coefficients.

8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let F, be a finite field and n be an
integer prime to q. Let F ((,,) be the smallest extension of I, containing all the n—th roots
of 1. Let g € F [z] be a polynomial of degree < n vanishing at ¢,, ..., ¢3! for some positive
integer §. Let C' be the BCH code with generating polynomial g. The BCH bound asserts
that C' has minimum distance at least equal to §. We will prove that the code is t—correcting,
where 2t +1 =0 if  is odd and 2t +1 =9 — 1 if § is even.
Let y € F) be a word such that
y=c+e

where ¢ € C and e is a word of weight f with f <. In what follows, all the words of Fy are
canonically associated to polynomials in F,[z|/(2" — 1). For instance

e(z) = e 2" + -+ e, 2"

where the e;,’s are nonzero elements of IF,.
We introduce some notation and terminology.

e The syndrome polynomial S € F,(¢,)[z]:

e The error locator polynomial o € F,((,)[z]

f
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1. Among the polynomials S and ¢, which one is known and which one is unknown from
the point of view of the decoder?



2. Prove that

i=1
and hence depends only on the error vector e.

3. Let w be the polynomial defined as
f

w(z) Y ey [ - ¢ie)
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Prove that
(i) degw < t;
(i) S(z)o(2) = w(z) mod (z*);

(iii) o and w are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to
prove that no root of one is a root of the other.

4. Prove that if another pair (¢/,w’) of polynomials satisfying dego’ < t, degw’ < t and
S(z)o'(z) = '(2) mod (z*) then, there exists a polynomial C' € F,(¢,)[z] such that
o' =Co and W' = Cw.

5. Let h be the largest integer such that 2"|S(z). Prove that h < t. Deduce that the
greatest common divisor of S and 2z?* has degree < t.

6. By proceeding to the extended Euclidian algorithm to the pair (.5, 2%), there exist
sequences of polynomials Py = 2%, P, = S, P, ..., P, with deg Py > deg P, > deg P, >
- where P, is the GCD of (S, 2%') and Ay, A;, ... B, By, ... such that for all 4,

PZ' = AlS + Bi22t~
Prove the existence of a polynomial C' and an index i such that P, = Cw and A; = Co.

Remark : Actually a deeper analysis of extends Fuclid algorithm makes possible to
prove that C' has degree 0 and Equals B;(0).

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and
Reed-Solomon codes. Let F, be a finite field and n be an integer prime to g.

1. We first consider the case n = q — 1.

(a) Prove that if n = ¢ — 1 then F, contains all the n—th roots of 1.



Let ¢, be such an n-th root, from now on the elements of I, \ {0} are denoted by
1, Cna 72u < 767?71'

(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic
classes in general.

(¢) Still in case where n|(g—1), let C be a BCH whose set of roots contains ¢, ..., ¢ L.
Prove that C' has dimension n — § + 1. Then prove that C' is MDS.

(d) Let C" be the generalised Reed—Solomon code C” o GRS;_1(x,x) where x oo

(1,¢,C2, ..., ¢" 1), Recall that this code is defined as the image of the map

n’

{Fq[2]<5_1 — ]Fg
S — (f(1), Guf(Ga)s GG,y GG

Prove that ¢! = C+.

Indication : a nice basis for C' can be obtained from the images by the above map
of the monomials 1,2, 2%, ..., 2572

(e) Conclude that C' is a generalised Reed Solomon (GRS in short) code.

. Now, consider the general case : n is prime to ¢ and C' denotes the BCH code whose
set of roots contains (,, ..., >~!. Prove that C is contained in the subfield subcode of
a GRS code with minimum distance 6.

. Deduce from that a decoding algorithm based on the decoding of the GRS code. Com-
pare its complexity with that of the algorithm presented in Exercise [2]



