
Exercises n◦ 4, Cyclic and BCH codes

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the
discrete Fourier Transform.

Let n be an integer and Fq a finite field with q prime to n. Let Fq(ζn) be a finite extension
of Fq containing all the n–th roots of 1, ζn denotes a primitive n–th root of 1. The discrete
Fourier transform is defined as

F :

{
Fq(ζn)[X]/(Xn − 1) −→ Fq(ζn)[X]/(Xn − 1)

f 7−→
∑n−1

i=0 f(ζ
−i
n )X i .

1. Prove that F is an Fq–linear map.

2. Prove that
n−1∑
i=0

ζ ijn =

{
n if n|j
0 else

.

3. Prove that F is an isomorphism with inverse:

F−1 :
{

Fq(ζn)[X]/(Xn − 1) −→ Fq(ζn)[X]/(Xn − 1)

f 7−→ 1
n

∑n−1
i=0 f(ζ

i
n)X

i .

Indication: it suffices to prove that F−1(F(X i)) = X i for all i = 0, . . . , n− 1.

4. For all f, g ∈ Fq(ζn)[X]/(Xn − 1), denote by f ? g the coefficientwise product:

if f =
n−1∑
i=0

fiX
i and g =

n−1∑
i=0

giX
i, then f ? g =

n−1∑
i=0

figiX
i.

Prove that for all f, g ∈ Fq(ζn)[X]/(Xn − 1), then

(i) F(fg) = F(f) ? F(g);
(ii) F(f ? g) = 1

n
F(f)F(g);

(iii) F−1(fg) = n(F−1(f) ? F−1(g));
(iv) F−1(f ? g) = F−1(f)F−1(g);
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5. Let g ∈ Fq[X]/(Xn − 1) be a nonzero polynomial vanishing at 1, ζn, . . . , ζδ−2n (in par-
ticular, it vanishes at δ − 1 roots of Xn − 1 with consecutive exponents). Prove that

F−1(g) ≡ Xδ−1h(X) mod (Xn − 1)

for some h ∈ Fq(ζn)[X] where h is nonzero and has degree 6 n− δ.

6. Using F(F−1(g)) prove that g has at least δ nonzero coefficients.

7. Prove that of g ∈ Fq[X]/(Xn − 1) vanishes at ζan, ζa+1
n , . . . , ζa+δ−2n , then g also has at

least δ nonzero coefficients.

8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let Fq be a finite field and n be an
integer prime to q. Let Fq(ζn) be the smallest extension of Fq containing all the n–th roots
of 1. Let g ∈ Fq[x] be a polynomial of degree < n vanishing at ζn, . . . , ζδ−1n for some positive
integer δ. Let C be the BCH code with generating polynomial g. The BCH bound asserts
that C has minimum distance at least equal to δ. We will prove that the code is t–correcting,
where 2t+ 1 = δ if δ is odd and 2t+ 1 = δ − 1 if δ is even.

Let y ∈ Fnq be a word such that
y = c+ e

where c ∈ C and e is a word of weight f with f 6 t. In what follows, all the words of Fnq are
canonically associated to polynomials in Fq[z]/(zn − 1). For instance

e(z) = ei1z
i1 + · · ·+ eif z

if

where the eij ’s are nonzero elements of Fq.
We introduce some notation and terminology.

• The syndrome polynomial S ∈ Fq(ζn)[z]:

S(z)
def
=

2t∑
i=1

y(ζ in)z
i−1.

• The error locator polynomial σ ∈ Fq(ζn)[z]

σ(z)
def
=

f∏
j=1

(1− ζ ijn z).

1. Among the polynomials S and σ, which one is known and which one is unknown from
the point of view of the decoder?



2. Prove that

S(z) =
2t∑
i=1

e(ζ in)z
i−1

and hence depends only on the error vector e.

3. Let ω be the polynomial defined as

ω(z)
def
=

f∑
j=1

eijζ
ij
n

∏
k 6=j

(1− ζ ikn z)

Prove that

(i) degω < t;

(ii) S(z)σ(z) ≡ ω(z) mod (z2t);

(iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to
prove that no root of one is a root of the other.

4. Prove that if another pair (σ′, ω′) of polynomials satisfying deg σ′ 6 t, degω′ < t and
S(z)σ′(z) ≡ ω′(z) mod (z2t) then, there exists a polynomial C ∈ Fq(ζn)[z] such that
σ′ = Cσ and ω′ = Cω.

5. Let h be the largest integer such that zh|S(z). Prove that h < t. Deduce that the
greatest common divisor of S and z2t has degree < t.

6. By proceeding to the extended Euclidian algorithm to the pair (S, z2t), there exist
sequences of polynomials P0 = z2t, P1 = S, P2, . . . , Pr with degP0 > degP1 > degP2 >
· · · where Pr is the GCD of (S, z2t) and A0, A1, . . . B0, B1, . . . such that for all i,

Pi = AiS +Biz
2t.

Prove the existence of a polynomial C and an index i such that Pi = Cω and Ai = Cσ.

Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to
prove that C has degree 0 and Equals Bi(0).

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and
Reed-Solomon codes. Let Fq be a finite field and n be an integer prime to q.

1. We first consider the case n = q − 1.

(a) Prove that if n = q − 1 then Fq contains all the n–th roots of 1.



Let ζn be such an n–th root, from now on the elements of Fq \ {0} are denoted by
1, ζn, ζ

2
n, . . . , ζ

n−1
n .

(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic
classes in general.

(c) Still in case where n|(q−1), let C be a BCH whose set of roots contains ζn, . . . , ζδ−1n .
Prove that C has dimension n− δ + 1. Then prove that C is MDS.

(d) Let C ′ be the generalised Reed–Solomon code C ′ def
= GRSδ−1(x,x) where x

def
=

(1, ζn, ζ
2
n, . . . , ζ

n−1
n ). Recall that this code is defined as the image of the map{

Fq[z]<δ−1 −→ Fnq
f 7−→ (f(1), ζnf(ζn), ζ

2
nf(ζ

2
n), . . . , ζ

n−1
n f(ζn−1n ))

.

Prove that C ′ = C⊥.

Indication : a nice basis for C ′ can be obtained from the images by the above map
of the monomials 1, z, z2, . . . , zδ−2.

(e) Conclude that C is a generalised Reed Solomon (GRS in short) code.

2. Now, consider the general case : n is prime to q and C denotes the BCH code whose
set of roots contains ζn, . . . , ζδ−1n . Prove that C is contained in the subfield subcode of
a GRS code with minimum distance δ.

3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Com-
pare its complexity with that of the algorithm presented in Exercise 2.


