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Abstract

Numerical static program analyses by abstract interpretation, e.g., the problem of inferring
bounds for the values of numerical program variables, are faced with the problem that the ab-
stract domains often contain infinite ascending chains. In order to enforce termination within the
abstract interpretation framework, a widening/narrowing approach can be applied that trades
the guarantee of termination against a potential loss of precision. Alternatively, recently strat-
egy improvement algorithms have been proposed for computing numerical invariants which do
not suffer the imprecision incured by widenings. Before, strategy improvement algorithms have
successfully been applied for solving two-players zero-sum games. In this article we discuss and
compare max-strategy and min-strategy improvement algorithms for static program analysis.
For that, the algorithms are cast within a common general framework of solving systems of fix-
point equations x = e where the right-hand sides e are maxima of finitely many monotone and
concave functions. Then we indicate how the general setting can be instantiated for inferring
numerical invariants of programs based on non-linear templates.
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1. Introduction

Mathematical optimization aims at finding a value within an area of feasible values
which maximizes (resp. minimizes) a given objective function. Quite efficient techniques
have been developed for particular cases that are important in practice, e.g., when the
objective function is linear and the area of feasible values a convex polytope (linear
programming, see e.g. Schrijver [24]) or even an intersection of a convex polytope with
the positive semi-definite cone (semi-definite programming, see e.g. Todd [26]) or a convex
set that is defined through convex constraints (convex optimization, see e.g. Boyd and
Vandenberghe [6], Nemirovski [19]). In a certain sense, also numerical static program
analysis based on abstract interpretation can often be cast as an optimization problem
as follows: Assume that we are given a complete lattice of potential program invariants
at program points, i.e., an abstract domain. Then, each control-flow edge from a program
point u to a program point v induces constraints on the invariants for u and v. These
constraints describe the feasible area. The objective of the analysis is to minimize all
invariants for the program points.

In general, it is not clear how this insight may lead to better algorithms. In this article,
however, we show that in the case of template-based analysis of relational numerical
properties, techniques from mathematical optimization allow to construct novel program
analysis algorithms. The templates we consider are (multivariate) polynomials in the
program variables such as 2x21 + 3x22 + 2x1x2, where x1 an x2 are program variables. The
goal of the analysis is to determine, for every program point v, a safe upper bound to
each template when reaching that program point v. In order to be as precise as possible,
this upper bound should be as small as possible. Different templates may serve different
purposes. If the analysis is only meant to infer (decently small) intervals for the values
of the program variables x1, . . . , xn, templates of the form xi and −xi may suffice. If the
analysis additionally should infer bounds on the differences between certain variables,
templates of the form xi − xj should be used.

Templates consisting of arbitrary linear combinations have been introduced and stud-
ied by Sankaranarayanan et al. [23]. In some cases, e.g., when trying to prove that certain
linear filters do not lead to floating-point overflows, linear templates are not sufficient
(see e.g. Feron and Alegre [10]). However, these cases can be treated by using quadratic
templates (see e.g. Adjé et al. [2], Feron and Alegre [9]).

In this article, instead of directly performing the template based analysis, we reduce
the static program analysis problem to the problem of computing the least solution of

x ≥ f(x), (1)
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where the unknown x now may take values in Rn, where R := R ∪ {−∞,∞}. In other
words: we are now interested in computing the least fixpoint µf of f . The components of
the variable x are the upper bounds to the templates at the different program points. In
our application, the right-hand side f turns out to be a point-wise maximum of finitely
many monotone and concave operators on Rn.

Strategy iteration techniques can be applied to compute invariants for template do-
mains where all templates are linear combinations of program variables. In the simple case
of intervals, these approaches allow to perform interval analysis without widening [7, 13].
In case of more complex linear combinations, arbitrary template polyhedra domains [23]
such as the octagon domain [18] can be handled [12, 14]. For quadratic templates, the
above strategy iteration approaches can be utilized for computing (resp. approximating)
a semi-definite relaxation of the abstract semantics (cf. Adjé et al. [2], Gawlitza and Seidl
[16]).

We present two strategy improvement approaches for computing respectively approx-
imating the least solution to (1).
The Min-Strategy Iteration Approach The min-strategy iteration approach as ad-

vocated by Adjé et al. [2] works as follows: conceptually, the first step is to choose a
(potentially infinite) set Π of min-strategies. A min-strategy π ∈ Π is a monotone op-
erator on Rn that over-approximates f , i.e., π(x) ≥ f(x) for all x ∈ Rn. We moreover
require that, for each x ∈ Rn, we are able to select a min-strategy π ∈ Π such that
f(x) = π(x). In other words, we require that

f(x) = min {π(x) | π ∈ Π} for all x ∈ Rn. (2)

To decompose the operator f in such a way makes sense, if the problem of computing
the least fixpoint µπ of a min-strategy π ∈ Π is simpler than computing the least
fixpoint µf of f . The method then makes use of the fact that

µf = min {µπ | π ∈ Π}. (3)

For the case we consider in this article, we choose Π to contain all operators that
over-approximate f and are point-wise maxima of finitely many monotone and affine
operators. Least fixpoints of such operators can be efficiently computed using linear
programming (cf. Gaubert et al. [12]).

For the particular case we are studying in this article, the min-strategy iteration
approach works similar to Newton’s method. It starts with some solution x(0) of (1)
and constructs a decreasing sequence (x(k))k∈N of solutions. For any solution x(k),
the next solution x(k+1) is obtained as follows: we select a min-strategy π such that
π(x(k)) = f(x(k)) holds (such a min-strategy must exist). The min-strategy is the
pendant to the first order Taylor approximation used within Newton’s method. As
we will see, this guarantees that the sequence (x(k))k∈N is decreasing. The solution
x(k+1) is then obtained as the least fixpoint µπ of π which can be computed efficiently
by means of linear programming (cf. Gaubert et al. [12]). The crucial step here is to
determine a min-strategy π with π(x(k)) = f(x(k)). As we will see, this problem can
be tackled using convex optimization.

The min-strategy improvement algorithm improves a solution step by step.
Each solution x(k) is a safe over-approximation to the least solution and the sequence
(x(k))k∈N is decreasing. However, in the general case, the method is neither guaranteed
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to terminate, nor is the sequence (x(k))k∈N guaranteed to converge to the least solu-

tion. It can be get stuck in a local minimum. One of the most important advantages

of the min-strategy improvement algorithm is that it can be stopped at any time with

a safe over-approximation to the least solution. Another advantage is that the convex

optimization problems that have to be solved are quite small compared to the ones we

have to solve when we apply max-strategy iteration (see below).

The Max-Strategy Iteration Approach The max-strategy improvement algorithm

of Gawlitza and Seidl [16] computes the least solution of (1) by iterating over max-

strategies. Recall that f is a point-wise maximum of finitely many monotone and

concave operators. Hence, we can find a finite set Σ of monotone and concave operators

such that

f(x) = max {σ(x) | σ ∈ Σ} for all x ∈ Rn. (4)

Each function σ ∈ Σ is a max-strategy. Observe that Equality (4) in particular implies

that, for each x, there exists some max-strategy σ ∈ Σ such that f(x) = σ(x). In the

cases we consider in this article, Σ is finite. It contains at most exponentially many

max-strategies (exponential in the size of the representation of f).

The algorithm constructs a sequence (σ(k))k∈N of max-strategies and a strictly

increasing sequence (x(k))k∈N of approximates to the least solution. It starts with

a max-strategy σ(0) and an approximate x(0) ∈ Rn with x(0) ≤ σ(0)(x(0)) ≤ µf .

Now assume that, after performing k improvement steps, we have a max-strategy

σ(k) and an approximate x(k) at hand such that x(k) ≤ σ(k)(x(k)) ≤ µf . In order to

determine x(k+1), we conceptually perform a least fixpoint iteration using the current

max-strategy σ(k), where we start at the approximate x(k). That is, x(k+1) is the least

fixpoint of σ(k) that is greater than or equal to x(k). For the cases we are studying

within this article, x(k+1) can be computed using convex optimization techniques,

provided that we follow some rules. The next max-strategy σ(k+1) can be chosen as

some max-strategy such that σ(k+1)(x(k+1)) = f(x(k+1)). This guarantees a progress

in each iteration.

Regarding the applications we study in this article, the advantage of the max-

strategy iteration approach (compared to the min-strategy iteration approach) is that

it terminates after at most exponentially many steps. Moreover, it returns the precise

result. That is, it always returns the least solution of (1). A disadvantage is that only

when the least solution is reached, a safe solution is obtained.

This article is organized as follows: In Section 2, we discuss an introductory example,

where an analysis based on linear templates only infers trivial invariants. Non-trivial

invariants, though, can be obtained with quadratic templates and a semi-definite re-

laxation of the resulting abstract semantics. In Section 3, we discuss how an abstract

semantics should be relaxed such that the resulting relaxed semantic equations fit in our

framework. After introducing basic notations in Section 4, we explain the min-strategy

iteration approach in Section 5 and the max-strategy iteration approach in Section 6. In

this article, we do not aim at completeness. Instead, we focus on those technical details

which are directly connected with our application. Section 7 is dedicated to a comparison

of the two approaches and some concluding remarks.
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st

x1
x2

 :=

 1 0.01

−0.01 0.99

x1
x2



(x1, x2) ∈ [0, 1]× [0, 1]

Fig. 1. The Harmonic Oscillator

2. Motivation and Running Example

In this section we take a look at the harmonic oscillator example of Adjé et al. [2]. The

program (here given as a C code snippet) consists of the following simple loop:

f loat x 1 , x 2 , tmp ;
x 1 = rand ( ) ;
x 2 = rand ( ) ;
while ( TRUE ) {

p r i n t f ( ”%f , %f \n” , x 1 , x 2 ) ;
tmp = 1 . ∗ x 1 + 0.01 ∗ x 2 ;
x 2 = −0.01 ∗ x 1 + 0.99 ∗ x 2 ;
x 1 = tmp ;

}

Here, we assume that ran() returns a random float value in the interval [0, 1]. Figure

1 shows the control-flow graph of the program. Here, for simplicity, we assume that

all program variables are real-valued, i.e., we from now on consider floats as reals. The

program implements an Euler explicit scheme with a small step h = 0.01, i.e., it simulates

the linear system x1
x2

←
 1 h

−h 1− h

x1
x2

 . (5)

The invariant found with our strategy improvement methods (see Sections 5 and 6)

is shown in Figure 2. For finding this invariant, we aim to compute upper bounds

b1, . . . , b5 ∈ R = R ∪ {−∞,∞} that are as small as possible and fulfill the following

inequalities for all possible values of the program variables x1 and x2 at program point

st:

−x1 ≤ b1 x1 ≤ b2 −x2 ≤ b3 x2 ≤ b4 2x21 + 3x22 + 2x1x2 ≤ b5 (6)

This means that we consider a domain which maintains upper bounds for the linear

polynomials −x1, x1,−x2, x2 (i.e., we consider intervals for the values of the program

variables) and the non-linear polynomial 2x21 + 3x22 + 2x1x2. The last polynomial comes

from the Lyapunov function that the designer of the algorithm may have considered to

prove the stability of his scheme, before it has been implemented. In view of proving the
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−1.8708 ≤ x1 ≤ 1.8708 and −1.5275 ≤ x2 ≤ 1.5275 and 2x21 + 3x22 + 2x1x2 ≤ 7

Fig. 2. Invariants for the Harmonic Oscillator

implementation correct, one is naturally led to considering such polynomial templates 1 .
Let us finally remark that the loop invariant obtained when using intervals, zones, oc-
tagons or even polyhedra (hence with any set of linear templates) is the trivial invariant
> (the value of the program variables x1 and x2 cannot be bounded).

The benchmarks of Adjé et al. [2] and Gawlitza and Seidl [16] include a computation
of invariants of the same quality as for the harmonic oscillator for an implementation
of the Arrow-Hurwicz algorithm. This is essentially an harmonic oscillator limited by
a non-linear saturation term (a projection on the positive cone). The benchmarks also
include a symplectic integration scheme. This is a highly degenerated example for which
alternative methods fail due to the absence of stability margins.

3. Abstract Interpretation and Monotone Fixpoint Equations

In this section we consider static program analysis by abstract interpretation as intro-
duced by Cousot and Cousot [8] for the particular case of template based numerical
properties, and reduce the inference of corresponding program invariants to solving sys-
tems of inequalities of the form x ≥ e over R = R∪{−∞,∞}, where the right-hand sides
e are monotonic and concave.

3.1. Notations

For a function f : X → Y and a subset X ′ of X, f |X′ denotes the restriction of f to X ′,
i.e., the function f |X′ : X ′ → Y is defined by f |X′(x′) = f(x′) for all x′ ∈ X ′.

The set of real numbers is denoted by R. The complete linear ordered set R∪{−∞,∞}
is denoted by R. For f : X → Rm with X ⊆ Rn, we set

dom(f) := {x ∈ X | f(x) ∈ Rm}, and fdom(f) := dom(f) ∩ Rn. (7)

We denote the i-th row (resp. j-th column) of a matrix A by Ai· (resp. A·j). Accordingly,
Ai·j denotes the entry in the i-th row and the j-th column. We also use this notation

1 Of course, as for the linear templates of Sankaranarayanan et al. [22, 23], we are interested in auto-
matically finding or refining the set of polynomial templates considered to achieve good precision. This,

however, is outside the scope of this article.
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for vectors and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X and all
i ∈ {1, . . . , k}.

For x, y ∈ Rn, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}. Rn is partially ordered
by ≤. We write x < y iff x ≤ y and x 6= y. Finally, we write x � y iff xi· < yi· for all
i ∈ {1, . . . , n}. The elements x and y are called comparable iff x ≤ y or y ≤ x.

Let D be a partially ordered set. We denote the least upper bound and the greatest
lower bound of a set X ⊆ D by

∨
X and

∧
X, respectively, provided that they exist.

The existence is in particular guaranteed if D is a complete lattice. The least element∨
∅ (resp. the greatest element

∧
∅) is denoted by ⊥ (resp. >), provided that it exists.

Accordingly, we define the binary operators ∨ and ∧ by

x ∨ y :=
∨
{x, y} and x ∧ y :=

∧
{x, y} (8)

for all x, y ∈ D, respectively. If D is a linearly ordered set (for instance R or R), then
∨ is the maximum operator and ∧ the minimum operator. For 2 ∈ {∨,∧}, we will
also consider x1 2 · · · 2 xk as the application of a k-ary operator. This will cause no
problems, since the binary operators ∨ and ∧ are associative and commutative.

A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called monotone
iff x ≤ y =⇒ f(x) ≤ f(y) for all x, y ∈ D1.

3.2. Convex and Concave Functions

A set X ⊆ Rn is called convex iff λx+ (1− λ)y ∈ X for all x, y ∈ X and all λ ∈ [0, 1]. A
mapping f : X → Rm with X ⊆ Rn convex is called convex (resp. concave) iff

f(λx+ (1− λ)y) ≤ (resp. ≥) λf(x) + (1− λ)f(y) (9)

for all x, y ∈ X and all λ ∈ [0, 1] (cf. e.g. Ortega and Rheinboldt [21]). Note that f is
concave iff −f is convex. Note also that f is convex (resp. concave) iff fi· is convex (resp.
concave) for all i = 1, . . . ,m.

We extend the notion of convexity/concavity from Rn → R to Rn → R as follows:
Let f : Rn → R, and I : {1, . . . , n} → {−∞, id,∞}. Here, −∞ denotes the function
that assigns −∞ to every argument, id denotes the identity function, and ∞ denotes the
function that assigns ∞ to every argument. We define the mapping f (I) : Rn → R by

f (I)(x) := f(I(1)(x1·), . . . , I(n)(xn·)) for all x ∈ Rn (10)

A mapping f : Rn → R is called concave iff the following conditions are fulfilled for all
I : {1, . . . , n} → {−∞, id,∞}:

(1) fdom(f (I)) is convex.
(2) f (I)|fdom(f(I)) is concave.

(3) If there exists some y �∞ such that f (I)(y) ∈ R, then f (I)(x) <∞ for all x�∞.
We need to quantify over all mappings I : {1, . . . , n} → {−∞, id,∞} in order to express
that the function f is concave in all of its arguments, even if we fix some of them to −∞
or ∞. The monotone function f : R2 → R defined by

f(x1, x2) :=

{
0 if x1 <∞ or x2 < 0

x22 if x1 =∞ and x2 ≥ 0
for all x1, x2 ∈ R, (11)

for instance, is affine and thus concave on R2. However, according to the above definition,

it is not concave on R2
, since f(∞, ·) is not concave (because f(∞, x2) = x22 for all

7
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Fig. 3. Plot of a monotone and concave function f : R2 → R.
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Fig. 4. Examples of monotone and concave functions

x2 ∈ R≥0). Figure 3 shows the graph of a function f : R2 → R that is monotone and
concave.

A mapping f : Rn → Rm is called concave iff fi· is concave for all i ∈ {1, . . . ,m}. A
mapping f : Rn → Rm is called convex iff −f is concave.

A function f : Rn → Rm is called mcave iff it is monotone and concave. It is called

cmcave iff it is a mcave function and f
(I)
i· is upward-chain-continuous on {x ∈ Rn |

f
(I)
i· (x) > −∞} for all I : {1, . . . , n} → {−∞, id,∞} and all i ∈ {1, . . . , n}.

A function f : Rn → Rm is called affine iff there exist some A ∈ Rm×n and some
b ∈ Rm such that f(x) = Ax+ b for all x ∈ Rn. Accordingly, a function f : Rn → Rm is
called affine iff there exist some A ∈ Rm×n and some b ∈ Rm such that f(x) = Ax + b
for all x ∈ Rn. Here, we use the convention that −∞+∞ = −∞. Observe that an affine
function f with f(x) = Ax+ b is monotone, whenever all entries of A are non-negative.

Lemma 1. Every affine function is convex, concave, and cmcave. The operator ∨ is
convex, but not concave. The operator ∧ is cmcave, but not convex (see Figure 4). 2

3.3. Collecting Semantics

In our programming model, we consider statements of the form

g(x) ≤ 0;x := p(x) (12)

where x = (x1, . . . , xn)> ∈ Rn denotes the vector of program variables, and g ∈ Rk[x1,
. . . , xn] and p ∈ Rn[x1, . . . , xn] are multivariate polynomials with coefficients from Rk
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and Rn, respectively. Here, 0 also denotes the zero vector. An example is

x21 + x22 − 16 ≤ 0;

x1
x2

 :=
5

4

x2
x1

 . (13)

It assigns 5
4 of the value of the program variable xi to the program variable x3−i for all

i ∈ {1, 2}, provided that x21 + x22 − 16 ≤ 0 holds. A statement combines a guard with an
assignment. The set of statements is denoted by Stmt. Statements of the form g(x) ≤ 0,
i.e., p is the identity function, are called guards. Statements of the form x := p(x), i.e.,
k = 0, are called assignments. A statement g(x) ≤ 0;x := p(x) is called affine (resp.
quadratic) iff the functions g and p are affine (resp. quadratic).

As usual in static program analysis by abstract interpretation, we refer to the pro-
gram’s collecting semantics, which safely over-approximates the concrete semantics. The
collecting semantics JsK : 2R

n → 2R
n

of a statement s ∈ Stmt assigns a set JsKX of states
after the execution of s to each set X of states before the execution of s. Here, a state
of a program is modeled as a vector x = (x1, . . . , xn)> ∈ Rn. The collecting semantics of
statements is defined by

Jg(x) ≤ 0;x := p(x)KX := {p(x) | x ∈ X, g(x) ≤ 0} for all X ⊆ Rn. (14)

We represent programs by their control-flow graphs, i.e., a program G is a triple (N,E,
st), where N is a finite set of program points, E ⊆ N×Stmt×N is a finite set of control-
flow edges, and st ∈ N is the start program point. As usual, the collecting semantics V
of a program G = (N,E, st) w.r.t. a set I ⊆ Rn of initial states is the least solution of
the following constraint system:

V[st] ⊇ I V[v] ⊇ JsK(V[u]) for all (u, s, v) ∈ E (15)

Here, the variables V[v], v ∈ N take values in 2R
n

. The components of the collecting
semantics V (i.e. the components of the least solution of (15)) are denoted by V [v] for
all v ∈ N . We use different fonts to distinguish between the variables of the constraint
system and its least solution.

3.4. Abstract Domain of Polynomial Templates

Next, we define the abstract domain we are going to use throughout this article. Following
the lines of Adjé et al. [2], we assume that we have given a fixed set

P ⊆ R[x1, . . . , xn] (16)

of polynomial templates with coefficients from R. P is called linear (resp. quadratic) iff
all polynomials p ∈ P are linear (resp. quadratic). Usually, P will consist of only finitely
many templates.

Example 2 (Adjé et al. [2]). The set P = {p1, p2, p3, p4, p5} with

p1(x1, x2) = −x1 p2(x1, x2) = x1
p3(x1, x2) = −x2 p4(x1, x2) = x2 (17)

p5(x1, x2) = 2x21 + 3x22 + 2x1x2

is a set of polynomial templates. More precisely, it is a finite set of quadratic templates.
This set of quadratic templates is used to analyze the harmonic oscillator discussed in
Section 2. 2
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Within this article, an abstract value is a mapping β : P → R that assigns an upper
bound β(q) to every polynomial q ∈ P . The abstract value β represents the set of all
program states x ∈ Rn such that q(x) ≤ β(q) holds for all q ∈ P . Abstract values are
partially ordered by the point-wise extension of ≤ which for simplicity is again denoted
by ≤. That is, β ≤ β′ if and only if β(q) ≤ β′(q) for all q ∈ P . Together with this partial
ordering P → R forms a complete lattice.

Following the approach of abstract interpretation, we define a Galois-connection that
consists of the abstraction α : 2R

n → P → R and the concretization γ : (P → R)→ 2R
n

as follows:

γ(β) := {x ∈ Rn | ∀p ∈ P . p(x) ≤ β(p)} for all β : P → R (18)

α(X) :=
∧
{β : P → R | γ(β) ⊇ X} for all X ⊆ Rn (19)

As shown by Adjé et al. [2], α and γ form a Galois-connection. The elements from
γ(P → R) and the elements from α(2R

n

) are called closed. α(γ(β)) is called the closure
of the abstract value β : P → R. Accordingly, γ(α(X)) is called the closure of the set
X ⊆ Rn of states. It is the minimal set of states that subsumes X and can be represented
by an abstract value β.

Before we go further, we discuss some aspects of the closure operation α ◦ γ. For all
abstract values β : P → R and all polynomial templates r ∈ P , we have

α(γ(β))(r) = sup {r(x) | x ∈ γ(β)} (20)

= sup {r(x) | x ∈ Rn and ∀q ∈ P . q(x) ≤ β(q)} (21)

= inf {−r(x) | x ∈ Rn and ∀q ∈ P . q(x) ≤ β(q)} (22)

The above equalities (cf. Adjé et al. [2]) lead to the following remarks:

Remark 3. If P is finite and all polynomial templates q ∈ P with β(q) < ∞ (i.e., all
polynomial templates that are bounded) are linear and r is quadratic (not necessarily
concave), then α(γ(β))(r) can be computed by solving a quadratic optimization problem
(cf. (22)). Solving quadratic optimization problems is NP-complete (see e.g. Vavasis
[29]). Vice versa, solving quadratic optimization problems is polynomial-time reducible
to computing closures. Thus, computing closures is NP-hard.

Remark 4. If P is finite and linear, then closures can be computed by solving linear
programming problems, i.e., in polynomial time.

Remark 5. If P is finite and all polynomial templates q ∈ P with β(q) < ∞ (i.e., all
polynomial templates that are bounded) are convex and r is concave (i.e. −r is convex),
then α(γ(β))(r) can be computed by solving a convex optimization problem (cf. (22)). If
all polynomial templates q ∈ P with β(q) < ∞ and r are additionally quadratic, then
α(γ(β))(r) can be computed by solving a convex quadratic optimization problem. Convex
quadratic optimization problems can be computed through semi-definite programming
(see e.g. Todd [26]).

Example 6 (Adjé et al. [2]). We continue Example 2. Let

β = {p1 7→ 0, p2 7→ 1, p3 7→ 0, p4 7→ 1, p5 7→ ∞}. (23)

Then γ(β) = [0, 1]× [0, 1]. The closure of β is

α(γ(β)) = {p1 7→ 0, p2 7→ 1, p3 7→ 0, p4 7→ 1, p5 7→ 7}, (24)
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because α(γ(β))(p5) = sup {p5(x1, x2) | (x1, x2)> ∈ γ(β)} = 7. 2

3.5. Abstract Semantics

The next step in static program analysis by abstract interpretation, is to abstract the
operations used by the collecting semantics that operate on sets of concrete states, to ab-
stract operations that operate on abstract values. Given the Galois connection introduced
in Subsection 3.4, the abstract semantics JsK] : (P → R) → (P → R) of a statement s
is defined by JsK] := α ◦ JsK ◦ γ. Accordingly, the abstract semantics V ] of a program
G = (N,E, st) w.r.t. to a set I ⊆ Rn of initial states is the least solution of the following
constraint system:

V][st] ≥ α(I) V][v] ≥ JsK](V][u]) for all (u, s, v) ∈ E (25)

Here, the variables V][v], v ∈ N take values in P → R. The components of the abstract
semantics V ] are denoted by V ][v] for all v ∈ N . The abstract semantics safely over-
approximates the collecting semantics:

Lemma 7. V [v] ⊆ γ(V ][v]) and α(V [v]) ≤ V ][v] for all program points v. 2

In this article, we aim at using convex optimization for approximating the abstract se-
mantics as precisely as possible. For that, as we will see later, it would be preferable
if JsK] were concave (i.e., −JsK] were convex) for every statement s. Unfortunately, this
property is not always fulfilled as indicated by the following example:

Example 8. Assume that P = {p1, p2, p3} ⊆ R[x1] with

p1(x1) = x1 p2(x1) = −x1 p3(x1) = x21 (26)

for all x1 ∈ R. We consider the statement s = x1 := x1, i.e., the statement s does not
modify the state. Then, for all βx = {p1 7→ x, p2 7→ 0, p3 7→ ∞} with x ∈ R, we have

(JsK]βx)(p3) = sup {p3(x1) | x1 ∈ γ(βx)} (27)

= sup {x21 | x1 ∈ R and 0 ≤ x1 ≤ x} (28)

=

{
x2 if x ≥ 0

−∞ if x < 0
(29)

Hence, we get

(JsK](
1

2
β0 +

1

2
β2))(p3) = (JsK](β1)(p3) = 1 (30)

6≥ 2 =
1

2
0 +

1

2
4 =

1

2
(JsK]β0)(p3) +

1

2
(JsK]β2)(p3) (31)

This implies that JsK] is not concave. 2

Nonetheless, in some cases JsK] is indeed concave. One important case is when all poly-
nomials q ∈ P are affine, and the statement s is affine. This case is studied by Costan
et al. [7] and by Gawlitza and Seidl [14].

Adjé et al. [2] propose to use a convex relaxation of −JsK] (resp. concave relaxation
of JsK]) instead of −JsK] (resp. JsK]). By doing so, an intractable NP-hard problem is
approximated by a convex optimization problem. Convexity here has the advantage that
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a wide class of convex optimization problems can be solved efficiently. In the remainder,
we will be faced with semi-definite programming problems which are special instances of
convex optimization problems for which efficient interior point methods exist.

3.6. Relaxed Abstract Semantics

Adjé et al. [2] propose to use convex relaxation schemas in order to approximate the
abstract semantics. The abstract semantics JsK] of a statement s is replaced with a
relaxed abstract semantics JsKR that fulfills the following properties:

(1) JsKR ≥ JsK], i.e., the relaxed abstract semantics JsKR of s safely over-approximates
the abstract semantics JsK] of s.

(2) JsKR is cmcave.
The relaxed abstract semantics V R of a program G = (N,E, st) with initial states I is
then defined as the least solution of the following constraint system over P → R:

VR[st] ≥ α(I) VR[v] ≥ JsKR(VR[u]) for all (u, s, v) ∈ E (32)

Here, the variables VR[v], v ∈ N take values in P → R. The components of the relaxed
abstract semantics V R are denoted by V R[v] for all v ∈ N . The relaxed abstract se-
mantics safely over-approximates the abstract semantics, and thus finally the collecting
semantics and the concrete semantics:

Lemma 9. V ][v] ≤ V R[v] for all program points v. 2

We emphasize that the set of all solutions of the constraints system (32), which defines
the relaxed abstract semantics V R, is not always convex, although the relaxed abstract
semantics JsKR is cmcave for each statement s. In consequence it is not possible to
compute V R directly through convex optimization techniques.

3.7. Obtaining a Relaxed Abstract Semantics through Semi-definite Relaxation

In this subsection we briefly discuss the relaxed abstract semantics introduced by Adjé
et al. [2]. This relaxed abstract semantics is based on Shor’s semi-definite relaxation
schema. This subsection is more technical than the remainder of this article. It is not
essential, though, for the understanding of the remainder of this article. The purpose
of this subsection is to demonstrate that a non-trivial relaxed abstract semantics exists
that fulfills the requirements mentioned in Subsection 3.6.

3.7.1. Semi-Definite Programming

Let us now briefly introduce semi-definite programming. For more details we refer to, e.g.
Boyd and Vandenberghe [6], Nemirovski [19]. Let SRn×n (resp. SRn×n+ , resp. SRn×n++ )
denote the set of symmetric matrices (resp. the set of positive semi-definite matrices, resp.
the set of positive definite matrices). A square matrix A ∈ Rn×n is called symmetric iff
A> = A. A symmetric matrix A is called positive semi-definite (resp. positive definite) iff
x>Ax ≥ 0 (resp. x>Ax > 0) for all x ∈ Rn. We denote the Löwner ordering of symmetric
matrices by �, i.e., A � B iff B − A ∈ SRn×n+ . We write A ≺ B iff B − A ∈ SRn×n++ .
Tr(A) denotes the trace of a square matrix A ∈ Rn×n, i.e., Tr(A) =

∑n
i=1Ai·i. The

inner product of two matrices A and B is denoted by A • B, i.e., A • B = Tr(A>B).
For A = (A1, . . . , Am) with Ai ∈ Rn×n for all i = 1, . . . ,m, we denote the vector
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(A1 •X, . . . , Am •X)> by A(X). We consider semi-definite programming problems (SDP
problems for short) of the form

z∗ = sup {C •X | X ∈ SRn×n+ ,A(X) = a,B(X) ≤ b}, (33)

where A = (A1, . . . , Am), A1, . . . , Am ∈ SRn×n, a ∈ Rm, B = (B1, . . . , Bk), B1, . . . , Bk ∈
SRn×n, b ∈ Rk, and C ∈ SRn×n. The value z∗ ∈ R is called the optimal value. The set
{X ∈ SRn×n+ | A(X) = a,B(X) ≤ b} is called the feasible space. An element of the
feasible space, is called feasible solution. The problem is called infeasible iff the feasible
space is empty, i.e., z∗ = −∞. It is called unbounded iff z∗ =∞. A feasible solution X∗

is called optimal solution iff C •X∗ = z∗.

3.7.2. The Relaxation

For the remainder of this subsection we assume that P is finite, all templates p ∈ P
are quadratic (but not necessarily convex), and all statements are of the form g(x) ≤
0;x := p(x), where g is quadratic and p is affine. The goal is to define a relaxed abstract
semantics which satisfies the properties described in Subsection 3.6. For that, we use
Shor’s semi-definite relaxation schema.

Let s = g(x) ≤ 0;x := p(x) be a statement. Recall that the abstract semantics JsK]

of s is given by

(JsK]β)(r) = sup {r(p(x)) | x ∈ Rn and g(x) ≤ 0 and ∀q ∈ P . q(x) ≤ β(q)} (34)

for all abstract values β : P → R and all templates r ∈ P . Because g is quadratic and
p is affine, we had to solve a non-linear optimization problem for computing (JsK]β)(r).
Unfortunately, this non-linear optimization problem is not necessarily convex. Using (the
dual version of) Shor’s semi-definite relaxation schema, we relax the abstract semantics
JsK] of s as follows. W.l.o.g., we assume:

(1) For every polynomial q ∈ R[x1, . . . , xn] with coefficients from R, there are some
Aq ∈ SRn×n, some bq ∈ Rn, and some cq ∈ R such that

q(x) = x>Aqx+ 2bq
>x+ cq. (35)

(2) p(x) = Ax+ b with A ∈ Rn×n and b ∈ Rn.
For all β : P → R, and all r ∈ P , we then get

(JsK]β)(r) = sup {r(p(x)) | x ∈ Rn, g(x) ≤ 0, ∀q ∈ P . q(x) ≤ β(q)}
= sup {r(Ax+ b) | x ∈ Rn,
∀i ∈ {1, . . . , k} . x>Agi·x+ 2b>gi·x+ cgi· ≤ 0,

∀q ∈ P . x>Aqx+ 2b>q x+ cq ≤ β(q)}
= sup {x>A>ArAx+ 2b>ArAx+ 2b>r Ax+ b>Arb+ 2b>r b+ cr |
x ∈ Rn,
∀i ∈ {1, . . . , k} . x>Agi·x+ 2b>gi·x+ cgi· ≤ 0,

∀q ∈ P . x>Aqx+ 2b>q x+ cq ≤ β(q)}

= sup {(1, x>)

b>Arb+ 2b>r b+ cr b>ArA+ b>r A

(b>ArA+ b>r A)> A>ArA

1

x

 |
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x ∈ Rn,

∀i ∈ {1, . . . , k} . (1, x>)

cgi· b>gi·

bgi· Agi·

1

x

 ≤ 0,

∀q ∈ P . (1, x>)

cq bq
>

bq Aq

1

x

 ≤ β(q)}

= sup {

b>Arb+ 2b>r b+ cr b>ArA+ b>r A

(b>ArA+ b>r A)> A>ArA

 •
1

x

 (1, x>) |

x ∈ Rn,

∀i ∈ {1, . . . , k} .

cgi· b>gi·

bgi· Agi·

 •
1

x

 (1, x>) ≤ 0,

∀q ∈ P .

cq bq
>

bq Aq

 •
1

x

 (1, x>) ≤ β(q)}

≤ sup {

b>Arb+ 2b>r b+ cr b>ArA+ b>r A

(b>ArA+ b>r A)> A>ArA

 •X |
X � 0, X1·1 = 1

∀i ∈ {1, . . . , k} .

cgi· b>gi·

bgi· Agi·

 •X ≤ 0,

∀q ∈ P .

cq bq
>

bq Aq

 •X ≤ β(q)}.

The last inequality holds, because X � 0 and X1·1 = 1 hold for all X and all x with

X =

1

x

 (1, x>). (36)

Because of the above inequality, we define the relaxed abstract semantics JsKR of s by

(JsKRβ)(r) := sup {

b>Arb+ 2b>r b+ cr b>ArA+ b>r A

(b>ArA+ b>r A)> A>ArA

 •X |
X � 0, X1·1 = 1 (37)

∀i ∈ {1, . . . , k} .

cgi· b>gi·

bgi· Agi·

 •X ≤ 0,

∀q ∈ P .

cq bq
>

bq Aq

 •X ≤ β(q)}.
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The important properties of the relaxed abstract semantics JsKR are summarized in the
following lemma:

Lemma 10 (Adjé et al. [2], Gawlitza and Seidl [16]). Let s = g(x) ≤ 0;x := p(x) be a
statement, where g is quadratic and p is affine. Assume that P is finite and all q ∈ P
are quadratic. For the relaxed abstract semantics JsKR of s as defined in (37) we have:

(1) JsKR ≥ JsK].
(2) JsKR is cmcave.
(3) (JsKRβ)(r) = (JsK]β)(r), whenever r is concave, g is convex, and all polynomial

templates q ∈ P with β(q) <∞ are convex. This is in particular the case, whenever
s is affine and all polynomial templates q ∈ P are affine. 2

Because of the last statement of the above lemma, the methods to be presented here can
be considered as a generalization of the methods developed by Gaubert et al. [12] and
Gawlitza and Seidl [14].

3.8. Systems of Inequations over R

We want to reduce the problem of computing the relaxed abstract semantics V R of a
program G w.r.t. a set I ⊆ Rn of initial states to solving a system C(G, I) of inequalities
of the form x ≥ e over R, where each right-hand side e is cmcave. We set up this system
C(G, I) as follows:

xst,p ≥ α(I)(p) for all p ∈ P (38)

xv,p ≥ (JsKR{q 7→ xu,q | q ∈ P})(p) for all (u, s, v) ∈ E, and all p ∈ P (39)

The system C(G, I) of inequalities uses the set X = {xv,p | v ∈ N and p ∈ P} of variables.
For every v ∈ N and every p ∈ P , The variable xv,p receives the value for the upper
bound on the polynomial template p at program point v. The relaxed abstract semantics
of G w.r.t. to the set I of initial states can finally be read off the least solution of the
system C(G, I) of inequalities over R:

Lemma 11. Let ρ∗ : X→ R denote the least solution of the system C(G, I) of inequali-
ties. Then V R[v](p) = ρ∗(xv,p) for all v ∈ N and all p ∈ P . 2

Because of the above lemma, it remains to provide methods for approximating or com-
puting the least solution of C(G, I). This is the topic of the next sections.

Example 12. We continue our running example from Section 2. The set P = {p1, . . . ,
p5} ⊆ R[x1, x2] of quadratic templates we consider for this example is given by

p1(x1, x2) = −x1 p2(x1, x2) = x1 p3(x1, x2) = −x2 (40)

p4(x1, x2) = x2 p5(x1, x2) = 2x21 + 3x22 + 2x1x2 (41)

for all x1, x2 ∈ R. By Lemma 11, the relaxed abstract semantics is given by the least
solution of the following system of inequalities:

xst,p1 ≥ 0 xst,p1 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p1) (42)

xst,p2 ≥ 1 xst,p2 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p2) (43)

xst,p3 ≥ 0 xst,p3 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p3) (44)
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xst,p4 ≥ 1 xst,p4 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p4) (45)

xst,p5 ≥ 7 xst,p5 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p5) (46)

Here,

s =

x1
x2

 :=

 1 0.01

−0.01 0.99

x1
x2


and, according to equality (37),

(JsKR{p 7→ xst,p | p ∈ P})(pi)
= sup {Ci •X | X � 0, X1·1 = 1, B1 •X ≤ xst,p1 , · · · , B5 •X ≤ xst,p5}

for all i ∈ {1, . . . , 5}, where

B1 =


0 −0.5 0

−0.5 0 0

0 0 0

 B2 =


0 0.5 0

0.5 0 0

0 0 0



B3 =


0 0 −0.5

0 0 0

−0.5 0 0

 B4 =


0 0 0.5

0 0 0

0.5 0 0



B5 =


0 0 0

0 2 1

0 1 3



C1 =


0 −0.5 −0.005

−0.5 0 0

−0.005 0 0

 C2 =


0 0.5 0.005

0.5 0 0

0.005 0 0



C3 =


0 0.005 −0.495

0.005 0 0

−0.495 0 0

 C4 =


0 −0.005 0.495

−0.005 0 0

0.495 0 0



C5 =


0 0 0

0 1.9803 0.9802

0 0.9802 2.9603


The above system of inequalities has the same least solution as the following system of
equations:

xst,p1 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1)
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xst,p2 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3) (47)

xst,p4 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5)

In Section 5 we explain how to solve equation system (47) through the ∧-strategy iteration

approach. In Section 6 we will do this using the ∨-strategy iteration approach. 2

4. Systems of ∨-Cmcave Equations

This section introduces the main object of our studies, namely systems of ∨-cmcave

equations. How these equation systems can be solved through strategy iteration will be

explained in the following sections.

Assume that a fixed set X of variables and a domain D is given. We consider equations

of the form x = e, where x ∈ X is a variable and e is an expression over D. A system E
of equations is a finite set

E = {x1 = e1, . . . ,xn = en}

of equations, where x1, . . . ,xn are pairwise distinct variables. We denote the set {x1, . . . ,

xn} of variables occurring in E by XE . We drop the subscript, whenever it is clear from

the context.

For a variable assignment ρ : X → D, an expression e is mapped to a value JeKρ by

setting JxKρ := ρ(x), and Jf(e1, . . . , ek)Kρ := f(Je1Kρ, . . . , JekKρ), where x ∈ X, f is a

k-ary operator (k = 0 is possible; then f is a constant), for instance +, and e1, . . . , ek are

expressions. Let E be a system of equations. We define the unary operator JEK on X→ D
by setting (JEKρ)(x) := JeKρ for all x = e ∈ E . A solution is a variable assignment ρ such

that ρ = JEKρ holds. The set of solutions is denoted by Sol(E).

Assume in the following that D is a complete lattice. An expression e (resp. an equation

x = e) is called monotone iff all operators occurring in e are monotone.

The set X → D of all variable assignments is a complete lattice. For ρ, ρ′ : X → D,

we write ρ � ρ′ (resp. ρ � ρ′) iff ρ(x) < ρ′(x) (resp. ρ(x) > ρ′(x)) for all x ∈ X. For

d ∈ D, d denotes the variable assignment {x 7→ d | x ∈ X}. A variable assignment ρ with

⊥ � ρ � > is called finite. A pre-solution (resp. post-solution) is a variable assignment

ρ such that ρ ≤ JEKρ (resp. ρ ≥ JEKρ) holds. The set of pre-solutions (resp. the set of

post-solutions) is denoted by PreSol(E) (resp. PostSol(E)). The least fixpoint (resp. the

greatest fixpoint) of an operator f : D → D is denoted by µf (resp. νf), provided that

it exists. Thus, the least solution (resp. the greatest solution) of a system E of equations

is denoted by µJEK (resp. νJEK), provided that it exists. For a pre-solution ρ (resp. for

a post-solution ρ), µ≥ρJEK (resp. ν≤ρJEK) denotes the least solution that is greater than

or equal to ρ (resp. the greatest solution that is less than or equal to ρ). In our setting,

Knaster-Tarski’s fixpoint theorem can be stated as follows: Every system E of monotone

equations over a complete lattice has a least solution µJEK and a greatest solution νJEK.
Furthermore, µJEK =

∧
PostSol(E) and νJEK =

∨
PreSol(E).
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∨-Cmcave Equations An expression e (resp. equation x = e) over R is called cmcave
expression (resp. cmcave equation) iff JeK is cmcave. An expression e (resp. equation
x = e) over R is called ∨-cmcave iff e = e1 ∨ · · · ∨ ek, where e1, . . . , ek are cmcave
expressions.

Example 13. The operator
√
· : R → R (defined by

√
x = sup {y ∈ R | y2 ≤ x} for

all x ∈ R) is cmcave. The least solution of the system E = {x = 1
2 ∨
√

x} of ∨-cmcave
equations is µJEK = 1. 2

5. The Min-Strategy Iteration Approach

In this section we present the ∧-strategy iteration approach of Costan et al. [7]. The
general framework is explained in Subsection 5.1. After that we specialize the general ∧-
strategy iteration algorithm to an algorithm for solving systems of ∨-cmcave equations
as introduced in Section 4. For that, we first show how to compute least solutions of
systems of inequalities of the form xk ≥ f(x1, . . . ,xn), where f is an affine operator
on R. This algorithm will later be used for evaluating ∧-strategies. Then, in Subsection
5.3, we answer the question how the set of ∧-strategies that is defined by a system
of ∨-cmcave equations looks like. In Subsection 5.4 we utilize convex optimization for
computing an improvement of a ∧-strategy. In Subsection 5.5 we apply the developed
∧-strategy improvement algorithm to the harmonic oscillator discussed in Section 2.

5.1. The General Framework

Let D be a complete lattice. We are interested in computing a small fixpoint of a monotone
self-map f : D→ D, where we assume that f(x) = min {π(x) | π ∈ Π} for all x ∈ D. Here,
Π is a family of “simpler” self-maps on D. Observe that, for all x ∈ D, f(x) = min {π(x) |
π ∈ Π} iff f(x) =

∧
{π(x) | π ∈ Π} and there exists a π ∈ Π such that f(x) = π(x). The

term “simpler” in practice means that we assume that for any π ∈ Π, the least fixpoint
µπ of π can be computed efficiently. The self-maps π ∈ Π are the ∧-strategies for f .
∨-strategies can be defined dually. Then we assume that f(x) = max {σ(x) | σ ∈ Σ} for
all x ∈ D, where Σ is a family of “simpler” self-maps on D.

Example 14. Consider the following system of ∨-cmcave equations:

x = 0 ∨
(

1

2
· x + 1 ∧ 10

)
(48)

Let f(x) denote the right-hand side, i.e., the function f : R → R is defined by f(x) =
0 ∨

(
1
2 · x+ 1 ∧ 10

)
for all x ∈ R. Observe that f(x) = min {π1(x), π2(x)} for all x ∈ R,

where

π1(x) = 0 ∨ 1

2
· x+ 1, and π2(x) = 0 ∨ 10 = 10 for all x ∈ R. (49)

Hence, π1 and π2 are the ∧-strategies for f . Moreover, f(x) = max {σ1(x), σ2(x)} for
all x ∈ R, where

σ1(x) = 0, and σ2(x) =
1

2
· x+ 1 ∧ 10 for all x ∈ R. (50)

Hence, σ1 and σ2 are the ∨-strategies for f . 2
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Since f(x) = min {π(x) | π ∈ Π} for all x ∈ D, we get

µf = min {µπ | π ∈ Π}. (51)

Equation (51) can be shown as follows: Since µπ is a post-fixpoint of f for all π ∈ Π, the

fixpoint theorem of Knaster-Tarski gives us that µf ≤ µπ for all π ∈ Π (*). Moreover,

there exists some π∗ ∈ Π such that π∗(µf) = f(µf). Since µf is a fixpoint of f , it is thus

also a fixpoint of π∗. Therefore, µπ∗ ≤ µf . Together with (*) we get Equation (51).

However, if f(x) = max {σ(x) | σ ∈ Σ} for all x ∈ D, then we can only conclude that

νf = max {νσ | σ ∈ Σ}. This is the dual of (51). The statement µf = max {µσ | σ ∈ Σ}
does not hold in general as the following example shows:

Example 15. We continue Example 14. We have

max {µσ1, µσ2} = max {0,−∞} = 0 < µf = 2 = min {2, 10} = min {µπ1, µπ2} (52)

Hence, if we can compute the least fixpoints of the “simpler” self-maps π1 and π2, then

we can compute the least fixpoint of the self-map f . However, being able to compute the

least fixpoints of the “simpler” self-maps σ1 and σ2 does not help in computing the least

fixpoint of f . 2

If we assume that Π is finite and we can compute µπ for every π ∈ Π, we immediately

obtain a method for computing µf . However, this does not necessarily lead to a practical

algorithm, since the cardinality of Π may be large, for instance, exponential in the size of

the input. For tackling this problem, the idea is to start with an arbitrary ∧-strategy π0
and improve this ∧-strategy iteratively utilizing the assumption that f(x) = min{π(x) |
π ∈ Π} for all x ∈ D. This idea can be formalized as follows:

Algorithm 1 The ∧-Strategy Improvement Algorithm

(1) Initialization. Set k = 0 and select any ∧-strategy π(0) ∈ Π.
(2) Value determination. Compute the least fixpoint x(k) := µπ(k) of π(k).
(3) If x(k) = f(x(k)), then return x(k).
(4) ∧-Strategy Improvement. Take π(k+1) ∈ Π such that f(x(k)) = π(k+1)(x(k)). Incre-

ment k by 1 and goto Step 2.

The fixpoint theorem of Knaster-Tarski gives us:

Theorem 16.

(1) (x(i))i∈N is a decreasing sequence of post-fixpoints of f (i.e., x(i) ≥ f(x(i)) for all

i ∈ N) that is strictly decreasing until it is stable.

(2) If it is stable, then we have found a solution, i.e., a fixpoint of f .

(3) x(i) is greater than or equal to the least solution for all i ∈ N, i.e., x(i) ≥ µf for

all i ∈ N.

(4) The sequence (x(i))i is bounded from above by the sequence obtained by Kleene

iteration, i.e., x(i) ≤ f i(x(0)) for all i ∈ N.

(5) If the set Π of all ∧-strategies is finite, then termination is guaranteed after at most

|Π| steps. 2
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Fig. 5. The graphs of x and (0.25 ∨ 2 · x− 1) ∧ 2

Example 17. We continue with Example 14. Assume that π(0) = π2. Then we get

x(0) = µπ(0) = µπ2 = 10. We observe that x(0) is not a solution of f , because x(0) =

10 > 6 = f(10) = f(x(0)). Hence, we improve the current ∧-strategy. For that we observe

that

π1(x(0)) = π1(10) = 6 = f(x(0)) < 10 = π2(10) = π2(x(0)). (53)

Hence, the algorithm chooses π(1) = π1 as the next ∧-strategy. Thus, we get x(1) =

µπ(1) = µπ1 = 2. As we will see in the following, we can use linear programming to

compute µπ1. Since f(x(1)) = f(2) = 2 = x(1), we have found a fixpoint of f . Hence, the

algorithm terminates. We have found the least fixpoint µf of f . 2

In the above example, we have found the least fixpoint µf of f . However, Algorithm 1

stops whenever some fixpoint x(k) is reached, not necessarily the least one. We give a

simple example for this phenomenon:

Example 18. Consider the following system of ∨-cmcave equations:

x = (0.25 ∨ 2 · x− 1) ∧ 2 (54)

The graph of the left hand-side x and the graph of the right-hand side (0.25∨2 ·x−1)∧2

are drawn in Figure 5. The least solution of the above system of ∨-cmcave equations

is x = 0.25. The set Π = {π1, π2} of ∧-strategies for the right-hand side is given by

π1(x) = (0.25∨ 2 · x− 1) and π2(x) = 2 for all x. If we initialize the ∧-strategy iteration

with the ∧-strategy π(0) = π2, the algorithm returns 2, since the ∧-strategy π2 cannot be

improved further, since π1(2) = 3 > 2 = µπ2. Unfortunately, 2 is not the least solution.

The problem here stems from the fact that the function π1 is not non-expansive in the

sup-norm, i.e., it does not hold ‖f(x)− f(y)‖∞ ≤ ‖x− y‖∞ for all x, y ∈ R (see Adjé

et al. [1] for more details). 2

Although minimality of the obtained solution cannot be guaranteed in general, there are

indeed important cases where minimality can be guaranteed by an enhanced ∧-strategy

improvement step. Adjé et al. [1] describe how to guarantee minimality for the case that

all mappings are non-expansive. A notable advantage of the ∧-strategy iteration approach

is that it can be stopped at anytime with a safe over-approximation. It thus can give us

non-trivial safe results, even if the set of ∧-strategies is infinite.
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5.2. Least Fixpoints for Max-Affine Self-Maps

In this subsection, we explain how to compute the least solution of a system C of in-
equalities of the form xi ≥ f(x1, . . . ,xn), where x1, . . . ,xn are distinct variables and
f : Rn → R is monotone and affine. A function f : Rn → R is monotone and affine iff
there exist c0 ∈ R and c1, . . . , cn ∈ R≥0 such that f(x1, . . . , xn) = c0+c1 ·x1+ · · ·+cn ·xn
for all x1, . . . , xn ∈ R. Here, we use the convention −∞+∞ = −∞.

For simplicity we assume that the least solution ρ∗ of C maps every variable to a
value that is strictly greater than −∞, i.e., ρ∗(x) > −∞ for all variable x. We can do
so w.l.o.g. for the following reason: We can determine the variables that are −∞ in the
least solution by performing n Kleene iteration steps (recall that n = |X| is the number
of variables). That is, for all variables x, ρ∗(x) > −∞ iff ρ(n)(x) > −∞, where ρ(n)

denotes the n-th Kleene approximate. This can be shown by considering the fixpoint
iterations, using upward-chain-continuity of the right-hand sides and the fact that, for
all c1, . . . , cn ∈ R>0, c1 ·x1 + · · ·+ck ·xk > −∞ iff xi > −∞ for all i ∈ {1, . . . , k}. Finally,
we can remove the variables x with ρ∗(x) and the corresponding inequalities from the
system of inequalities.

In order to deal with variables that are ∞, we process one strongly connected compo-
nent after the other. Let X denote the set of variables, and G = (X,→) be the variable
dependency graph of the system C of inequalities, i.e., the nodes of G are the variables
of E and we write xi → xj iff xi = ∞ implies xj = ∞, i.e., if there exists an inequality
xj ≥ f(x1, . . . ,xn) with f(x1, . . . , xn) = c0 + c1 · x1 + · · ·+ cn · xn, where c0 > −∞ and
ci > 0. If G is strongly connected, then the least solution ρ∗ of C can be determined by
solving the following linear programming problem:

min
∑n
i=1 xi subject to (55)

xi ≥ f(x1, . . . ,xn) for all inequalities xi ≥ f(x1, . . . ,xn) of C (56)

The above linear program aims at minimizing the sum of all variables x ∈ X. The
feasible space is simply the set of all solutions of the system C of inequalities. If this
linear program is infeasible, then ρ∗(x) = ∞ holds for all variables x ∈ X. If this linear
program is feasible, then ρ∗ is the uniquely determined optimal solution. That is, If the
variable dependency graph of C is strongly connected, then the least solution of C can
be computed by solving a linear programming problem that can be constructed in linear
time.

For computing the least solution in case that the variable dependency graph G of C
is not strongly connected, we divide the system of inequalities into strongly connected
components. The goal of dividing the system C into strongly connected components is to
find finite solutions to subsystems even if the complete system does not contain a finite
solution.

We start with an arbitrary non-trivial strongly connected component without incom-
ing edges. According to the above observations, the least solution of the induced system of
inequalities can be computed by solving a linear programming problem that can be con-
structed in linear time. After we have determined the values for this strongly connected
component, we can replace these variables with their values. The above procedure is re-
peated until all strongly connected components are solved. Since the number of strongly
connected components is bounded by the number of variables, we get:
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Theorem 19 (Gaubert et al. [12]). The least solution of a system of inequalities of the
form xi ≥ f(x1, . . . ,xn), where f is a monotone and affine operator, can be computed by
solving linearly many linear programming problems, each of which can be constructed in
linear time. Thus, it can be computed in polynomial time. 2

Example 20. We consider the following system of inequalities:

x1 ≥ −10 x1 ≥
1

4
· x2 + 1 x2 ≥ 2 · x1 x3 ≥ x3 + x1 − 1 x3 ≥ 0 (57)

Our goal is to compute the least solution using the method presented in this subsection.
The strongly connected components of the variable dependency graph are {x1,x2} and
{x3}. The variables x1 and x2 do not depend on the variable x3. Thus, in the first
step we have to compute the uniquely determined optimal solution of the following linear
programming problem:

min x1 + x2 x1 ≥ −10 x1 ≥
1

4
· x2 + 1 x2 ≥ 2 · x1 (58)

The uniquely determined optimal solution gives us x1 = 2 and x2 = 4. After substituting
the variables x1 and x2 with their values, it remains to compute the least solution of the
following system of inequalities:

x3 ≥ x3 + 2− 1 ∨ 0 (59)

Thus, we have to determine the uniquely determined optimal solution of the following
linear programming problem:

min x3 x3 ≥ x3 + 1 x3 ≥ 0 (60)

This linear programming problem is infeasible. Thus, we get x3 = ∞. Hence, the least
solution of the original system of inequalities is x1 = 2, x2 = 4, and x3 =∞. 2

When we use interior point methods for solving the linear programming problems, we
obtain a polynomial-time algorithm. However, the number of arithmetic operations and
memory accesses then depends on the sizes of the occurring numbers. Thus, the algorithm
is not uniform. A uniform polynomial-time algorithm is not known.

5.3. ∧-Strategies for Systems of Concave Equations

We now aim at specializing our ∧-strategy improvement algorithm to an algorithm for
solving systems of ∨-cmcave equations as introduced in Section 4. For that, let us consider
the following system of ∨-cmcave equations:

x1 = f1,1(x1, . . . ,xn) ∨ · · · ∨ f1,k1(x1, . . . ,xn)

... (61)

xn = fn,1(x1, . . . ,xn) ∨ · · · ∨ fn,kn(x1, . . . ,xn)

In a first step, we construct a set Π of ∧-strategies for the function

f =


f1,1 ∨ · · · ∨ f1,k1

...

fn,1 ∨ · · · ∨ fn,kn

 : Rn → Rn. (62)
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We want to construct Π in such a way that the least fixpoint µπ of π can be computed

efficiently for every ∧-strategy π ∈ Π. Firstly, we define the set Tk,1 as the set of all

monotone and affine functions f : Rk → R, i.e. functions of the form f(x) = a>x+b with

a ∈ Rk≥0 and b ∈ R. The set T ∨k,1 is then defined by T ∨k,1 := {f1∨· · ·∨fl | f1, . . . , fl ∈ Tk,1}.
The set T ∨k,m is finally defined by T ∨k,m := {(f1, . . . , fm)> | f1, . . . , fm ∈ T ∨k,1}. For all

operators f : Rk → Rm and all x ∈ Rk, we define the operator f↗∞x : Rk → Rm by

f↗∞x (y) =

{
f(y) if y ≤ x
(∞, · · · ,∞)> if y > x

for all y ∈ Rk. (63)

Let now f = (f1, . . . , fn)>, where f1, . . . , fn : Rn → R are monotone and concave. We

define the set Π of ∧-strategies for f as follows:

Π = {π | ∃π′ : T ∨n,n .∃x ∈ Rn . π = π′↗∞x and π ≥ f}. (64)

Each ∧-strategy π ∈ Π is of the form π′↗∞x , where π′ is a maximum of finitely many

monotone and affine self-maps. The ∧-strategy π is thus in particular convex. As we have

seen in Section 5.2, the least fixpoint µπ′ of π′ and thus the least fixpoint µπ of π can

be computed through linear programming. Because f ≤ π for all π ∈ Π, it follows that

µf ≤ µπ for all π ∈ Π. Moreover, because each component of f is a maximum of finitely

many monotone functions, it follows that for each x ∈ Rn, there exists some π∗ ∈ Π with

π∗(x) = f(x). The most trivial choice for π∗ is π∗ = π′↗∞x with π′(y) = f(x) for all

y ∈ Rn. We thus get µf = min {µπ | π ∈ Π} as desired.

Note that Π can be indeed infinite. Nonetheless, in some cases there exists a finite

subset Π′ of Π such that f(x) = min {π(x) | π ∈ Π′} for all x ∈ Rn. One important

example for this is the case that all fi,j ’s are not arbitrary monotone and concave func-

tions, but just minima of finitely many monotone and affine functions (see Gaubert et al.

[12]). Then we can restrict our considerations to a finite subset.

5.4. Improving ∧-Strategies

We now explain how the ∧-strategy improvement step (Step 4) can be realized. We

assume that we are given a post-fixpoint x of f , i.e., x ≥ f(x). Our goal is to compute

a “non-trivial” ∧-strategy π ∈ Π such that π(x) = f(x). As discussed in Subsection 5.3,

the most trivial choice for π is π = π′↗∞x with π′(y) = f(x) for all y ∈ Rn. Then,

however, the ∧-strategy algorithm would perform exactly a Kleene iteration. In order to

increase the speed of convergence, it is important to determine a “good” ∧-strategy π.

For a start, let us assume that, for any monotone and concave function f : Rk → R
and any x ∈ Rk, we can compute a “good” monotone and affine function Tf,x : Rk → R
such that Tf,x(y) ≥ f(y) for all y ≤ x, and Tf,x(x) = f(x). Such a function Tf,x exists,

because f is monotone.

Then, for f = f1∨· · ·∨fk with f1, ..., fk : Rk → R monotone and concave and x ∈ Rk,

we define the monotone function Tf,x : Rk → R by

Tf,x(y) := Tf1,x(y) ∨ · · · ∨ Tfk,x(y) for all y ∈ Rk. (65)
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For f = (f1, . . . , fn)T with monotone f1, . . . , fn : Rk → R, we finally define the monotone

function Tf,x : Rk → Rn by

Tf,x(y) = (Tf1,x(y), . . . , Tfn,x(y))> for all y ∈ Rk. (66)

In consequence, Tf,x(y) ≥ f(y) for all y ∈ Rk and Tf,x(x) = f(x). Therefore, for a

monotone and concave self-map f : Rn → Rn and some x ∈ Rn, π := Tf,x↗∞x is a
∧-strategy for f with π(x) = f(x).

It remains to answer the question how a “good” monotone and affine function Tf,x :

Rn → R can be computed for some given monotone and concave function f : Rn → R
and some given x ∈ Rn with −∞ < f(x) < ∞ such that Tf,x(y) ≥ f(y) for all y ≤ x
and Tf,x(x) = f(x). In order to obtain a reasonable quality, we search for monotone and
affine function Tf,x that fulfills a stronger requirement. We want Tf,x(y) ≥ f(y) to hold

not only for all y ≤ x, but for all y ∈ Rn. However, the existence of a monotone and
affine Tf,x with Tf,x(y) ≥ f(y) for all y ∈ Rn and Tf,x(x) = f(x) is not guaranteed.
An example is given by the monotone and concave function f =

√
· at x = 0. These

degenerate cases can, however, be detected. In these cases, we still can always choose a
trivial monotone and affine Tf,x.

Let us now assume that x ∈ Rn. We can do so w.l.o.g., since all other components can
be removed. We aim at computing a monotone and affine function Tf,x : Rn → R such

that Tf,x(x) = f(x) and Tf,x(y) ≥ f(y) for all y ∈ Rn. Hence,

Tf,x(y) = f(x) + d>(y − x) for all y ∈ Rn (67)

for some d ∈ Rn≥0, and

f(y)− d>(y − x) ≤ f(x) for all y ∈ Rn (68)

Such a d ∈ Rn≥0 can be determined by means of convex optimization. Let

g(d, y) := f(y)− d>(y − x), and g(d) := sup {g(d, y) | y ∈ Rn}

for all d ∈ Rn≥0 and all y ∈ Rn. For all d ∈ R≥0, condition (68) is fulfilled iff

g(d) ≤ f(x) (69)

Therefore, we search for a d ∈ Rn≥0 that minimizes the function g. We can do this through
convex optimization, if g is convex and we have a method for evaluating g. Indeed, the
function g is convex, since it is the point-wise supremum of a set of affine functions. For
computing the value g(d) for a given d ∈ Rn≥0, we have to solve an unconstrained convex
optimization problem, because g(d, ·) is concave and thus −g(d, ·) is convex.

There are cases, where a d ∈ Rn≥0 that minimizes the function g does not exist. An

example is given by the monotone and concave function f =
√
· and x = 0. For this

example g(d) converges to 0 if d converges to ∞, but there does not exists some d ∈ R≥0
such that g(d) = 0. However, this is rather a theoretical problem than a problem of
practical relevance. In practice, one simply chooses some d ∈ Rn≥0 such that g(d) is close

to the optimal value inf{g(d′) | d′ ∈ R≥0}. Even if we chose d = (0, . . . , 0)>, which would
be the trivial choice, we would at least guarantee the progress that is also obtained by a
Kleene iteration step.
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Within our application described in Section 3, the monotone and affine function Tf,x
can be computed more efficiently. There, the functions f : Rn → R are of the form

f(x) = sup {C •X | X � 0,A(X) = a,B(X) ≤ x}, (70)

i.e., f(x) is given by the optimal value of the SDP problem:

max
X

C •X A(X) = a B(X) ≤ x X � 0 (71)

For simplicity, let us assume that x ∈ Rn. The other cases can be dealt with by removing
constraints from the semi-definite programming problem. We use the dual problem to
compute Tf,x. The dual problem (see e.g. Todd [26]) is given by:

min
λ,µ

x>λ+ a>µ Bλ+Aµ � C λ ≥ 0 (72)

Let d(x) denote the optimal value of the dual problem. Weak duality gives us f(x) ≤ d(x).
In particular, we thus get −∞ < d(x). We define the monotone and affine function Tf,x
as follows: If d(x) =∞, i.e., if the dual is infeasible, then we set

Tf,x(z) = f(x) for all z ∈ Rn (73)

If the dual has an optimal solution (λ, µ), then we define the hyperplane Tf,x by

Tf,x(z) = λ>z + µ>a for all z ∈ Rn (74)

If the dual is feasible, but has no optimal solution, then we choose any good feasible solu-
tion. Then weak duality guarantees that Tf,x ≥ f . The affine function Tf,x is monotone,
because λ ≥ 0.

In order to conclude Tf,x(x) = f(x), we require stronger assumptions, for instance,
assumptions that imply strong duality. One sufficient criterion for strong duality and the
existence of an optimal solution for the dual problem is that all components of A are
linearly independent and {X � 0 | A(X) = a, B(X) � x} 6= ∅ (cf. Todd [26]).

The result of the above discussion can be summarized as follows: A monotone and affine
self-map Tf,x such that Tf,x(y) ≥ f(y) for all y ∈ Rn and Tf,x(x) = f(x) can be computed
through semi-definite programming, whenever the above sufficient condition for strong
duality is fulfilled. Again, this is rather a theoretical problem than a problem of practical
relevance. In the case that Tf,x(x) = f(x) is not fulfilled (i.e., we have Tf,x(x) > f(x)),
when using the Tf,x we have obtained through semi-definite programming, we can simply

redefine Tf,x by Tf,x(z) = f(x) for all z ∈ Rn.
We can summarize the results obtained so far in the following theorem:

Theorem 21. The ∧-strategy improvement algorithm (Algorithm 1) can be applied for
solving systems of ∨-cmcave equations. The algorithm starts with a given post-solution
and constructs a decreasing sequence of post-solutions. Each ∧-strategy improvement step
(Step 4 in Algorithm 1) can be performed through convex optimization, where one solves
a convex optimization problem for each right-hand side. In the application described in
Section 3, the right-hand sides are of the form (70). In consequence, each ∧-strategy
improvement step can be performed more efficiently through semi-definite programming.
Each value determination step (Step 4 in Algorithm 1) can be performed through linear
programming (cf. Section 5.2). The ∧-strategy improvement algorithm can be stopped at
any time with a safe over-approximation. 2
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5.5. The Harmonic Oscillator

We continue with Example 12 (page 15). In order to analyze the harmonic oscillator, we

solve the following systems of equations:

xst,p1 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1) (75)

xst,p2 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2) (76)

xst,p3 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3) (77)

xst,p4 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4) (78)

xst,p5 = 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5) (79)

We emphasize that the right-hand sides are ∨-cmcave expressions. It is easy to verify that

xst,p1 = · · · = xst,p4 = ∞, xst,p5 = 7 is a post-solution. In order to simplify notations,

let c1 = c3 = 0, c2 = c4 = 1, c5 = 7, and, for all i ∈ {1, . . . , 5}, fi : Rn → R be defined by

fi((x1, . . . , x5)>) := ci ∨ (JsKR{pi 7→ xi | i ∈ {1, . . . , 5}})(pi) (80)

Let moreover f = (f1, . . . , f5)>, i.e., f denotes the right-hand side of the above system

of equations. If we evaluate the right-hand sides, we get

f((∞,∞,∞,∞, 7)>) ' (2.0426, 2.0426, 1.6651, 1.6651, 7)>. (81)

For evaluating the right-hand sides, we can use semi-definite programming. Many state of

the art implementations (e.g. CSDP [3–5], SeDuMi [25], SDPA [11, 31, 32], and SDPT3

[27, 28]) are based on primal–dual interior point methods (see e.g. Wright [30] for more

information on primal-dual interior point methods). They solve the primal and the dual

problem at the same time. From a dual optimal solution, we obtain the first ∧-strategy

π(0) that is given as follows:

π(0) := Tf,(∞,∞,∞,∞,7)>((x1, . . . , x5)>) '



0 ∨ 0.14588 · x5 + 1.0214

1 ∨ 0.14588 · x5 + 1.0214

0 ∨ 0.11892 · x5 + 0.83263

1 ∨ 0.11892 · x5 + 0.83263

7 ∨ 0.99456 · x5


(82)

We now explain how we have obtained the first component. According to the findings

from Example 12, we have

(JsKR{p1 7→ ∞, p2 7→ ∞, p3 7→ ∞, p4 7→ ∞, p5 7→ 7})(p1) (83)

= sup {C1 •X | X � 0, X1·1 = 1, B5 •X ≤ 7} (84)

= sup




0 −0.5 −0.005

−0.5 0 0

−0.005 0 0

 •X | X � 0, X1·1 = 1,


0 0 0

0 2 1

0 1 3

 •X ≤ 7

 (85)

=2.0426 (86)
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We have seen in Subsection 5.4, that, in order to compute an affine over-approximation
of (JsKR{pi 7→ xi | i ∈ {1, . . . , 5}})(pi) that is exact at x1 = x2 = x3 = x4 = ∞ and
x5 = 7, we can solve the dual problem that is given as follows:

inf

7λ+ µ | λ ≥ 0, µ ∈ R, λB5 + µ


1 0 0

0 0 0

0 0 0

 � C1

 (87)

= inf {7λ+ µ | λ ≥ 0, µ ∈ R, (88)

λ


0 0 0

0 2 1

0 1 3

+ µ


1 0 0

0 0 0

0 0 0

 �


0 −0.5 −0.005

−0.5 0 0

−0.005 0 0


 (89)

Running a semi-definite programming solver, e.g. CSDP or SeDuMi, gives us the result
λ ' 0.14588 and µ ' 1.0214. This gives us the first component of π(0). The remaining
components can be computed in the same way.

As described in Subsection 5.2 the least fixpoint of π(0) can be computed through
linear programming. We get

x(0) := µπ(0) = (2.0426, 2.0426, 1.6651, 1.6651, 7)>. (90)

Then, by again solving semi-definite and linear programming problems, we get

π(1) := Tf,x(0)((x1, . . . , x5)>) '



0 ∨ 0.90541 · x1 + 0.01340 · x5 + 0.093820

1 ∨ 0.90541 · x2 + 0.01340 · x5 + 0.093819

0 ∨ 0.88297 · x3 + 0.01346 · x5 + 0.094205

1 ∨ 0.88297 · x4 + 0.01346 · x5 + 0.094205

7 ∨ 0.99456 · x5


(91)

and

x(1) := µπ(1) ' (1.9838, 1.9838, 1.6098, 1.6098, 7.0000)>. (92)

Continuing this process, we find:

x(2) := µπ(2) ' (1.8971, 1.8971, 1.5434, 1.5434, 7.0000)> (93)

x(3) := µπ(3) ' (1.8718, 1.8718, 1.5280, 1.5280, 7.0000)> (94)

x(4) := µπ(4) ' (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)> (95)

x(5) := µπ(5) ' (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)> (96)

The ∧-strategy iteration stabilizes after a few iterations. The run of the ∧-strategy im-
provement algorithm is visualized in Figure 6. As a result, we obtain

µf ≤ (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)>. (97)

Therefore, the following invariants hold at program point st:

−x1 ≤ 1.8708 x1 ≤ 1.8708 −x2 ≤ 1.5275 (98)

x2 ≤ 1.5275 2x21 + 3x22 + 2x1x2 ≤ 7 (99)
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Fig. 6. Visualization of a run of the ∧-strategy iteration algorithm for the harmonic oscillator
from Section 2

6. The Max-Strategy Iteration Approach

Before giving a formal description of the max-strategy iteration approach in Subsec-
tion 6.2, we explain it by a simple example in Subsection 6.1. In Subsection 6.3 we apply
the max-strategy iteration approach to the harmonic oscillator as introduced in Section
2.

6.1. A Simple Example

Our goal is to compute the least solution of the following equation system:

x = 0.4 ∨
√

x ∨ 1 +
√

x− 1 (100)
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Fig. 7. A run of the ∨-strategy improvement algorithm

Here,
√
x = sup {y ∈ R | y2 ≤ x} for all x ∈ R. Note that

√
x = sup ∅ = −∞ for all

x < 0. The important property is that all right-hand sides are ∨-cmcave. The graph of
the left-hand side x and the graph of the right-hand side 0.4∨

√
x∨1+

√
x− 1 are drawn

in Figure 7.(a). The least solution is the least x-coordinate where the two graphs cross,
i.e., it is given by 1.

We now use the ∨-strategy improvement algorithm of Gawlitza and Seidl [13, 14, 16,
17] for finding the least solution. We consider the computation of the least solution as
a competition between a maximizer and a minimizer. The current approximate to the
least solution is the current state of the play. The maximizer aims at maximizing the
current approximate whereas the minimizer aims at minimizing it. In some state, i.e., at
some approximate the maximizer is allowed to select an argument of the finite maximum
0.4∨

√
x∨ 1 +

√
x− 1, for instance

√
x. Such a selection is called a ∨-strategy. The play

starts at the approximate −∞. This is the current state of the play at the beginning. At
this point, the most profitable ∨-strategy is the argument 0.4, since

√
x and 1 +

√
x− 1

evaluate to −∞. The play proceeds by performing a least fixpoint iteration starting at
the current state −∞ using the current ∨-strategy, i.e., the next approximate is the least
solution of the equation system

x = 0.4 (101)

that exceeds −∞. Hence, the next approximate is 0.4 (cf. Figure 7.(b)). Note that 0.4
is not only the least solution of the equation system x = 0.4 that exceeds 0.4, but it
is also the greatest solution of the inequation x ≤ 0.4, i.e., the greatest point in the
convex area that is above the graph of the left hand-side and below the graph of the
concave right-handside (cf. Figure 7.(b)). This is not by accident. During a run of our
∨-strategy improvement algorithm, the next approximate is always the greatest point of
such a convex area. In consequence, it can be computed through algorithms for solving
convex optimization problems.

Now, we try to improve the current ∨-strategy locally at 0.4. Since
√

0.4 > 0.4 holds,
we can improve the current ∨-strategy to the ∨-strategy that selects the argument

√
x. 2

This gives us a strict local improvement. Thus, the next approximate is the least solution
of the equation system

x =
√

x (102)

2 Since 1 +
√

0.4− 1 = 1 +
√
−0.6 = 1 + −∞ = −∞ holds, a switch to the ∨-strategy that selects the

argument 1 +
√
x− 1 is not profitable at the approximate 0.4.
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that exceeds 0.4. Hence, the next approximate is 1 (cf. Figure 7.(c)). It is again the
greatest solution of the inequation system x ≤

√
x. Thus, it is the uniquely determined

optimal solution of the following convex optimization problem:

max x subject to x2 − x ≤ 0 (103)

In this case the unique optimal solution can for instance be computed through semi-
definite programming, because it is a convex quadratic optimization problem.

Accordingly, our current approximate is 1 and our current ∨-strategy selects the argu-
ment

√
x. We again try to improve the current ∨-strategy, i.e., we search for a ∨-strategy

that is strictly more profitable at the current approximate 1 than the current ∨-strategy.
Since 0.4 < 1 = 1 +

√
1− 1 = 1 =

√
1 holds, there is no such ∨-strategy. In other words,

the current ∨-strategy cannot be improved at the current approximate (cf. Figure 7.(c)).
This means that we have found a solution of the equation system

x = 0.4 ∨
√

x ∨ 1 +
√

x− 1. (104)

Since the sequence of approximates is monotonically increasing and bounded by the least
solution, the least solution has been found. In summary: The ∨-strategy improvement
algorithm terminates and returns the least solution 1.

6.2. The Max-Strategy Improvement Algorithm

In this section we compute least solutions of systems of ∨-cmcave equations through
the ∨-strategy improvement algorithm of Gawlitza and Seidl [13, 14, 15, 17]. Systems of
∨-cmcave equations are in particular systems of monotone equations over the complete
linearly ordered set R. For the sake of generality, we subsequently consider an arbitrary
complete linearly ordered set.

A ∨-strategy σ for a system E of monotone equations over a complete linearly ordered
set is a function that maps every expression e1 ∨ · · · ∨ ek occurring in E to one of the
immediate sub-expressions ej , j ∈ {1, . . . , k}. We denote the set of all ∨-strategies for
E by ΣE . We drop the subscript, whenever it is clear from the context. Finally, we set
E(σ) := {x = σ(e) | x = e ∈ E}.

Example 22. For the system E = {x = 1
2 ∨
√

x} of ∨-cmcave equations and the ∨-
strategy σ = { 12 ∨

√
x 7→ 1

2}, we have E(σ) = {x = 1
2}. 2

The ∨-strategy improvement algorithm iterates over ∨-strategies. It maintains a current
∨-strategy and a current approximate to the least solution. In each step, if possible,
the current ∨-strategy is improved w.r.t. the current approximate, and a new current
approximate is computed w.r.t. the new current ∨-strategy and the current approximate:

Definition 23 (Improvements). Let E be a system of monotone equations over a com-
plete linearly ordered set. Let σ, σ′ ∈ Σ be ∨-strategies for E and ρ be a pre-solution of
E(σ). The ∨-strategy σ′ is called improvement of σ w.r.t. ρ iff the following conditions
are fulfilled:

(1) If ρ 6= JEKρ, then JE(σ′)Kρ > ρ.
(2) For all ∨-expressions e1 ∨ · · · ∨ ek occurring in E the following holds:

If σ′(e) 6= σ(e), then Jσ′(e)Kρ > Jσ(e)Kρ. 2
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We can now formulate the ∨-strategy improvement algorithm for computing least solu-
tions of systems of monotone equations over complete linearly ordered sets. The input
is a system E of monotone equations over a complete linearly ordered set, a ∨-strategy
σinit for E , and a pre-solution ρinit of E(σinit). In order to compute the least and not just
some solution, we additionally require that ρinit ≤ µJEK holds:

Algorithm 2 The ∨-Strategy Improvement Algorithm

Input :


- A system E of monotone equations over a complete linearly ordered set

- A ∨-strategy σinit for E

- A pre-solution ρinit of E(σinit) with ρinit ≤ µJEK

Output : The least solution µJEK of E
σ ← σinit;
ρ← ρinit;

while (ρ 6= JEKρ) {
σ ← improvement of σ w.r.t. ρ;
ρ← µ≥ρJE(σ)K;

}
return ρ;

Lemma 24. Let E be a system of monotone equations over a complete linearly ordered
set. For i ∈ N, let ρi be the value of the program variable ρ and σi be the value of the
program variable σ in the ∨-strategy improvement algorithm (Algorithm 2) after the i-th
evaluation of the loop-body. The following statements hold for all i ∈ N:

(1) ρi ≤ µJEK.
(2) ρi ≤ JE(σi+1)Kρi.
(3) ρi+1 = µ≥ρiJE(σi+1)K.
(4) If ρi < µJEK, then ρi+1 > ρi.
(5) If ρi = µJEK, then ρi+1 = ρi.
(6) Whenever the ∨-strategy improvement algorithm terminates, it computes the least

solution µJEK of E. 2

Now, assume that E is a system of ∨-cmcave equations. In this case our ∨-strategy
improvement algorithm terminates and returns the least solution at the latest after con-
sidering each ∨-strategy at most |X| times. For simplicity, we assume w.l.o.g. that each
equation of E is of the form x = −∞ ∨ e. Then, we start our ∨-strategy improvement
algorithm with a ∨-strategy σinit such that E(σinit) = {x = −∞ | x ∈ X} and the
pre-solution −∞ of E(σinit). Using the notations from Lemma 24, for all i ∈ N, the value
ρi+1 = µ≥ρiJE(σi+1)K can be determined as follows:

Lemma 25. Let

X−∞ := {x ∈ X | x = e ∈ E(σi+1) and JeKρi = −∞} (105)

X∞ := {x ∈ X | x = e ∈ E(σi+1) and JeKρi =∞} (106)

X′ := X \ (X−∞ ∪X∞) (107)
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E ′ := {x = e ∈ E(σi+1) | x ∈ X′}[−∞/X−∞][∞/X∞]. (108)

Here, E ′ denotes the system of cmcave equations that is obtained from E(σi+1) by remov-

ing all equations x = e with x /∈ X′ and then replacing all occurrences of variables from

X−∞ in the right-hand sides with the constant −∞ and all occurrences of variables from

X∞ in the right-hand sides with the constant ∞. Then, for all x′ ∈ X′,

ρi+1(x′) = µ≥ρiJE(σi+1)K(x′)
= µ≥ρi|X′ JE

′K(x′)
= sup {ρ(x′) | ρ : X′ → R and ρ(x) ≤ JeKρ for all equations x = e ∈ E ′}.

Further, ρi+1(x−∞) = µ≥ρiJE(σi+1)K(x−∞) = −∞ for all x−∞ ∈ X−∞, and ρi+1(x∞) =

µ≥ρiJE(σi+1)K(x∞) =∞ for all x∞ ∈ X∞,

Provided that E is a system of ∨-cmcave equations, ρi+1 can be computed by solving

|X| convex optimization problems. Moreover, ρi+1 is uniquely determined through the

system E, the ∨-strategy σi+1 and the set X∞ of all variables that are already known to

be ∞. 2

The sequence ((ρi, {x ∈ X | x = e ∈ E(σi+1) and JeKρi =∞}))i is strictly increasing (or-

dered component-wise), since the sequence (ρi)i is strictly increasing and the sequence

({x ∈ X | x = e ∈ E(σi+1) and JeKρi = ∞})i is increasing. By Lemma 25, ρi+1 is

uniquely determined through the system E , the ∨-strategy σi+1 and the set {x ∈ X |
x = e ∈ E(σi+1) and JeKρi =∞}. Therefore, the ∨-strategy improvement algorithm con-

siders each ∨-strategy at most |X| times (considering some ∨-strategy more than |X|
times would contradict the fact that (ρi)i is strictly increasing). We get:

Theorem 26 (Gawlitza and Seidl [16]). Let E be a system of ∨-cmcave equations. The

∨-strategy improvement algorithm (Algorithm 2) computes the least solution µJEK of E
and performs at most |Σ| · |X| ∨-strategy improvement steps. If E is a system of ∨-cmcave

equations, at most |X| convex optimization problems must be solved for every ∨-strategy

improvement step. 2

Example 27. We consider the system

E =
{

x = −∞∨ 1
2 ∨
√

x ∨ 7
8 +

√
x− 47

64

}
(109)

of ∨-cmcave equations. We start with the uniquely determined ∨-strategy σ0 such that

E(σ0) = {x = −∞} (110)

and with the solution ρ0 := {x 7→ −∞} of E(σ0). Since ρ0 6= JEKρ0, we improve the

∨-strategy σ0 w.r.t. ρ0 to a ∨-strategy σ1 . Necessarily, we get

E(σ1) =

{
x =

1

2

}
. (111)

By Lemma 25, we get

ρ1(x) = µ≥ρ0JE(σ1)K(x) = sup

{
x | x ≤ 1

2

}
=

1

2
. (112)
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Since
√

1
2 >

1
2 and 7

8 +
√

1
2 −

47
64 <

1
2 , we necessarily improve the ∨-strategy σ1 w.r.t. ρ1

to the uniquely determined ∨-strategy σ2 such that

E(σ2) =
{
x =
√

x
}
. (113)

Again by Lemma 25, we get

ρ2(x) = µ≥ρ1JE(σ2)K(x) = sup
{
x | x ≤

√
x
}

= 1. (114)

Since

7

8
+

√
1− 47

64
>

7

8
+

√
1− 60

64
=

9

8
> 1, (115)

we get

E(σ3) =

{
x =

7

8
+

√
x− 47

64

}
. (116)

Again by Lemma 25, we get

ρ3(x) = µ≥ρ2JE(σ3)K(x) = sup

{
x | x ≤ 7

8
+

√
x− 47

64

}
= 2. (117)

Thus, we finally have ρ3 = {x 7→ 2}. The algorithm terminates, because ρ3 solves E. Thus,
ρ3 = µJEK. We have found the least solution. For each ∨-strategy improvement step, we
solved convex quadratic optimization problems that can be solved through semi-definite
programming. 2

6.3. The Harmonic Oscillator

We continue with Example 12 on page 15. After introducing −∞ at the right-hand sides,
we obtain the following system of ∨-cmcave equations:

xst,p1 = −∞∨ 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = −∞∨ 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = −∞∨ 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3) (118)

xst,p4 = −∞∨ 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = −∞∨ 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5)

In this example we have 35 = 243 different ∨-strategies. It is clear that the algorithm
will switch to the ∨-strategy that is given by the finite constants in the first step. At
each equation, it then can switch to the non-constant expression, but then, because it
constructs a strictly increasing sequence, it will never return to the constant. Summariz-
ing, the ∨-strategy improvement algorithm performs at most 6 ∨-strategy improvement
steps. In fact our proof-of-concept implementation performs 4 ∨-strategy improvement
steps when solving this example. The last ∨-strategy that the algorithm considers leads
to the system

xst,p1 = (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = (JsKR{p 7→ xst,p | p ∈ P})(p3) (119)
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xst,p4 = (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = 7

of cmcave equations. The current approximate at this point of time does not assign∞ to
any variable. Because of Lemma 25, in order to determine the next value for the variable
xst,pk (for k ∈ {1, . . . , 5}), we solve the following convex optimization problem

sup {ρ(xst,pk) | ρ : X→ R, xst,p5 ≤ 7,

ρ(xst,pi) ≤ (JsKR{q 7→ ρ(xst,q) | q ∈ P})(pi) for all i ∈ {1, . . . , 4}} (120)

For that, we solve the following semi-definite programming problem that is obtained from
the convex optimization problem through unfolding the definition of the relaxed abstract
semantics:

sup xst,pk (121)

xst,p1 ≤ Ck •X(1) X(1) � 0 X
(1)
1·1 = 1 (122)

B1 •X(1) ≤ xst,p1 · · · B5 •X(1) ≤ xst,p5 (123)

xst,p2 ≤ Ck •X(2) X(2) � 0 X
(2)
1·1 = 1 (124)

B1 •X(2) ≤ xst,p1 · · · B5 •X(2) ≤ xst,p5 (125)

xst,p3 ≤ Ck •X(3) X(3) � 0 X
(3)
1·1 = 1 (126)

B1 •X(3) ≤ xst,p1 · · · B5 •X(3) ≤ xst,p5 (127)

xst,p4 ≤ Ck •X(4) X(4) � 0 X
(4)
1·1 = 1 (128)

B1 •X(4) ≤ xst,p1 · · · B5 •X(4) ≤ xst,p5 (129)

xst,p5 ≤ 7 (130)

The matrices B1, . . . , B5, C1, . . . , C5 are defined in Example 12 (page 15). Solving the
above semi-definite programming problem gives us the final values for the variables
xst,p1 , . . . ,xst,p5 . We get

µJEK = {xst,p1 7→ 1.8708..,xst,p2 7→ 1.8708..,

xst,p3 7→ 1.5275..,xst,p4 7→ 1.5275..,xst,p5 7→ 7} (131)

Hence, the following invariants hold at program point st of the harmonic oscillator (see
page 5):

−x1 ≤ 1.8708 x1 ≤ 1.8708 −x2 ≤ 1.5275 (132)

x2 ≤ 1.5275 2x21 + 3x22 + 2x1x2 ≤ 7 (133)

For this example the ∨-strategy improvement algorithm presented in this section finds
the same invariants as the ∧-strategy improvement algorithm presented in section 5 (cf.
Subsection 5.5).

7. Comparison and Conclusion

We have discussed how strategy iteration can be used for solving systems of ∨-cmcave
equations. In the context of static program analysis, such equation systems are useful for
approximating the abstract semantics of programs w.r.t. quadratic templates through
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semi-definite relaxations. We discussed two different strategy improvement approaches
for solving systems of ∨-cmcave equations:

The ∧-strategy iteration approach of Adjé et al. [2] successively approximates the
given equation system by systems of affine inequalities which can be efficiently solved by
linear programming. The resulting method works similar to Newton’s method. For each
approximate, an improved ∧-strategy (a system of affine inequalities) can be efficiently
determined through semi-definite programming.

As an alternative approach, we discussed the ∨-strategy improvement approach of
Gawlitza and Seidl [13, 14]. From an algorithmic perspective, this approach differs sig-
nificantly from the ∧-strategy improvement approach. ∨-strategy iteration, when applied
to quadratic zones, in each iteration combines one constraint for each program point and
polynomial template into a global semi-definite programming problem which is jointly
solved.

The advantage of the ∨-strategy iteration approach is that (given an ideal SDP solver)
the number of iterations is guaranteed to be finite and that it guarantees minimality of
the obtained solution. The draw-back, however, is that only after termination, a safe
invariant is found. Intermediate approximates to the least solution are not safe.

The ∧-strategy iteration approach on the other hand, when applied to quadratic tem-
plates, relies on solving (dual) SDP problems locally for every constraint separately —
each of which typically involves just few unknowns of the analysis problem. The global
task of determining the next approximate for all program points and polynomial tem-
plates then is delegated to linear programming. The disadvantage of the ∧-strategy itera-
tion approach is that the iteration is not guaranteed to terminate but only to converge to
a solution. Moreover, this solution is not necessarily minimal. On the other hand (again
assuming ideal solvers for semi-definite and linear programming), it produces a decreas-
ing sequence of post-fixpoints. Thus, the iteration may any time be terminated with a
valid program invariant. Also, the speed of convergence is — as for Newton’s method —
usually quite good. Another advantage of the ∧-strategy iteration approach is that LP
solvers scale to larger problems than SDP solvers. Therefore, we expect the ∧-strategy
iteration approach to be applicable not just to small, but also to medium sized inputs. A
detailed practical comparison w.r.t. efficiency and precision, however, remains for future
work.
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