
Pre-proceedings

10th International Workshop on

Rule-Based Programming

RULE 2009

Brasilia

28 June 2009

Federated Conference on Rewriting, Deduction and Programming

Editors:

Anamaria Martins Moreira and Ian Mackie

ii

Preface

RULE 2009 is the tenth International Workshop on Rule-Based Programming,
and takes place June 28th 2009, Braśılia, Brazil, in conjunction with RDP 2009.
The first Rule workshop was held in Montréal in 2000, and subsequent editions
took place in Firenze, Pittsburgh, Valencia, Aachen, Nara, Seattle, Paris, and
Hagenberg.

The fundamental concepts of rule-based programming are present in many
areas of computer science, from theory to practical implementations. In pro-
gramming languages, term rewriting is used in semantics as well as in imple-
mentations that use bottom-up rewriting for code generation. Rules are also
used to perform computations in various systems; to describe logical inference
in theorem provers; to specify and implement constraint-based algorithms and
applications; and to describe and implement program transformations. Rule-
based programming provides a common framework for viewing computation as
a sequence of transformations on some shared structure such as a term, graph,
proof, or constraint store. Rule selection and application is typically governed
by a rich set of sophisticated mechanisms for recognizing and manipulating
structures.

After the development of the principles of rewriting logic and of the rewriting
calculus in the nineties, languages and systems such as ASF+SDF, BURG,
CHRS, Claire, ELAN, Maude, and Stratego contributed to demonstrate the
importance of rule-based programming. The area has since been experiencing a
period of growth with the emergence of new concepts, systems, and applications
domains, such as Domain Specific Languages, Generative and Aspect-Oriented
Programming, and Software Engineering activities like maintenance, reverse
engineering, and testing.

The goal of this workshop is to bring together researchers from the various
communities working on rule-based programming to foster advances in the foun-
dations and research on rule-based programming methods and systems; and to
promote cross-fertilization between theory and practice, and the application of
rule-based programming in various important domains.

Topics of interest include:

• Theory and Languages for rule-based programming: Advances in pattern
and rewriting calculi, Advances in rewriting logic, Complexity results,
Static analysis, Semantics, Type Systems, Implementation techniques,
Domain-specific Languages

• Rule-based specification: Business rule systems, Policy specifications

• Applications: Software analysis and transformation, Software develop-
ment and testing, Reengineering, Security

• Paradigm combinations of Rule-based programming: with Functional Pro-
gramming, with Logic Programming, with Object-oriented programming,
Language embedding and extensions

iii

• Tool and System descriptions: Usability engineering for rule-based pro-
gramming tools, Experience in building or using rule-based programming
systems, Practical aspects of rule-based programming systems, Empirical
evaluation of rule-based programming

The Programme Committee has selected ten papers for presentation at
RULE 2009. In addition, the programme includes an invited talk by Hélène
Kirchner. The Final Proceedings of RULE 2009 will appear as a volume of
Electronic Proceedings in Theoretical Computer Science.

We would like to thank all those who contributed to RULE 2009. We are
grateful to the programme committee members and the external referees for
their careful and efficient work in the reviewing process.

Anamaria Martins Moreira and Ian Mackie

iv

Submitted to Electronic Proceedings
in Theoretical Computer Science.

c© Boyer & Genet

Verifying Temporal Regular properties of Abstractions of
Term Rewriting Systems

Benoı̂t Boyer
Université Rennes 1, France

Benoit.Boyer@irisa.fr

Thomas Genet
Université Rennes 1, France

Thomas.Genet@irisa.fr

The tree automaton completion is an algorithm used for proving safety properties of systems that
can be modeled by a term rewriting system. This representation and verification technique works
well for proving properties of infinite systems like cryptographic protocols or more recently on Java
Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over
approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the
lack of information about rewriting relation between terms. Actually, terms in relation by rewriting
are in the same equivalence class: there are recognized by the same state in the tree automaton.

Our objective is to produce an automaton embedding an abstraction of the rewriting relation
sufficient to prove temporal properties of the term rewriting system.

We propose to extend the algorithm to produce an automaton having more equivalence classes
to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are
used to recognize equivalence classes of terms, ε-transitions represent the rewriting relation between
terms. From the completed automaton, it is possible to automatically build a Kripke structure ab-
stracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and
the transition relation is given by the set of ε-transitions. States of the Kripke structure are labelled by
the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular
Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using
standard model checking algorithms. The only difference between LTL and R-LTL is that predicates
are replaced by regular sets of acceptable terms.

1 Introduction

Our main objective is to formally verify programs or systems modeled using Term Rewriting Systems.
In a previous work [2], we have shown that it is possible to translate a Java bytecode program into a Term
Rewriting System (TRS). In this case, terms model Java Virtual Machine (JVM) states and the execution
of bytecode instructions is represented by rewriting, according to the small-step semantics of Java. An
interesting point of this approach is the possibility to classify rewriting rules. More precisely, there is a
strong relation between the position of rewriting in a term and the semantics of the executed transition
on the corresponding state. For the case of Java bytecode, since a term represents a JVM state, rewriting
at the top-most position corresponds to manipulations of the call stack, i.e. it simulates a method call or
method return. On the other hand, since the left-most subterm represents the execution context of the
current method (so called frame), rewriting at this position simulates the execution of the code of this
method. Hence, by focusing on rewriting at a particular position, it is possible to analyse a Java program
at the method call level (inter procedural control flow) or at the instruction level (local control flow).

The verification technique used in [2], called Tree Automata Completion [5], is able to finitely over-
approximate the set of reachable terms, i.e. the set of all reachable states of the JVM. However, this
technique lacks precision in the sense that it makes no difference between all those reachable terms.
Due to the approximation algorithm, all reachable terms are considered as equivalent and the execution

2 Verifying Temporal Regular properties of Abstractions of Term Rewriting Systems

ordering is lost. In particular, this prevents to prove temporal properties of such models. However, using
approximations makes it possible to prove unreachability properties of infinite state systems.

In this preliminary work, we propose to improve the Tree Automata Completion method so as to
prove temporal properties of a TRS representing a finite state system. The first step is to refine the
algorithm so as to produce a tree automaton keeping an approximation of the rewriting relation between
terms. Then, in a second step, we propose a way to check LTL-like formulas on this tree automaton.

2 Preliminaries

Comprehensive surveys can be found in [1] for rewriting, and in [4, 7] for tree automata and tree language
theory.

Let F be a finite set of symbols, each associated with an arity function, and let X be a countable
set of variables. T (F ,X) denotes the set of terms, and T (F) denotes the set of ground terms (terms
without variables). The set of variables of a term t is denoted by V ar(t). A substitution is a function
σ from X into T (F ,X), which can be uniquely extended to an endomorphism of T (F ,X). A
position p for a term t is a word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by:
• Pos(t) = {λ} if t ∈X

• Pos(f (t1, . . . , tn)) = {λ}∪{i.p | 1≤ i≤ n and p ∈Pos(ti)}
If p ∈Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by
replacement of the subterm t|p at position p by the term s. A term rewriting system (TRS) R is a set
of rewrite rules l → r, where l,r ∈ T (F ,X), l 6∈X , and V ar(l) ⊇ V ar(r). The TRS R induces
a rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X) and l → r ∈ R, s→p

R t denotes
that there exists a position p ∈Pos(t) and a substitution σ such that s|p = lσ and r = s[rσ]p. Note
that the rewriting position p can generally be omitted, i.e. we generally write s→R t. The reflexive
transitive closure of →R is denoted by →∗R . The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈T (F) | ∃s ∈ E s.t. s→∗R t}.

The verification technique defined in [6, 5] is based on the approximation of R∗(E). Note that
R∗(E) is possibly infinite: R may not terminate and/or E may be infinite. The set R∗(E) is generally
not computable [7]. However, it is possible to over-approximate it [6, 5, 9] using tree automata, i.e. a
finite representation of infinite (regular) sets of terms. In this verification setting, the TRS R represents
the system to verify, sets of terms E and Bad respectively represent the set of initial configurations and
the set of “bad” configurations that should not be reached. Using tree automata completion, we construct
a tree automaton B whose language L(B) is such that L(B) ⊇ R∗(E). If L(B)∩Bad = /0 then this
proves that R∗(E)∩Bad = /0, and thus that none of the “bad” configurations is reachable. We now
define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = /0. T (F ∪Q) is called
the set of configurations.
Definition 1 (Transition, normalized transition, ε-transition). A transition is a rewrite rule c→ q, where
c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q. A normalized transition is a transition c→ q where
c = f (q1, . . . ,qn), f ∈F whose arity is n, and q1, . . . ,qn ∈ Q. An ε-transition is a transition of the form
q→ q′ where q and q′ are states.
Definition 2 (Bottom-up nondeterministic finite tree automaton). A bottom-up nondeterministic finite
tree automaton (tree automaton for short) is a quadruple A = 〈F ,Q,QF ,∆∪∆ε〉, where QF ⊆ Q, ∆ is a
set of normalized transitions and ∆ε is a set of ε-transitions.

Boyer & Genet 3

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set ∆∪∆ε) is denoted by
→∆∪∆ε

. When ∆ is clear from the context, →∆∪∆ε
will also be denoted by→A. We also introduce→6εA

the transitive relation which is induced by the set ∆ alone.

Definition 3 (Recognized language, canonical term). The tree language recognized by A in a state q
is L(A,q) = {t ∈ T (F) | t →∗A q}. The language recognized by A is L(A) =

⋃
q∈QF

L(A,q). A tree
language is regular if and only if it can be recognized by a tree automaton. A term t is a canonical term
of the state q, if t→6εA q.

Example 1. Let A be the tree automaton 〈F ,Q,QF ,∆〉 such that F = { f ,g,a}, Q = {q0,q1,q2},
QF = {q0}, ∆ = { f (q0)→ q0,g(q1)→ q0,a→ q1,b→ q2} and ∆ε = {q2 → q1}. In ∆, transitions
are normalized. A transition of the form f (g(q1))→ q0 is not normalized. The term g(a) is a term
of T (F ∪Q) (and of T (F)) and can be rewritten by ∆ in the following way: g(a)→6εA g(q1)→6εA q0.
Hence g(a) is a canonical term of q1. Note also that b→A q2 →A q1. Hence, L(A,q1) = {a,b} and
L(A) = L(A,q0) = {g(a),g(b), f (g(a)), f (f (g(b))), . . .}= { f ∗(g([a|b]))}.

3 The Tree Automata Completion with ε-transitions

Given a tree automaton A and a TRS R, the tree automata completion algorithm, proposed in [6, 5],
computes a tree complete automaton A∗R such that L(A∗R) = R∗(L(A)) when it is possible (for some of
the classes of TRSs where an exact computation is possible, see [5]), and such that L(A∗R)⊇R∗(L(A))
otherwise. In this paper, we only consider the exact case.

The tree automata completion with ε-transtions works as follow. From A = A0
R completion builds a

sequence A0
R .A1

R . . .Ak
R of automata such that if s ∈L(Ai

R) and s→R t then t ∈L(Ai+1
R). Transitions

of Ai
R are denoted by the set ∆i ∪∆i

ε . Since for every tree automaton, there exists a deterministic tree
automaton recognizing the same language, we can assume that initially A has the following property:

Property 1. If ∆ contains two normalized transitions of the form f (q1, . . . ,qn)→ q and f (q1, . . . ,qn)→
q′, it means q = q′. This ensures that the rewriting relation→6ε is deterministic.

If we find a fixpoint automaton Ak
R such that R∗(L(Ak

R)) = L(Ak
R), then we note A∗R = Ak

R and we
have L(A∗R) = R∗(L(A0

R)) [5]. To build Ai+1
R from Ai

R , we achieve a completion step which consists of
finding critical pairs between→R and→Ai

R
. To define the notion of critical pair, we extend the definition

of substitutions to the terms of T (F ∪Q). For a substitution σ : X 7→Q and a rule l→ r ∈R, a critical
pair is an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗Ai

R
q and lσ →R rσ . Note that

since R, Ai
R and the set Q of states of Ai

R are finite, there is only a finite number of critical pairs. For
every critical pair detected between R and Ai

R such that we do not have a state q’ for which rσ → 6εAi
R

q′

and q′→ q ∈ ∆i
ε , the tree automaton Ai+1

R is constructed by adding new transitions rσ →6ε q′ to ∆i and
q′→ q to ∆i

ε such that Ai+1
R recognizes rσ in q, i.e. rσ →∗

Ai+1
R

q, see Figure 1. It is important to note that

lσ
R

//

∗Ai
R

��

rσ

6ε Ai+1
R

��
q q′

Ai+1
R

oo

Figure 1: A critical pair solved

we consider the critical pair only if the last step of the reduction lσ →∗Ai
R

q, is the last step of rewriting is
not a ε-transition. Without this condition, the completion computes the transitive closure of the expected

4 Verifying Temporal Regular properties of Abstractions of Term Rewriting Systems

relation ∆ε , and thus looses precision. The transition rσ → q′ is not necessarily a normalized transition
of the form f (q1, . . . ,qn)→ q′ and so it has to be normalized first. Instead of adding rσ → q′ we add
↓ (rσ → q′) to transitions of ∆i. Here is the ↓ function used to normalize transitions. Note that, in this
function, transitions are normalized using new states of Qnew.

Definition 4 (↓). Let A = 〈F ,Q,QF ,∆∪∆ε〉 be a tree automaton, Qnew a set of new states such that
Q∩Qnew = /0, t ∈T (F ∪Q) and q ∈Q. The normalisation of the transition s→ q′ is done in two steps.
We rewrite s by ∆ until rewriting is impossible: we obtain a unique configuration t if ∆ respects the
property 1. The second step ↓′ is inductively defined by:

• ↓′ (t→ q′) = /0 if t ∈ Q,

• ↓′ (f (t1, . . . , tn)→ q) =
⋃

i=1...n ↓′ (ti → qi)∪{ f (q1, . . . ,qn)→ q} where ∀i = 1 . . .n : (ti ∈ Q⇒
qi = ti)∧ (ti ∈T (F ∪Q)\Q⇒ qi ∈ Qnew).

It is very important to remark that the transition q′ → q in Figure 1 creates an order between the
language recognized by q and the one recognized by q′. Intuitively, we know that for all substitution
σ ′ : X →T (F) such that lσ ′ is a term recognized by q, it is rewritten by R into a canonical term (rσ ′)
of q′. By duality, the term rσ ′ has a parent (lσ ′) in the state q. Extending this reasoning we can define
a relation between canonical terms of states related by ∆ε : we consider only the rewriting at the top
position as relevant and we forget rewriting at subterm.

Definition 5 (99K). Let R be a TRS. For all terms u v, we have u 99KR v iff there exists w such that
u→∗R w, w→λ

R v and there is not rewriting on top position λ on the sequence denoted by u→∗R w.

In the following, we show that the completion builds a tree automaton where the set ∆ε is an abstrac-
tion 99KRi of the rewriting relation→R , for any relevant set Ri.

Theorem 1 (Correctness). Let be A∗R a complete tree automaton such that q′ → q is a ε-transition of
A∗R . Then, there exists two canonical terms u v such we have the following commutative diagram :

u

6εA∗R
��

R
//___ v

6εA∗R
��

q q′oo

To prove theorem 1, we need a stronger property:

Lemma 1. Let be A∗R a complete tree automaton, q a state of A∗R and v ∈L(A∗R ,q). Then, there exists
a canonical term u of q such we have u→∗R v.

Proof sketch. The proof is done by induction on the number of steps of completion to reach the post-
fixpoint A∗R : we are going to show that if Ai

R respects the property of theorem 1, then Ai+1
R does also

it.
First, we consider the normalization of a transition of the form rσ →6ε q′ and we show that the

property is true for q′. For all substitution σ ′ : X 7→ T (F) such that rσ ′ ∈L(Ai
R ,q′), there exists a

substitution σ ′′ : X 7→T (F) such that rσ ′′→∗R rσ ′ and rσ ′′ is a canonical term of q′. We consider the
added transition q′→ q. For all canonical term rσ ′′ of q′, there exists a term lσ ′′′ ∈L(Ai

R ,q) such that
lσ ′′′→R rσ ′′′ and rσ ′′′ = rσ ′′. By hypothesis on Ai

R , we know there exists a canonical term u of q such
that u→∗R lσ ′′′. By transitivity,we have u→∗R rσ ′. The last step consists in proving that for all terms of
all states of Ai+1

R , the property holds: this can be done by induction on the deepning of the recognized
terms.

Boyer & Genet 5

The theorem 1 is proved by considering the introduction of the transition q′→ q : by construction,
there exists a substitution σ : X 7→Q and a rule l→ r ∈R such that we have lσ →∗A∗R q and rσ →6εA∗R q′.
We define a new substitution σ ′ : X 7→T (F) such that for each variable x ∈ V (l), σ ′(x) is a canonical
term of the state σ(x). Obviously, using the result of the lemma 1, there exists a canonical term u of q
such that u→∗R lσ ′. Since the last step of rewriting in the reduction lσ →∗A∗R q is not a ε-transition, we
also deduce that lσ ′ is not produced by a rewriting at the top position of u whereas it is the case for rσ ′

and we have u 99KR rσ ′.

Theorem 2 (Completeness). Let A∗R be a complete tree automaton, q,q′ states of A∗R and u,v ∈ T (F)
such that u is a canonical term of q and v is a canonical term of q′. If u 99KR v then there exists a
ε-transition q′→ q in A∗R .

Proof sketch. By definition of u 99KR v there exists a term w such that u→∗R w and and there exists a rule
l→ r ∈R and a substitution σ : X 7→T (F) such that w = lσ and v = rσ . Since A∗R is a complete tree
automaton, it is closed by rewriting. It means that any term obtained by rewriting any term of L(A∗R ,q)
is also in L(A∗R ,q). This property is true in particular for the terms u and w. Since w is rewritten in q by
transitions of A∗R , we can define a second substitution σ ′ : X 7→ Q such that lσ →∗A∗R lσ ′→∗A∗R q. Using
again the closure property of A∗R , we know that the critical pair lσ ′→R rσ ′ and lσ ′→∗A∗R q is solved by

adding the transitions rσ ′→6εA∗R q′′ and q′′→ q. Since the property 1 is preserved by completion steps,
we can deduce that q′′ = q′ which means q′→ q.

Example 2. To illustrate this result, we give a completed tree automaton for a small TRS. We define R
as the union of the two sets of rules R1 = {a→ b, b→ c} and R2 = { f (c)→ g(a), g(c)→ h(a), h(c)→
f (a)}. We define initial set E = { f (a)}. We obtain the following tree automaton fixpoint :

A∗R =

〈
QF = {q f }, ∆ =



a → qa
b → qb
c → qc

f (qa) → q f
g(qa) → qg
h(qa) → qh


∆ε =


qb → qa
qc → qb
qg → q f
qh → qg
q f → qh


〉

If we consider the transition qh → qg, and its canonical terms h(a) and g(a) respectively, we can
deduce g(a) 99KR h(a). This is obviously an abstraction since we have g(a)→1

R g(b)→1
R g(c)→λ

R h(a).

In the following, we use the notation 99KRi to specify the relation for a relevant subset Ri of R. For
instance, u 99KRi v denotes that there exists w such that u→∗R w with no rewriting at the λ position of u
and w→λ

Ri
v. In example 2, we can say that g(a) 99KR2 h(a).

4 From Tree Automaton to Kripke Structure

Let A∗R = 〈T (F),Q,QF ,∆∪∆ε〉 be a complete tree automaton, for a given TRS R and an initial lan-
guage recognized by A. A Kripke structure is a four tuple K = (S,S0,R,L) where S is a set of states,
S0 ⊆ S initial states, R ⊆ S×S a left-total transition relation and L a function that labels each state with
a set of predicates which are true in that state. In our case, the set of true predicates is a regular set of
terms.

6 Verifying Temporal Regular properties of Abstractions of Term Rewriting Systems

Definition 6 (Labelling Function). Let AP = 〈T (F),Q,∆〉 be the structure defined from A∗R by removing
ε-transitions and final states. We define the labelling function L : q 7→ 〈T (F),Q,{q},∆〉 as the function
which associates to a state q the automaton AP where q is the unique final state. We obviously have the
property for all state state q :

∀t ∈L(L(q)), t→6εA∗R q

Now, we can build the Kripke structure for the subset Ri of R on which we want to prove some
temporal properties.
Definition 7 (Construction of a Kripke Structure). We build the 4-tuple (S,S0,R,L) from a tree automaton
such that we have S = Q, S0 ⊆ S is a set of initial states, R(q,q′) if q′→ q ∈ ∆ε and the labelling function
L as just defined previously.

Kripke structures must have a complete relation R. For any state q whose have no successor by R, we
had a loop such that R(q,q) holds. Note that this is a classical transformation of Kripke structures [3].
A Kripke structure is parametrized by the set S0. It defines which connected component of R we are
interested to analyze. For instance, to analyze the abstract rewriting at the top position of terms in
L(A∗R), we define set S0 = QF (the set of final states of A∗R), since all canonical terms of final states
are initial terms. For all abstract rewriting at a deeper position p, we need to define a set Sub of initial
subterms considered as the beginning of the rewriting at the position p. Then the set S0 will be defined
as S0 = {q | ∃t ∈ Sub, t→6εA∗R q}.

Kripke structure models exactly the abstract rewriting relation 99K∗Ri
for the corresponding subset

Ri ⊆R.
Theorem 3. Le be K = (S,S0,R,L) a Kripke structure built from A∗R . For any states s, s′ such that R(s,s′)
holds, there exists two terms u ∈ L(s) and v ∈ L(s′) such that u 99KRi v.

Proof. Here, the proof is quite trivial. It is a consequence of the theorem 1 which can be applied on the
relation R of the Kripke structure.

In Example 2, if we want to verify properties of R1 or R2, we need to consider a different subset
of ∆ε corresponding to the abstraction of the relation rewriting 99KRi . Figures 2 and 3 show the Kripke
structures corresponding to those abstractions. Note that in figure 2, a loop is needed on state c to have a
total relation for K1.

qa qb qc

Figure 2: Kripke structure K1 for 99KR1

q f qg

qh

Figure 3: Kripke structure K2 for 99KR2

The set S0 of initial states depends of the abstract rewriting relation selected. For example, if we want
to analyze 99KR2 (or 99KR1), we define S0 = {q f } (resp. S0 = {qa}).

5 Verification of R-LTL properties

To express our properties, we propose to define the Regular Linear Temporal Logic (R-LTL). R-LTL
is LTL where predicates are replaced by a tree automaton. The language of such a tree automaton

Boyer & Genet 7

characterizes a set of admissible terms. A state q of a Kripke structure validates the atomic property P
characterized by a tree automaton AP if and only if one term recognized by L(q) must be recognized by
AP to satisfy the property. More formally:

K(Q, QF , R, L), q |= P ⇐⇒ L(L(q))∩L(AP) 6= /0

We also add the operators (∧, ∨, ¬, X, F, G, U, R) with their standard semantics as in LTL to keep
the expressiveness of the temporal logic. More information about these operators can be found in [3].
Note that temporal properties do not range over the rewriting relation→R but over its abstraction 99KR .
It means that the semantics of the temporal operators has to be interpreted w.r.t. this specific relation.
For example, the formula G({ f (a)} =⇒ X{g(a)}) on K2 (for more clarity, we note predicates as sets
of terms): the formula has to be interpreted as : for all q q′, if K2, q |= { f (a)} and R(q,q′) then we have
K2, q′ |= {g(a)}. In the rewriting interpretation the only term u such that f (a) 99KR2 u is u = g(a).

We use the Büchi automata framework to perform model checking. A survey of this technique can
be found in the chapter 9 of [3]. LTL (or R-LTL) formulas and Kripke structures can be translated into
Büchi automata. We construct two Büchi automata : BK obtained from the Kripke structure and BL

defined by the LTL formula. Since the set of behaviors of the Kripke structure is the language of the
automaton BK , the Kripke structure satisfies the R-LTL formula if all its behaviors are recognized by
the automaton BL. It means checking L(BK) ⊆L(BL). For this purpose, we construct the automaton
BL that recognizes the language L(BL) and we check the emptiness of the automaton B∩ that accepts
the intersection of languages L(BK) and L(BL). If this intersection is empty, the term rewriting system
satisfies the property. This is the standard model-checking technique.

BM and BK are classically defined as 5-tuples: alphabet, states, initial states, final states and transition
relation. Generally, the alphabet of Büchi automata is a set of predicates. Since we use here tree automata
to define predicates, the alphabet of BK and BL is Σ the set of tree automata that can be defined over
T (F). Actually, a set of behaviors is a word which describes a sequence of states: if π = s0s1s2s3 . . .
denotes a valid sequence of states in the Kripke structure, then the word π ′ = L(s0)L(s1)L(s2) . . . is
recognized by BK . The algorithms used to build BM and BK can be found in [3].

The automaton intersection B∩ is obtained by computing the product of BK by BL. By construction
all states of BK have to be final. Intuitively any infinite path over the Kripke structure must be recognized
by BK . This case allows to use a simpler version of the general Büchi automata product.

Definition 8 (BK×BL). The product of BK = 〈Σ, Q, Qi, ∆, Q〉 by BL = 〈Σ, Q′, Q′i, ∆′, F〉 is defined as

〈Σ, Q×Q′, Qi×Q′i, ∆×, Q×F〉

where ∆× is the set of transitions (qK ,qL)
(AK ,AL)−→ (q′K ,q′L) such that qK

AK−→ q′K is a transition of BK and

qL
AL−→ q′L is a transition of BL. Moreover, the transition is only valid if the intersection between the

languages of AK and AL is non empty as expected by the satisfiability of the R-LTL atomic formula.

Finally the emptiness of the language L(B∩) can be checked using the standard algorithm based on
depth first search to check if final states are reachable.

Example 3. To illustrate the approach, we propose to check the formula P = G({ f (a)} =⇒ X{g(a)})
on example 2. The automaton BL (fig. 4) recognizes the negation of the formula P expressed as F({ f (a)}∧
X¬{g(a)}) and BK (fig. 5) recognizes the all behaviors of the Kripke structure K2 (fig. 3). The notation
Aα denotes the tree automaton such that its language is described by α (A¬g(a) recognizes the com-
plement of the language L(Ag(a)) and A∗ recognizes all term in T (F)). Figure 6 shows the result of

8 Verifying Temporal Regular properties of Abstractions of Term Rewriting Systems

intersection B∩ between BK and BL. Only reachable states and valid transitions (labeled by non empty
tree automata intersection) are showed. Since no reachable states of B∩ are final, its language is empty.
It means that all behaviors of K2 satisfy P : the only successor of f (a) for the relation 99KR2 is g(a).

1 2 3

A∗

A f (a) Ag(a)

A∗

Figure 4: Automaton BL

4 5

6 7

L(q f)

L(qg)

L(qg)

L(qg)

Figure 5: Automaton BK

1,4 1,5

1,6 1,72,5

A∗ ∩L(q f)

A f (a) ∩L(q f) A∗ ∩L(qg)

A∗ ∩L(qh)

A∗ ∩L(q f)

A f (a) ∩L(qg)

Figure 6: Automaton B∩

6 Conclusion, Discussion

In this paper, we show how to improve the tree automata completion mechanism to keep the ordering
between reachable terms. This ordering was lost in the original algorithm [5]. Another contribution is
the mechanism making it possible to prove LTL-like temporal properties on such abstractions of sets of
reachable terms. In this paper, we only deal with finite state systems and exact tree automata completion
results. Future plans are to extend this result so as to prove temporal properties on over-approximations
of infinite state systems. A similar objective has already been tackled in [8]. However, this was done
in a pure rewriting framework where abstractions are more heavily constrained than in tree automata
completion [5]. Hence, by extending LTL formula checking on tree automata over-approximations, we
hope to ease the verification of temporal formula on infinite state systems.

Acknowledgements

Many thanks to Axel Legay and Vlad Rusu for fruitful discussions on this work and to anonymous
referees for their comments.

References
[1] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.
[2] Y. Boichut, T. Genet, T. Jensen & L. Leroux (2007): Rewriting Approximations for Fast Prototyping of Static

Analyzers. In: RTA, LNCS 4533. Springer Verlag, pp. 48–62.
[3] Edmund M. Clarke, Orna Grumberg & Doron A. Peled (2000): Model Checking. MIT Press.
[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison & M. Tommasi (2008):

Tree Automata Techniques and Applications. http://tata.gforge.inria.fr.
[5] G. Feuillade, T. Genet & V. Viet Triem Tong (2004): Reachability Analysis over Term Rewriting Systems.

Journal of Automated Reasonning 33 (3-4), pp. 341–383. Available at http://www.irisa.fr/lande/
genet/publications.html.

http://www.irisa.fr/lande/genet/publications.html
http://www.irisa.fr/lande/genet/publications.html

Boyer & Genet 9

[6] T. Genet (1998): Decidable Approximations of Sets of Descendants and Sets of Normal forms. In: Proc. 9th
RTA Conf., Tsukuba (Japan), LNCS 1379. Springer-Verlag, pp. 151–165.

[7] R. Gilleron & S. Tison (1995): Regular Tree Languages and Rewrite Systems. Fundamenta Informaticae 24,
pp. 157–175.

[8] J. Meseguer, M. Palomino & N. Martı́-Oliet (2008): Equational abstractions. TCS 403(2-3), pp. 239–264.
[9] T. Takai (2004): A Verification Technique Using Term Rewriting Systems and Abstract Interpretation. In:

Proc. 15th RTA Conf., Aachen (Germany), LNCS 3091. Springer, pp. 119–133.

This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

An Implementation of Nested Pattern Matching in
Interaction Nets

Abubakar Hassan
Department of Computer Science

University of Sussex
Falmer, Brighton,

U.K.
abubakar.hassan@sussex.ac.uk

Eugen Jiresch
Theory and Logic Group

Insitute of Computer Languages
Vienna University of Technology

Vienna, Austria
jiresch@logic.at

Shinya Sato
Faculty of Econoinformatics
Himeji Dokkyo University

5-7-1 Kamiohno, Himeji-shi
Hyogo 670-8524, Japan

shinya@himeji-du.ac.jp

Reduction rules in interaction nets are constrained to pattern match exactly one argument at a time.
Consequently, a programmer has to introduce auxiliary rules to perform more sophisticated matches.
In this paper, we describe the design and implementation of a system for interaction nets which
allows nested pattern matching on interaction rules. We achieve a system that provides convenient
ways to express interaction net programs without defining auxiliary rules.

1 Introduction

Interaction nets [3] were introduced over 10 years ago as a new programming paradigm based on graph
rewriting. Programs are expressed as graphs and computation is expressed as graph transformation.
They enjoy nice properties such as locality of reduction, strong confluence and Turing completeness.
The definition of interaction nets allows them to share computation: reducible expressions (active pairs)
cannot be duplicated. For these reasons, optimal and efficient λ−calculus evaluators [1, 4, 5] based on
interaction nets have evolved. Indeed, interaction nets have proved to be very useful for studying the
dynamics of computation. However, they remain fruitful only for theoretical investigations.

Despite that we can already program in interaction nets, they still remain far from being used as a
practical programming language. Drawing an analogy with functional programming, we only have the λ -
calculus that is without high level constructs which provide programming comfort. Interaction nets have
a very primitive notion of pattern matching since only two agents can interact at a time. Consequently,
many auxiliary agents and rules are needed to implement more sophisticated matches. These auxiliaries
are implementation details and should be generated automatically other than by the programmer.

In this paper we take a step towards developing a richer language for interaction nets which facilitates
nested pattern matching. To illustrate what we are doing, consider the following definition of a function
that computes the last element of a list:

lastElt (x:[]) = x
lastElt (x:xs) = lastElt xs

In this function [] is a nested pattern in (x:[]). We cannot represent functions with nested patterns
in interaction nets. Hence, a programmer has to introduce auxiliary functions to pattern match the extra
arguments.

lastElt (x:xs) = aux x xs
aux x [] = x
aux x (y:ys) = lastElt (y:ys)

In our previous work [2] we defined a conservative extension of interaction rules that allows nested
pattern matching. The purpose of this paper is to bring these ideas into practise:

2 An Implementation of Nested Pattern Matching in Interaction Nets

• we define a programming language that captures the extended form of interaction rules;

• we describe the implementation of these extended rules.

In [6] we defined a textual language for interaction nets (PIN) and an abstract machine that executes PIN

programs. We take PIN as our starting point and extend the PIN language to allow the representation of
rules with nested patterns.

There has been several works that extend interaction nets in some way. Sinot and Mackie’s Macros
for interaction nets [7] are quite close to what we present in this paper. They allow pattern matching
on more than one argument by relaxing the restriction of one principal port per agent. The main differ-
ence with our work is that their system does not allow nested pattern matching. Our system facilitates
nested/deep pattern matching of agents.

The rest of this paper is organised as follows: In the Section 2 we give a brief introduction of interac-
tion nets. In Section 3 we define a programming language that allows the definition of interaction rules
with nested patterns. In Section 4 we give an overview of the implementation of nested pattern matching.
A more detailed explanation of the algorithm is found in Section 5 (verification of well-formedness) and
Section 6 (rule translation). Finally, we conclude the paper in Section 7.

2 Interaction Nets

We review the basic notions of interaction nets. See [3] for a more detailed presentation. Interaction nets
are specified by the following data:

• A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol has an associated
arity ar that determines the number of its auxiliary ports. If ar(α) = n for α ∈ Σ, then α has n+1
ports: n auxiliary ports and a distinguished one called the principal port. We represent an agent
graphically as:

����
α

?

@ �
· · ·x1 xn

and textually using the syntax: x0 ∼ α[x1, . . . ,xn] where x0 is the principal port.

• A net built on Σ is an undirected graph with agents at the vertices. The edges of the net connect
agents together at the ports such that there is only one edge at every port. A port which is not
connected is called a free port. A set of free ports is called an interface. A symbol denoting a free
port is called a free variable.

• Two agents (α,β) ∈ Σ×Σ connected via their principal ports form an active pair (analogous to
a redex). An interaction rule ((α,β) =⇒ N) ∈R replaces the pair (α,β) by the net N. All the
free ports are preserved during reduction, and there is at most one rule for each pair of agents. The
following diagram illustrates the idea, where N is any net built from Σ.

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

For present purposes, we represent this rule textually using 〈α[x1, . . . ,xn] >< β [y1, . . . ,yn]〉=⇒N.

Hassan,Jiresch & Sato 3

We use the notation N1 −→ N2 for the one step reduction and −→∗ for its transitive and reflexive
closure. Interaction Nets have the following property [3]:
• Strong Confluence: Let N be a net. If N −→ N1 and N −→ N2 with N1 6= N2, then there is a net

N3 such that N1 −→ N3 and N2 −→ N3.
In Figure 1 we give a simple example of an interaction net system that computes the last element of

a list. We can represent lists using the agents Cons (:) of arity 2 and Nil of arity 0. The first port of Cons
connects to an element of the list and the second port of Cons connects to the rest of the list. The agent Nil
marks the end of the list. An active pair between Lst and Cons rewrites to an auxiliary agent Aux with it’s
principal port oriented towards the second auxiliary port of Cons. This means that during computation,
Aux will interact with either a Cons agent or a Nil agent1. To avoid blocking the computation, we define
rules for active pairs (Aux, Nil) and (Aux, Cons). An active pair between Aux and Nil rewrites to a single
wire, which connects the agents at the auxiliary ports of Aux. When paired with Cons, Aux is replaced by
Lst, analogous to the recursive call of the lastElt function. The list element which is connected to the
first port of Aux is deleted, as it is not the last element of the list. This is modeled by the agent ε , which
erases all other agents.

����
Lst

����
:

� @

��
	

� =⇒ ����
Aux
� @R

����
Aux

� =⇒@
@
R
I����

Nil

����
Aux

� =⇒@@
R
I����

:
� @

����
Lst

����
:

� @

�
�
	

�
����

ε

�	

Figure 1: Rules to compute last element of a list

Figure 2 gives an example reduction sequence that computes the last element of a list that contains
just one element: [1]. The second port of Lst is free and thus acts as the interface of the net. First, the

����
Lst

����
:

�
� @@����

1 ����
Nil

� I

��
	
� −→

����
Aux

�
� @

@����
1 ����

Nil
� I

R
−→

����
1
6

Figure 2: Example reduction sequence

active pair of Lst and Cons is rewritten, introducing an Aux agent. Now the second rule is applied to the
1The second auxiliary port of a Cons agent will be connected to either a Cons agent or a Nil agent.

4 An Implementation of Nested Pattern Matching in Interaction Nets

pair (Aux,Nil), removing both agents and connecting 1 to the interface of the net. As expected, this final
net contains only the agent 1, which is equivalent to the result of LastElt (1:[]).

2.1 Interaction rules with nested patterns - INP

The above definition of interaction nets constraints pattern matching to exactly one argument at a time.
Consequently, we have to introduce auxiliary agents and rules to perform deep pattern matching (as
exemplified in Figure 1). Following [2], an interaction rule may contain a nested active pair with more
than two agents on it’s left-hand side (lhs). A nested active pair is defined inductively as follows:

• Every active pair in ordinary interaction rules (ORN) is a nested active pair e.g.
P = 〈α[x1, . . . ,xn] >< β [y1, . . . ,ym]〉
• A net obtained as a result of connecting the principal port of some agent γ to a free port y j in a

nested active pair P is also a nested active pair e.g.
〈
P,y j ∼ γ[z1, . . . ,zl]

〉
As an example, Figure 3 gives a set of INP rules that will compute the last element of a list. In this Figure
both rules contain a nested active pair on the lhs. The (non interacting) agents Nil and Cons on the lhs of
the rules are nested agents. These rules are compiled into the set of ORN rules given in Figure 1 (See [2]
for details of the compilation).

����
Lst

����
:

� @����
Nil
I

��
	

� =⇒
����
Lst

����
:

� @����
:

� @

I

��
	

� =⇒ ����
ε

�	

����
Lst

����
:

� @

��
	

�

Figure 3: example INP rules to compute the last element of a list

To ensure that INP preserves the Strong Confluence property of interaction nets, rules in INP must
satisfy the following constraints [2]:

Definition 2.1 (Sequentiality). Let P be a nested active pair. The set of nested active pairs P is sequen-
tial iff when

〈
P,y j ∼ β [x1, . . . ,xn]

〉
∈P then

1. for the nested pair P, P ∈P and,

2. for all the free ports y in P except the y j and for all agents α , 〈P,y∼ α[w1, . . . ,wn]〉 /∈P

Definition 2.2 (Well-formedness). A set of INP rules R is well-formed iff

1. there is a sequential set of nested active pairs which contains every lhs of rules in R,

2. for every rule P =⇒ N in R, there is no interaction rule P′ =⇒ N′ in R such that P′ is a subnet of
P.

Intuitively, the Sequentiality property avoids overlaps between rules: a set of INP rules containing
nested patterns that violate condition 2 of definition 2.1 can give rise to critical pairs, which potentially
destroys the Strong Confluence property of interaction nets. Note that the definition of Sequentiality
allows a nested active pair to be a subnet of another nested active pair (in the same sequential set) which
may also give rise to critical pairs. Definition 2.2 ensures that there is at most one nested active pair in
any given set of rules.

Hassan,Jiresch & Sato 5

3 The Language

We represent nets in the usual way as a comma separated list of agents. This just corresponds to a
flattening of the net, and there are many different (equivalent) ways to do this depending on the order in
which the agents are enumerated. Using the net in Figure 2 as an example we write:

p∼Lst[r],p∼Cons[x,xs],x∼1,xs∼Nil

The symbol ‘∼’ denotes the principal port of the agent. The variables p, x and xs are used to model the
connection between two ports. All variable names occur at most twice: this limitation corresponds to the
requirement that it is not possible to have two edges connected to the same port in the graphical setting.
If a name occurs once, then it corresponds to the free ports of the net (r is free in the above). If a name
occurs twice, then it represents an edge between two ports. In this latter case, we say that a variable is
bound.

The syntax above can be simplified by replacing equals for equals:

Lst[r]∼Cons[1,Nil]

In this notation the general form of an active pair is α[. . .]∼ β [. . .].
We represent rules by writing l =⇒ r, where l is the net on the left of the rule, and r is the resulting

net. In particular, we note that l will always consist of two agents connected at their principal ports. As
an example, the rules in Figure 1 are written as:

Lst[r] >< Cons[x,xs] =⇒ xs∼ Aux[x,r]
Aux[x,r] >< Nil =⇒ x∼r
Aux[x,r] >< Cons[y,ys] =⇒ Lst[r]∼Cons[y,ys], ε ∼ x

The names of the bound variables in the two nets must be disjoint, and the free variables must coincide,
which corresponds to the condition that the free variables must be preserved under reduction. Note that
we use the symbol ‘><’ for the active pair of the rule so that we can distinguish between an active pair
and a rule.

We can simplify only optimised ORN rules i.e. rules that do not contain active pairs on their right-
hand side (rhs). For example we can write the set of rules above in a simplified form:

Lst[r] >< Cons[x,Aux[x,r]]
Aux[x,x] >< Nil
Aux[x,r] >< Cons[y,ys] =⇒ Lst[r]∼Cons[y,ys], ε ∼ x

Note that once an optimised ORN rule is simplified, it’s rhs becomes empty and therefore we omit the
‘=⇒’.

We represent INP rules using a similar mechanism and allow the lhs of a rule to contain more than two
agents. We restrict the simplification of INP rules such that the lhs and rhs are simplified independently
of one another. As an example, the set of INP rules in Figure 3 can be written as:

Lst[r] >< Cons[x,xs], xs∼Nil =⇒ r∼x
Lst[r] >< Cons[x,xs],xs∼Cons[y,ys] =⇒ x∼ ε,p∼Lst[r],p∼Cons[y,ys]

or in a simplified form:

Lst[r] >< Cons[x,Nil]=⇒ r∼x
Lst[r] >< Cons[x,Cons[y,ys]]=⇒ x∼ ε,Lst[r]∼Cons[y,ys]

6 An Implementation of Nested Pattern Matching in Interaction Nets

Other language constructs The PIN system provides other language constructs – modules, built-in
operations on agent values, input/output e.t.c. These constructs remain unaffected by our extension and
are out of scope in this paper. See [6] for a detailed description of the additional language features.

4 Translation

In this Section we give an overview of our translation. In general, the PIN compiler reads programs in
our source language and builds the corresponding abstract syntax tree (AST). On the basis of the AST,
the PIN compiler generates some byte codes which can be executed by an abstract machine or be further
compiled into C source code. See [6] for a more detailed presentation of the PIN system.

Our translation function rewrites ASTs that represent INP rules into ASTs that represent ordinary
interaction rules. Therefore, the back end of the PIN system remains unaffected by the translation. Over-
all, our translation function is similar to the compilation schemes defined in the original paper [2]. We
summarise the translation algorithm in the following steps:

1. A rule is found in the AST. This rule can be either ORN or INP. All other nodes of the AST that
are not rules (imports, variable declarations,. . .) are ignored.

2. Check if the lhs is not a subnet of a previously translated lhs (and vice versa if the rule is INP).
This is the first part of verifying the well-formedness property (Definition 2.2). We discuss this
verification in Section 5.1.

3. If the rule is not INP, return.

4. If the rule is INP: check if the current and all previous nested active pairs can be added to a
sequential set. This is the second part of verifying the well-formedness property (Section 5.2).

5. If both checks are passed, translate the rule (else, exit with an error message):

(a) Resolve the first nested agent of the rule’s active pair.

(b) Add an auxiliary rule to the AST.

(c) The remaining nested agents are not (yet) translated. They are resolved by translating the
auxiliary rule.

We describe the translation algorithm in Section 6.

6. traverse the AST until the next (unprocessed) rule is found.

This algorithm allows for an arbitrary number of nested patterns (i.e., the number of nested agents in the
lhs of an INP rule) and an arbitrary pattern depth.

5 Verifying the Well-Formedness Property

Our verification algorithm (see below) consists of two parts which correspond to the two constraints of
the well-formedness property. We verify that the set of nested active pairs in a given PIN program are
both disjoint and sequential.

We use the notation [] for the empty list, [1, . . . ,n] for a list of n elements and ps1@ps2 to append
two lists.

Hassan,Jiresch & Sato 7

Definition 5.1 (Position Set). Let l =⇒ r be a rule in PIN. We define the function PosSym(l) that given
a nested active pair will return a set of pairs (ps,u) where ps is a list that represents the position of a
symbol u in l.

PosSym(α[t1, . . .,tn] >< β[s1, . . .,sm]) = PosSymt([1,1], t1) ∪ ... ∪PosSymt([1,n], tn) ∪
PosSymt([2,1], s1) ∪ . . . ∪ PosSymt([2,m], sm)

PosSymt(ps, x) = /0
PosSymt(ps, α[x̄]) = {(ps,α)}
PosSymt(ps, α[t1, . . .,tn]) = PosSymt(ps@[1], t1) ∪ ... ∪ PosSymt(ps@[n], tn)

where the sequence of terms t1, . . . , tn in PosSymt(ps, α[t1, . . .,tn]) contain at least one term which is
not a variable; and x̄ is a sequence of zero or more variables.
The function Pos(l) returns a set of lists that represent the position of each nested agent in a nested active
pair:

Pos(l) = π1(PosSym(l))
π1(/0) = /0,
π1({(ps,s)} ∪ A) = {ps} ∪ π1(A−{(ps,s)}).

We extend these operations into the sequence l1, ..., lk of lhs of rules as follows:

PosSym(l1, . . . , lk) = PosSym(l1) ∪ . . . ∪ PosSym(lk),
Pos(l1, . . . , lk) = Pos(l1) ∪ ... ∪ Pos(lk)

Example 5.2. For each rule in Figure 3, we can get sets of positions of nested agent pairs as follows:

• PosSym(Lst[r] >< Cons[x,Nil])

= PosSymt([1,1],r) ∪ PosSymt([2,1],x) ∪ PosSymt([2,2],Nil) = {([2,2],Nil)}

• Pos(Lst[r] >< Cons[x,Nil]) = {[2,2]}

• PosSym(Lst[r] >< Cons[x,Cons[y,ys]])

= PosSymt([1,1],r)∪ PosSymt([2,1],y)∪ PosSymt([2,2],Cons[y,ys]) = {([2,2],Cons)}

• Pos(Lst[r] >< Cons[x,Cons[y,ys]]) = {[2,2]}

5.1 Subnet property

Verifying the subnet property is straightforward. Since rules are represented as trees (subtrees of the
AST), it is easy to verify if one rule’s lhs is a subtree of another. We compute the lhs subtree relation
of the current rule P (to be translated) against all the rules Q which have already been translated. If P is
in ORN, we verify the subtree relation in only one direction: the lhs of an INP rule cannot be a subnet
of the lhs of an ORN rule. Otherwise we verify the subtree relation in both directions: P against Q and
Q against P. The case of two ORN rules with the same active agents is handled by the compiler at an
earlier stage. If the current rule’s lhs is not a subnet of any previous rules’ lhs’s, we add it to the set of
previous rules.

Note that we consider a tree to be a subtree of another tree up to alpha conversion, i.e., variable names
are not considered.

8 An Implementation of Nested Pattern Matching in Interaction Nets

5.2 Sequential set property

The check for the sequential set property is a bit more complicated than the subnet one. According to
the definition of the well-formedness property, there must exist a sequential set that contains all nested
active pairs in a given set of INP rules. Rather than attempting to construct such a sequential set, the
algorithm tries to falsify this condition: it searches (exhaustively) for two nested patterns that cannot be
in the same sequential set. This is done as follows.

For the current nested pattern P and all previously verified patterns Q with the same active agents:

1. Compare the sets Pos(P) and Pos(Q). We only consider the positions of agents at this point, not
the agents themselves.

2. If one set is a subset of another, P and Q can be added to a sequential set 2. P is added to the set of
previous nested patterns.

3. Else, we compare the actual nested agents at the common positions CP = Pos(P)∩Pos(Q).

4. If for each element p ∈ CP, α and β are the same where (p,α) ∈ PosSym(P) and (p,β) ∈
PosSym(Q), no sequential set can contain P and Q, as P≡ 〈M,x∼α[. . .],a〉,Q≡ 〈M,y∼ β [. . .],b〉
with x 6= y

5. Else, P and Q can be added to a sequential set. P is added to the set of previously verified nested
patterns.

It is straightforward to see that after the full traversal of the AST, all possible pairs of nested patterns
are considered. Hence, the search for a pair that violates the sequential set property is exhaustive.

Proposition 5.3. Let R be a set of INP rules. R is well-formed⇔ R is correctly verified to be well-formed
using our verification algorithm.

Proof. ⇐:
Assume R is not well-formed and passes the well-formedness checks. We proceed by a complete

case distinction (according to the definition of well-formedness):

Case 1. There exist two rules P =⇒ N,Q =⇒M ∈ R where P is a subnet of Q. But then, the pair (P,Q)
is tested for the subnet relation (Section 5.1). Hence, R does not pass the well-formedness check.

Case 2. There exist two rules A =⇒ N,B =⇒M ∈ R where A ≡ 〈P,x ∼ α[. . .]〉,B ≡ 〈P,y ∼ β [. . .]〉 for
x 6= y. But since all pairs of nested patterns are checked for the sequential set property (Section 5.2),
(A,B) will be detected. Hence, R does not pass the check.

In both cases, we reach a contradiction to the assumption above, hence it cannot be true.

⇒:
Assume R does not pass the well-formedness check, but is well-formed. Again, there are only two

cases:

Case 1. R does not pass the check because ∃P =⇒ N,Q =⇒ N′ ∈ R where P is a subnet of Q. But then,
R is not well-formed (by the definition of well-formedness).

2Note that P and Q have already passed the subnet check at this point. This means that (some of) the nested agents at the
common positions are different. Hence, P and Q cannot give rise to a critical pair.

Hassan,Jiresch & Sato 9

Case 2. R does not pass because are two rules A =⇒ N,B =⇒ M ∈ R where A ≡ 〈P,x ∼ α[. . .]〉,B ≡
〈P,y ∼ β [. . .]〉 for x 6= y. Then, there is no sequential set that contains both A and B. Hence, R is
not well-formed.

Again, we reach a contradiction to the assumption above in either case.

6 Rule Translation

We now describe the translation algorithm in more detail. As mentioned earlier, we translate INP rules
to ORN rules by rewriting the AST. We perform a pre-order traversal of the AST and identify nodes that
represent INP rules. Once we find an INP rule, we replace its nested agents with a fresh (variable) node
n and replace the subtree that represents the rhs of the rule with a new tree Nt . The nested agents and the
rhs of the rule are stored for later processing. The tree Nt represents an active pair between n and a newly
created auxiliary agent Aux. This auxiliary agent holds all the agents and attributes of the original active
pair, with the exception of the former variable agent.

Now, we create an auxiliary rule with an active pair between Aux and the current nested agent (ini-
tially connected to the interacting agent). We set the rhs of the auxiliary rule to be the rhs of the original
INP rule. Finally, we add this auxiliary rule to the system.

Note that the auxiliary agent in the new rule may still contain additional nested agents, i.e., the
auxiliary rule may be INP. Hence, the translation algorithm recursively translates the generated rules
until the lhs of each of the generated rules contains exactly two agents. The idea behind this is to resolve
one nested agent per translation pass. Further nested agents are processed when the translation function
reaches the respective auxiliary rule(s).

We can formalise the translation algorithm as a function translate(R,U,S), where R denotes the
input set of interaction rules and U and S are stores. Intuitively, the components U and S are used to store
previously processed rule patterns in order to verify the subnet and sequential set properties respectively.
The function translate is defined as follows (in pseudo-code notation), where FAIL denotes termination
of the program due to non well-formedness of R:

translate([],U,S) = []
translate((P=⇒N):R,U,S) =
if (P is a subnet of any Q ∈ U or vice versa)
FAIL
else if (P is ORN)
(P=⇒N):translate(R,P:U,S)
else
if (P cannot be added to a sequential set with
any Q ∈ S)
FAIL
else
(P’=⇒(PX∼p)):translate((PX >< A =⇒ N):R,P:U,P:S)
where
p = position of the first nested agent of P
A = the nested agents at position p
P’ = P with all nested agents replaced by variable

10 An Implementation of Nested Pattern Matching in Interaction Nets

ports
PX = auxiliary agent that contains all ports of P

except p

Proposition 6.1. (Termination) For a finite R, translate terminates.

Proof. Let n be the number of rules in R and p be the sum of all nested agents of these rules. By a
complete case distinction, we show that with each recursive call, (n+ p) decreases:

Case 1 The current rule is ORN. At the recursive call, it is removed from R, hence n decreases by 1.

Case 2 The current rule has i nested agents (i > 0). The rule is removed from R and an auxiliary rule
with exactly i−1 nested agents is added to R. Hence, with the recursive call p decreases by 1.

translate terminates if n = 0. n only decreases if we encounter an ORN rule. Yet, since the number of
nested agents for each rule is finite, all rules in R will be ORN after finitely many decreases of p.

Example 6.2. Consider the interaction rules from Figure 3. R consists of two rules:

1. Lst[r] >< Cons[x,Nil] =⇒ r∼x
2. Lst[r] >< Cons[x,Cons[y,ys]] =⇒ x∼ ε,Lst[r]∼Cons[y,ys]

The translation works as follows:

• Rule 1 is INP (due to the Nil agent).
Its lhs is checked for the subnet property. As there are no previous rules in U , the check is passed.

• As the rule is INP, it is checked for the sequential set property. Again, there are no previous rules
in S, hence it passes the check.

• The rule is transformed, introducing the auxiliary agent Lst Cons

1. Lst[r] >< Cons[x,var0] =⇒ Lst_Cons[r,x]∼var0

• A new auxiliary rule is added to R:

3. Lst_Cons[r,x] >< Nil =⇒ r∼x

The lhs pattern of rule 1 is added to U and S.

• Rule 2 is INP (due to the nested Cons agents).
Its lhs is checked for the subnet property. The only lhs pattern in U is Lst[r] >< Cons[x,Nil].
Due to different agents at the second auxiliary port of Cons, the lhses cannot be subnets of one
another. The check is passed.

• Rule 2 is checked for the sequential set property. First, the positions of nested agents of Rule 1 and
2 are compared. Since they are the same (both have their nested agent at the second auxiliary port
of Cons), they can be added to a sequential set. There are no further rules in S, hence the check is
passed.

• The rule is transformed and another auxiliary rule is added to R:

2. Lst[r] >< Cons[x,var1] =⇒ Lst_Cons[r,x]∼var1
4. Lst_Cons[r,x] >< Cons[y,ys] =⇒ x∼ ε,Lst[r]∼Cons[y,ys]

Hassan,Jiresch & Sato 11

• Rule 3 is ORN.
Its lhs is checked for the subnet property. As there are no with the same active agents in U , the
check is passed. The lhs pattern of Rule 3 is added to U .

• Rule 4 is ORN.
Its lhs is checked for the subnet property. Again, there are no rules with the same active agents in
S. The check is passed and the lhs pattern is added to U .

This yields the translated set of rules

1. Lst[r] >< Cons[x,var0] =⇒ Lst_Cons[r,x]∼var0
2. Lst[r] >< Cons[x,var1] =⇒ Lst_Cons[r,x]∼var1
3. Lst_Cons[r,x] >< Nil =⇒ r∼x
4. Lst_Cons[r,x] >< Cons[y,ys] =⇒ x∼ ε,Lst[r]∼Cons[y,ys]

Note that the rules 1 and 2 are identical (save variable names). Since only one of them is needed, rule 2
is discarded by PIN. As expected, we get the set of ORN rules given in Figure 1.

6.1 Additional language features

The PIN language offers some features that are not considered in the original definition of the nested pat-
tern translation function. Some important examples are data values of agents (integers, floats, strings,. . .),
side effects (declaration and manipulation of variables, I/O) and conditions. These features are not in-
volved in the process of nested pattern matching. Therefore, they do not need to be processed or changed
by the translation function:

• with regard to nested pattern matching, data values can be considered as variable ports (they do
not contain nested agents). Hence, they are unaffected by the translation.

• conditionals and side effects only occur in the rhs of a rule. Since the original rhs of an INP rule is
propagated to the final auxiliary rule without a change, these features are not affected either.

• all auxiliary rules but the last one are responsible for pattern matching only, they do not do the
“actual work” of the original rule. All special language features are simply passed to the next
auxiliary rule.

6.2 The Implementation

We have developed a prototype implementation which can be obtained from the project’s web page
http://www.interaction-nets.org/. We have thoroughly tested the prototype implementation and
developed several example modules. These examples include rule systems with a large number and depth
of nested patterns as well as heavy use of state, conditionals and I/O. Additionally, we have designed
several non well-formed systems in order to improve error handling. Some of these examples can be
found in the current PIN distribution at the project’s web page.

7 Conclusion

We have presented an implementation for nested pattern matching of interaction rules. The implementa-
tion closely follows the definition of nested patterns and their translation to ordinary patterns introduced
in [2]. We have shown nice properties of the algorithm such as its correctness and termination.

http://www.interaction-nets.org/

12 An Implementation of Nested Pattern Matching in Interaction Nets

The resulting system allows programs to be expressed in a more convenient way rather than intro-
ducing auxiliary agents and rules to pattern match nested agents. We see this as a positive step for further
extensions to interaction nets: future implementations of high-level language constructs can be built upon
these more expressive rules.

References
[1] Georges Gonthier, Martı́n Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda reduction. In

Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL’92), pages 15–26.
ACM Press, January 1992.

[2] Abubakar Hassan and Shinya Sato. Interaction nets with nested pattern matching. Electronic Notes in Theo-
retical Computer Science, 203, 2008.

[3] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL’90), pages 95–108. ACM Press, January 1990.

[4] John Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of the 17th ACM Sympo-
sium on Principles of Programming Languages (POPL’90), pages 16–30. ACM Press, January 1990.

[5] Ian Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings of the 3rd Inter-
national Conference on Functional Programming (ICFP’98), pages 117–128. ACM Press, 1998.

[6] Ian Mackie, Abubakar Hassan, and Shinya Sato. Interaction nets: programming language design and imple-
mentation. Proceedings of the Seventh International Workshop on Graph Transformation and Visual Modeling
Techniques, 2008.

[7] François-Régis Sinot and Ian Mackie. Macros for interaction nets: A conservative extension of interaction
nets. Electronic Notes Theoretical Computer Science, 127(5):153–169, 2005.

Submitted to Electronic Proceedings
in Theoretical Computer Science.

c© Fernández and Namet
This work is licensed under the
Creative Commons Attribution License.

Graph creation, visualisation and transformation

Maribel Fernández and Olivier Namet
Kingś College London, Department of Computer Science

Strand, London WC2R 2LS, U.K.
olivier.namet@kcl.ac.uk

We describe a tool to create, edit, visualise and compute with interaction nets, a form of
graph rewriting systems. The editor, called GraphPaper, allows users to create and edit
graphs and their transformation rules using an intuitive user interface. The editor uses
the functionalities of the TULIP system, which gives us access to a wealth of visualisation
algorithms. Interaction nets are not only a formalism for the specification of graphs, but also
a rewrite-based computation model. We discuss graph rewriting strategies and a language
to express them in order to perform strategic interaction net rewriting.

1 Introduction

Graph representation and graph transformations are important in Computer Science. It is well
known that graphical formalisms have clear advantages as modelling tools, in particular in
the earlier phases of system specification and development. Graphical formalisms are more
intuitive and make it easier to visualise the system, whether in theoretical or practical domains.
For example, consider the textual representation of proofs in the sequent calculus [5] versus
proof nets [6], the entity-relationship diagrams [2] used to specify a relational database versus
the tables, etc.

On the negative side, there are some well-known implementation problems when dealing
with graphical formalisms (pattern-matching is not an easy problem, see for instance [12]), and
graph rewriting can be inefficient in general. Graphical editors and graphical programming
environments exist, but none of the available tools to manipulate graphs provides a unified
framework to create, edit and visualise graphs, and to define dynamic transformations. Ideally,
such a tool should allow users to create graphs, edit them and define different views, export
to different formats (e.g., image files, encapsulated postscript, latex macros, etc.), and should
also be able to model some notion of computation, allowing the user to evaluate parts of their
graphs using transformation rules plugged into the tool.

In this paper, we describe the design of an editor to draw graphs and their transformation
rules, and its integration into a tool that can be used to visualise graphs and their associated
computations. The editor, called GraphPaper, is tailored for the design of interaction net [10]
systems. These are graph rewriting systems that enjoy useful rewriting properties, such as
confluence, by construction. The user interface of GraphPaper mimics the operations that users
perform to draw graphs manually in paper.

Graph rewriting needs complex pattern matching, but in the case of interaction nets, the
pattern-matching algorithm is simpler due to the restricted form of the left-hand sides of the
rules. Still, there are several problems that have to be solved in a graphical editor, due to the
changes in the layout that arise after each rewriting step. Furthermore, users of graph rewriting

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Graph creation, visualisation and transformation

systems often need to define specific strategies dictating how and when rules are applied, thus
a formal language is needed to express these strategies.

Summarising: we describe the implementation of the GraphPaper editor (for graph and rule
creation) and its interface with the TULIP1 system for visualisation, strategic interaction net
rewriting and tracing. TULIP is an environment for graph visuation which currently provides
algorithms to display graphs in various formats, and to check static properties of graphs. In
future work, we will also include a mechanism for tracing graphs during the rewriting process
to allow greater control and facilitate the debugging of the rewriting system. This is work
in progress within the PORGY collaboration between INRIA Bordeaux and King’s College
London, which focuses on graph visualisation and rewriting strategies for interaction nets and
port graphs [9] in general.

Related Work There are many graphical editors available, but only a few of them allow the
user to specify dynamic information in the form of graph rewriting rules. Below we discuss
four systems that include this functionality and are directly related to our work.

The Interaction Net Laboratory (INL)2 developed by De Falco is a graphical editor for
interaction nets. It has a rich feature set with a Net editor and a Rule editor. Cells can be
created and have properties such as “title” and “colour”. Feature wise, INL is quite complete
for creating and editing nets and rules but the user-interface has some limitations. Clicking on
objects does not result in immediate visual feedback. To add cells to the net the user has to click
on the cell in the list to the left and then click somewhere on the net. To add more than one of
the same kind of cell, one has to keep on re-clicking on the cell that is in the list.

The Graphical Interpreter for Interaction Nets developed by Lippi [11] imports a text based
representation of a net and a set of reduction rules and creates a graphical net. The user can
then choose to reduce the net step by step or to perform all possible reductions in one go. While
this program is useful for displaying a net and visualising its reduced form, the user still needs
to input and edit the nets using a text-based language.

INblobs3 developed by Vilaça et al. [1] defines itself as an editor and interpreter for Interaction
Nets. Feature wise, INblobs is on par with INL but suffers from similar problems.

PROGRES is a programming environment based on graph grammars developed at the
University of Technology Aachen4. It is built around an executable specification language
based on a specific kind of graph rewriting rules. The environment provides a graphical editor
for the specification language and a translator into C and Tcl/Tk-code. The tool seems to focus
on the specification language, which is expressive enough to allow the user to model complex
systems using graphs. Our goals are different: we focus on the graphical editor and in the
principles behind the design of a graphical interface for the representation of graphs.

Overview of the paper Section 2 provides a concise introduction to interaction nets and
rewriting strategies. In Section 3 we describe GraphPaper’s novel “digital paper” user interface.
Section 4 deals with visualisation and rewriting; we describe the architecture of the system and
its implementation via TULIP. Section 5 contains conclusions and directions for future work.

1http://www.tulip-software.org
2http://inl.sourceforge.net/
3http://haskell.di.uminho.pt/jmvilaca/INblobs/
4See http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php

Fernández and Namet 3

2 Preliminaries

2.1 Interaction Nets

A system of interaction nets is specified by a set Σ of symbols with fixed arities, and a set R of
interaction rules. An occurrence of a symbol α ∈ Σ is called an agent. If the arity of α is n, then
the agent has n + 1 ports: a principal port depicted by an arrow, and n auxiliary ports. Such an
agent will be drawn in the following way:

����
α

?

@ �
· · ·

x1 xn

Intuitively, a net N is a graph (not necessarily connected) with agents at the vertices and
each edge connecting at most 2 ports. The ports that are not connected to another agent are free.
There are two special instances of a net: a wiring (no agents) and the empty net; the extremes
of wirings are also called free ports. The interface of a net is its set of free ports.

An interaction rule ((α,β) =⇒N) ∈R replaces a pair of agents (α,β) ∈Σ×Σ connected together
on their principal ports (an active pair or redex, written α ./ β) by a net N with the same interface.
Rules must satisfy two conditions: all free ports are preserved during reduction (reduction is
local, i.e. only the part of the net involved in the rewrite is modified), and there is at most one
rule for each pair of agents. Because of this last restriction, a rule is fully determined by its left
hand-side; such a rule will thus be sometimes denoted by α ./ β as well. The following diagram
shows the format of interaction rules (N can be any net built from Σ).

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

We use the notation =⇒ for the one-step reduction relation, or ==⇒
α./β

if we want to be explicit

about the rule used, and =⇒∗ for its transitive and reflexive closure. If a net does not contain any
active pairs then we say that it is in normal form. The key property of interaction nets, besides
locality of reduction, is that reduction is strongly confluent. Indeed, all reduction sequences are
permutation equivalent and standard results from rewriting theory tell us that weak and strong
normalisation coincide (if one reduction sequence terminates, then all reduction sequences
terminate). We refer the reader to [10] for more details and examples.

2.2 Rewriting Strategies

A graph rewriting system will have a potentially large set of rules to apply to a graph. The
order in which rules are applied can greatly alter the end graph when general graph rewriting
is considered. In the case of interaction nets, the strong confluence property ensures that all
reduction sequences to full normal form are equivalent. However, this is not the case if we use
a notion of reduction that does not reach a full normal form (for instance, reduction to interface
normal form [4]). Also, for interaction nets, even if the end graph does not change, the size and
layout of the graph during the rewriting process can differ depending on what rules and where

4 Graph creation, visualisation and transformation

they are applied first. Users may therefore want to not just blindly apply rules but to create a
strategy around these rules to direct the rewriting.

Strategic rewriting has been studied for term rewriting systems, and there are languages
that allow the user to specify a strategy and to apply it [3, 13]. In this paper we will define a
language to define strategies for graph rewriting systems, where not only the strategy needs
to take into account rules and sequences of rules but also location and propagation in a graph
(the latter is complicated by the fact that in a graph there is no notion of a root, so strategies
based on top-down or bottom-up traversals do not make sense in this setting). Because of this,
we develop a specific language to deal with strategies for interaction nets (which can be also
applied to general graph rewriting systems).

3 GraphPaper

3.1 Digital Paper

In the past few years, new technology has shown that new Human Interface Devices (HID) can
be an efficient way of dealing with digital information. There is the example of video games
with Nintendo’s Wii and DS consoles. One allows users to perform natural motions to convey
commands (swinging your arm to swing a sword) while the other lets the user draw to the
screen using a tablet. These methods of interaction have been hugely popular across all sorts
of demographics. Also many new mobile devices now come with touch-screen and therefore
software makers have had to rethink the way users interact with their phones. Much like the
Nintendo consoles, touch screen phones (like the Apple iPhone) have also been very popular
across all demographics.

It is indeed more natural to push and pinch a map around on a touch screen to move it than
it is using a mouse and icons. This is because these new HID mimic natural motions. The data
that are represented in this case are graphs where the natural instinct is to use a pen and paper
to draw them. We will take this intuition and try to apply it to the HCI ideology of GraphPaper.
A user should feel like (s)he is using a pen and paper but with the dynamic advantages of a
computer.

For graphs, agents and edges are the two types of data that the user will interact with. This
allows the tool to have a simple interface. There is no need to have a toolbar to activate whether
the user is trying to interact with agents or edges; it is possible for the tool to deduce what the
user is interacting with based on the context of the interaction. For example, edges need to be
created between ports so cannot be created independently. This means that if the user is trying
to work on an empty part of the canvas, they are trying to create agents or a wiring. When the
user tries to interact with ports of an agent, then we know that the goal is to create or edit edges
to and from that agent. For more complex operations on graphs shape recognition is needed
(see, for instance, [7]). Once a shape is recognised, the user’s intention can be deduced by the
context and location where the shape was drawn.

Here is an outline of shapes and some of their actions depending on context:

• Circular:

Fernández and Namet 5

If created on an empty space then a new agent is created there.

If other agents are inside the bounds of the circle, the user’s intention was to select those agents.
The circle becomes a lasso selection tool.

• Line:

If drawn between two ports, an edge is created between them

If a line is drawn from inside an agent to just outside of it, then a port is created at that location
on the agent.

GraphPaper has two states that the user can be in when it comes to the creation of graphs.
A view/edit state and a draw state:

• The view/edit state will allow the user to modify already created agents and edges. For
example, moving agents around, renaming agents and ports, etc. The user will also be
able to modify the view by panning around and zooming in and out.

• The draw state is where the user can create and delete new objects by drawing to the
screen. See the previous examples of creation.

3.2 Drawing Rules

Graph rewriting rules consist of a left hand side graph and a right hand side graph, and a
mapping that defines the relation between the interfaces of the graphs. In the case of interaction
nets, both sides must have the same interface, and the left hand side must be a graph consisting
of two agents connected through their principal ports. To draw an interaction rule using
GraphPaper, the user simply draws the two agents in the left hand side in the standard way,
and then lasso selects them. In this way GraphPaper moves to the rule drawing mode, and
the user can continue drawing the right hand side. The correspondence between ports of the

6 Graph creation, visualisation and transformation

interface in the left hand side and in the right hand side is explicitely indicated by joining the
ports (GraphPaper will show these links in a different colour). GraphPaper will then deduce
this is a rule, and will isolate it to a part of the paper where users can still have access to it if they
need to modify it.

4 Graph Rewriting

For the visualisation and transformation of graphs, GraphPaper uses the functionalities avail-
able through the TULIP5 tool developed at INRIA Bordeaux.

• Pattern Matching: TULIP has a built in search function that can iterate through a graph
of potentially very large size. Using this iteration function, we can then quite efficiently
pattern match to find possible reductions in a graph. In the case of general graphs, the
high complexity for pattern matching is greatly aided by the efficient iteration that TULIP
provides. For Interaction Nets, it is simply a case of iterating through all the edges, finding
the ones that connect two principal ports and adding them to a list. After every reduction,
we then just need to iterate through that new sub-graph and its neighbours to find new
active edges and add those to the list. There is no need to search the entire graph for new
active edges since the reduction only affects the new sub-graph and its neighbours.

• TULIP is capable of displaying graphs with over 1,000,000 elements and can display
graphs of that size in real time. GraphPaper inherits that power, allowing the user to
work with graph rewriting systems where graphs grow after each rewrite step.

• Visualisation: TULIP provides dynamic visualisation of graphs, that is to say if a sub-
graph is added or removed, the remaining graph dynamically changes its appearance to a
chosen visual model (for example a cone tree, circular, planar). This is particularly useful
in the case of rewriting graphs since once a rewrite occurs, the graph might need to be
redrawn to accommodate for extra or lack of spacing.

• Strategies: As discussed in Section 2.2, strategies for graph rewriting need to specify
the way rules will be applied and must also be aware of location. We propose to use
expressions generated by the following grammar:

S := id | R | S,S | S ‖ S | S∗ | S or S

where id is the identity (which never fails and always leaves the graph unchanged); R is
an expression of the form Ri(subgraph,depth) that denotes the application of rule Ri in the
graph subgraph (which can be selected using the graphical interface) or its neighbours up
to the given depth (as explained below); S1,S2 represents sequential application: apply S1
and if successful then apply S2 (if either of them was unsuccessful the result is f ail); S1 ‖ S2
represents simultaneous application (both strategies must be applied at the same time; S∗

means “apply S as many times as possible in a row”; and S1 or S2 means apply S1, if it
fails then apply S2 (not both). Note that when defining a graph rewriting strategy as a
parallel composition (i.e., simultaneous application of two strategies), conflicts may arise.
However, in the case of interaction nets, the constraints on interaction rules imply that

5http://www.tulip-software.org

Fernández and Namet 7

each agent can only be involved in one interaction, hence all redexes can be simultaneously
reduced without conflict.
The basic blocks to build a strategy are a rule and the identity. When we indicate that a
rule will be applied, we must also provide the location where the rule should be applied.
This is given by the arguments subgraph and depth, i.e., we specify a subgraph, and the
depth represents how far one should look through the subgraph’s neighbours for a possible
application of the rule. If we want it to be strict, i.e. apply the rule in the given subgraph
only, we use 0. To look as far as possible starting from the given subgraph we use the
value −1. The expression Ri(subgr,1) indicates that we want to apply the rule Ri in the
subgraph that includes subgr and all the neighbours at distance 1. To look n steps out
of the subgraph then set depth to n. In the case of interaction nets, the depth search only
follows principal ports of the nodes.
For convenience, when composing strategies we allow the user to factor out the com-
mon sub-expressions: If we compose strategies that have the same location (same sub-
graph and depth) we can write these parameters only once (e.g. (R1,R2)(subgr,0) in-
dicates that we want to apply R1 and then R2 to the subgraph subgr), and if we wish
to apply the same strategy at several locations in the graph, we can write for example
(R1,R2)[(subgr1,0), (subgr2,0)], meaning that we need to apply R1 followed by R2 in subgr1
and also in subgr2.
We also define auxiliary functions Inter f ace(subgraph) which returns a graph containing
the interface nodes of subgraph, and Successors(subgraph). The first, used with Ri(), allows
the user to easily write strategies that give priority to rewriting steps at the interface
of the subgraph: for example, R1(Inter f ace(subgraph),1) tries to apply R1 on nodes of the
interface and their neighbours. This is useful when computing interface normal forms of
interaction nets.

• Trace: Each time a rewrite is performed, a new graph is created. To keep track of the
rewriting history, we use a Trace that will store all the different graphs and if one graph
is the result of a rewrite of another, an edge is created from the the latter to the former
with the rule and location of the rewriting as its label. Since more than one rewrite is
possible at any one time, the Trace will branch for each one, allowing the user to see all
the possibilities. The Trace will therefore take on the shape of a tree. See Figure 1 on page
9 for an example and a schematic description of the architecture of the tool. Since TULIP
is very efficient when it comes to storing graphs, we define and represent everything
using a main graph (which we call root graph). The set of rules and strategies are stored
as subgraphs of the root graph and each have a unique name. A base model M0 is also
created as a subgraph of the root graph and holds the initial state of the graph the user
will be rewriting on. The trace is also subgraph of the root. See Figure 2 on page 10 for an
example. In this particular example, a graph M0 was created by the user (stored as Me0
in the trace) and rules R1 and R2 were applied to M0. The user then selected Me1 in the
Trace to get a closer look at M1.

5 Conclusion & Future Work

GraphPaper functions as a stand-alone tool used specifically to create and edit graphs and
their rules and strategies. The graph system created can then be exported into TULIP where

8 Graph creation, visualisation and transformation

the rewriting will happen based on a selected strategy. The tool will generate a Trace of the
rewriting as it happens and then allow the user to observe any point of the rewrite in more
detail. The ease of use of GraphPaper combined with the power of TULIP and the detailed
information provided by the Trace gives the user an environment to work on graph rewriting
systems, and interaction nets in particular, efficiently and intuitively. In particular, GraphPaper
can serve as an editor for visual programming languages based on interaction nets (see [8]).

In future and within the PORGY collaboration, we hope to develop the tools to support
more general forms of graph rewriting by implementing a more complex and versatile pattern
matching algorithm. We will also extend the interface for rule definition in GraphPaper, in
order to represent more general kinds of rules, such as the ones used in PortGraph systems [9].

References

[1] José Bacelar Almeida, Jorge Sousa Pinto & Miguel Vilaça (2007): A Tool for Programming with
Interaction Nets. In: Joost Visser & Victor Winter, editors: Proceedings of the Eighth International
Workshop on Rule-Based Programming. Elsevier. To appear in Electronic Notes in Theoretical
Computer Science.

[2] Richard Barker: Case*Method: Entity Relationship Modelling. Addison-Wesley.
[3] Peter Borovansky, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau & Christophe Ringeis-

sen (1998): An Overview of ELAN. In: Hélène Kirchner, Claude & Kirchner, editor: Second Workshop
on Rewriting Logic and its Applications - WRLA’98 Electronic Notes in Theoretical Computer Sci-
ence, Electronic Notes in Theoretical Computer Science 15. Elsevier Science B. V., Pont-à-Mousson,
France, p. 16 p. Available at http://hal.inria.fr/inria-00098518/en/. Colloque avec actes et
comité de lecture.

[4] Maribel Fernández & Ian Mackie (1999): A Calculus for Interaction Nets. In: Proceedings of PPDP’99,
Paris, number 1702 in Lecture Notes in Computer Science. Springer.

[5] G. Gentzen (1969): Investigations into Logical Deduction. In: M. E. Szabo, editor: The Collected Papers
of Gerhard Gentzen. North-Holland.

[6] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50(1), pp. 1–102.
[7] T. Hammond (2007). LADDER: A Perceptually-Based Language to Simplify Sketch Recognition User

Interfaces Development. MIT PhD Thesis.
[8] Abubakar Hassan, Ian Mackie & Jorge Sousa Pinto (2008): Visual Programming with Interaction

Nets. In: Gem Stapleton, John Howse & John Lee, editors: Diagrammatic Representation and
Inference, 5th International Conference, Diagrams 2008, Herrsching, Germany, September 19-21,
2008. Proceedings, Lecture Notes in Computer Science 5223. Springer, pp. 165–171.

[9] Hélène Kirchner & Oana Andrei (2007): A Rewriting Calculus for Multigraphs with Ports. Proc.8th
Int. Workshop on Rule-Based Programming (RULE07) .

[10] Yves Lafont (1990): Interaction Nets. In: Proceedings of the 17th ACM Symposium on Principles of
Programming Languages (POPL’90). ACM Press, pp. 95–108.

[11] Sylvain Lippi (2002): in2: A Graphical Interpreter for Interaction Nets. In: RTA ’02: Proceedings
of the 13th International Conference on Rewriting Techniques and Applications. Springer-Verlag,
London, UK, pp. 380–386.

[12] J.R. Ullman (1976): An Algorithm for Subgraph Isomorphism. Journal of the ACM 23(1), pp. 31–42.
[13] Eelco Visser (2001): Stratego: A Language for Program Transformation based on Rewriting Strategies.

System Description of Stratego 0.5. In: A. Middeldorp, editor: Rewriting Techniques and Applications
(RTA’01), Lecture Notes in Computer Science 2051. Springer-Verlag, pp. 357–361.

http://hal.inria.fr/inria-00098518/en/

Fernández and Namet 9

Figure 1: The architecture of the system.

Figures

10 Graph creation, visualisation and transformation

Figure 2: GUI concept for TULIP perspective.

Electronic Proceedings in Theoretical
Computer Science ?, 2009, pp. 1–10.

A Type System for Tom

Claude Kirchner
INRIA Bordeaux - Sud Ouest

351, cours de la Libération, BP A29,
33405 Talence Cedex France
Claude.Kirchner@inria.fr

Pierre-Etienne Moreau Cláudia Tavares∗

INRIA & LORIA
615 rue du Jardin Botanique, CS 20101
54603 Villers-lès-Nancy Cedex France

Pierre-Etienne.Moreau@loria.fr Claudia.Tavares@loria.fr

Extending a given language with new dedicated features is a general and quite used approach to make
the programming language more adapted to problems. Being closer to the application, this leads
to less programming flaws and easier maintenance. But of course one would still like to perform
program analysis on these kinds of extended languages, in particular type checking and inference.
But in this case one has to make the typing of the extended features compatible with the ones in the
starting language.
The Tom programming language is a typical example of such a situation as it consists of an extension
of Java that adds pattern matching, more particularly associative pattern matching, and reduction
strategies. This paper presents a type system with subtyping for Tom, that is compatible with Java’s
type system, and that performs both type checking and type inference.
We propose an algorithm that checks if all patterns of a Tom program are well-typed. In addiction,
we propose an algorithm based on equality and subtyping constraints that infers types of variables
occurring in a pattern. Both algorithms are exemplified and the proposed type system is showed to
be sound and complete.

1 Introduction of the problem: static typing in Tom

We consider here the Tom language, which is an extension of Java that provides rule based constructs. In
particular, any Java program is a Tom program. We call this kind of extension formal islands [3, 2] where
the ocean consists of Java code and the island of algebraic patterns. For simplicity, we consider only
two new Tom constructs: a %match construct and a ‘ (backquote) construct. The semantics of %match
is close to the match that exists in functional programming languages, but in an imperative context. A
%match is parameterized by a list of subjects (i.e. expressions evaluated to ground terms) and contains
a list of rules. The left-hand side of the rules are patterns built upon constructors and fresh variables,
without any linearity restriction. The right-hand side is not a term, but a Java statement that is executed
when the pattern matches the subject. However, thanks to the backquote construct (‘) a term can be
easily built and returned. In a similar way to the standard switch/case construct, patterns are evaluated
from top to bottom. In contrast to the functional match, several actions (i.e. right-hand sides) may be
fired for a given subject as long as no return or break is executed. To implement a simple reduction
step for each rule, it suffices to encode the left-hand side with a pattern and consider the Java statement
that returns the right-hand side. For example, given the sort Nat and the function symbols suc and zero,
addition and comparison of Peano integers may be encoded as follows:

∗This work was partially supported by CAPES, BEX 4878-06-0, Brazil.

2 A Type System for Tom

public Nat plus(Nat t1, Nat t2) {
%match(t1,t2) {

x,zero() -> { return ‘x; }
x,suc(y) -> { return ‘suc(plus(x,y)); }

}
}

public boolean greaterThan(Nat t1, Nat t2) {
%match(t1, t2) {

x,x -> { return false; }
suc(x),zero() -> { return true; }
zero(),suc(y) -> { return false; }
suc(x),suc(y) -> { return ‘greaterThan(x,y); }

}
}

In this combination of an ocean language (in our case Java) and island features (in our case abstract
data types and matching), it is still an open question to perform type checking and type inference.

Since we want to allow for type inclusion at the pattern level, the first purpose of this paper is
to present an extension of the signature definition mechanism allowing for subtypes. In this context
we propose an algorithm based on unification of equality constraints [7] and simplification of subtype
constraints [4, 1, 9]. It infers the types of the variables that occur in a pattern (x and y in the previous
example). Moreover, we also propose an algorithm that checks that the patterns occurring in a Tom
program are correctly typed.

2 Type checking

Given a signature Σv, the (simplified) abstract syntax of a Tom program is as follows:

rule ::= cond −→ action
cond ::= term1 ≺≺[s] term2 | cond1∧ cond2
term ::= x | f (term1, . . . , termn)
action ::= (x1, . . . ,xn)

The left-hand side of a rule is a conjunction of matching conditions term1 ≺≺[s] term2 consisting of a
pair of terms and where s denotes a sort. Since we allow for some symbols to be associative, we introduce
two kinds of symbols. Fixed arity ones to denote free symbols and variadic symbols to denote associative
ones. We denote these two kinds of symbol sets F and Fv respectively. Terms are many-sorted variadic
terms composed of variables x ∈X and function symbols f ∈ F ∪Fv. The set of terms is written
T (F ∪Fv,X). In the following, we often write l a variadic operator and call it a list. In general, an
action is a Java statement, but for our purpose we can consider an abstraction described by the variables
x1, . . . ,xn ∈X whose instantiations are described by the conditions, and used in the Java statement.

Example 2.1. The last rule of the greaterThan function given above can be represented by the following
rule expression:

suc(x)≺≺[N] t1∧ suc(y)≺≺[N] t2 −→ (x,y)

In a first step, we consider that a context Γ is composed of a set of pairs (variable,sort), and (function
symbol,signature):

Γ ::= ∅ | Γ1∪Γ2 | x : s | f : s1, . . . ,sn→ s

We denote by Γ(x : s) the fact that x : s belongs to Γ. Similarly, Γ(f : s1, . . . ,sn → s) means that f :
s1, . . . ,sn → s belongs to Γ. In Fig. 1 we give a classical type checking system defined by a set of
inference rules. Starting from a context Γ and a rule expression π , we say that π is well-typed if π : wt
can be derived by applying the inference rules. wt is a special sort that corresponds to the well-typedness
of a rule or a condition cond.

C. Tavares 3

Γ(x : s) ` x : s
T-VAR

Γ ` e1 : s1 . . . Γ ` en : sn

Γ(f : s1, . . . ,sn→ s) ` f (e1, . . . ,en) : s
T-FUN

Γ ` e1 : s Γ ` e2 : s
Γ ` (e1 ≺≺[s] e2) : wt

T-MATCH
Γ ` (cond1) : wt . . . Γ ` (condn) : wt

Γ ` (cond1∧ . . .∧ condn) : wt
T-CONJ

Γ ` (cond) : wt Γ ` e1 : s1 . . . Γ ` en : sn

Γ ` (cond −→ (e1, . . . ,en)) : wt
T-RULE

Figure 1: Simple type checking system.

2.1 Subtypes and associative-matching

In order to introduce subtypes in Tom, we define S as the set of sorts, equipped with a partial order <:,
called subtyping. It is a binary relation on S that satisfies reflexivity, transitivity and antisymmetry.

We extend matching over lists (i.e. variadic operators) to be associative. Therefore a pattern matches
a subject considering equality relation modulo flattening. Lists can be denoted by function symbols
l ∈Fv, as said previously, or by variables x ∈X annotated by ∗. Such variables, which we write x∗, are
called star variables. So we consider in the following many-sorted variadic terms composed of variables
x ∈X , star variables x∗ (where x ∈X) and function symbols f ∈F ∪Fv. Moreover, we define that
function symbols l ∈Fv with variable domain (since they have a variable arity) of sort s1 and codomain
s are written l : s1

∗→ s while star variables x∗ are also sorted and written x∗ : s.
Since terms built from syntactic and variadic operators can have the same codomain, we cannot

distinguish one from the other only by theirs sorts. However, this is necessary to know which typing rule
applies. For this purpose, we introduce a notion of sorts decorated with function symbols, called types, to
classify terms. The special symbol ? is used as decoration when is not useful to know what the function
symbol is. This leads to a new set of decorated sorts D .

Given these notions, we define a context Γ by the following grammar:

Γ ::= ∅ | Γ1∪Γ2 | s1 <: s2 | x : s? | x∗ : sg | f : s?
1, . . . ,s

?
n→ s f | l : (s?

1)
∗→ sl

and context access is defined by the function sortOf(Γ,e) : Γ×T (F ∪Fv,X)→ D which returns
the type of term e:

sortOf(Γ,x) = s?, if x : s? ∈ Γ sortOf(Γ, f (e1, . . . ,en)) = s f , if f : s?
1, . . . ,s

?
n→ s f ∈ Γ

sortOf(Γ,x∗) = sg, if x∗ : sg ∈ Γ sortOf(Γ, l(e1, . . . ,en)) = sl , if l : (S?)∗→ s f ∈ Γ

where x ∈X , f ∈F , l ∈Fv, g ∈F ∪FV and s?,s?
i ,s

f ,sg,sl ∈D for i ∈ {1,2, . . . ,n}.
The context has at most one declaration of type or signature per term since overloading is forbidden.

This means that for e ∈ T (F ∪Fv,X) and sg1
1 ,sg2

2 (where g1,g2 ∈F ∪Fv ∪{?} and sg1
1 ,sg2

2 ∈ D) if
e : sg1

1 ∈ Γ and e : sg2
2 ∈ Γ then sg1

1 = sg2
2 .

2.2 Type checking algorithm

In Fig. 2 we give a type checking system to many-sorted variadic terms applying associative matching.
The rules are standard except for the use of decorated types. The most interesting rules are those ones
applying to lists. They are three: [T-EMPTY] checks if a empty list has the same type declared in Γ;

4 A Type System for Tom

[T-ELEM] is similar to [T-FUN] but is applied to lists; and [T-MERGE] is applied to a concatenation of two
lists of type sl in Γ, resulting in a new list with same type sl .

Γ(x : s?) ` x : s? T-VAR
Γ(x∗ : sl) ` x∗ : sl T-SVAR

Γ ` e1 : s?
1 . . . Γ ` en : s?

n

Γ(f : s?
1, . . . ,s

?
n→ s f) ` f (e1, . . . ,en) : s f T-FUN

Γ(l : (s?
1)
∗→ sl) ` l() : sl T-EMPTY

Γ ` l(e1, . . . ,en) : sl Γ ` e : s?
1

Γ(l : (s?
1)
∗→ sl) ` l(e1, . . . ,en,e) : sl T-ELEM

if sortOf(Γ,e) 6= sl

Γ ` l(e1, . . . ,en) : sl Γ ` e : sl

Γ(l : (s?
1)
∗→ sl) ` l(e1, . . . ,en,e) : sl T-MERGE

Γ ` e : s?
1

Γ(s1 <: s) ` e : s? SUB
Γ ` e : sh

Γ ` e : s? GEN

if sortOf(Γ,e) = sh, for h ∈F ∪Fv

Γ ` e1 : s? Γ ` e2 : s?

Γ ` (e1 ≺≺[s?] e2) : wt
T-MATCH

Γ ` (cond1) : wt . . . Γ ` (condn) : wt
Γ ` (cond1∧ . . .∧ condn) : wt

T-CONJ

Γ ` (cond) : wt Γ ` e1 : sg1
1 . . . Γ ` en : sgn

n

Γ ` (cond −→ (e1, . . . ,en)) : wt
T-RULE

if sortOf(Γ,ei) = sg1
i , for gi ∈F ∪Fv∪{?} and i ∈ [1,n]

Figure 2: Type checking rules.

The type checking algorithm reads derivations in a bottom-up way. Since the rule [SUB] can be
applied to any kind of term, we consider a strategy where it is applied iff no other typing rule can be
applied. In practice, [SUB] will be combined with [T-VAR], [T-FUN] and [T-ELEM] and the type s?

1 which
appears in the premise will be defined according to the result of function sortOf(Γ,e). The algorithm
stops if it reaches the [T-VAR] or [T-SVAR] cases, ensuring that the original expression is well-typed, or
if none of the type checking rules can be applied, raising an error.

Example 2.2. Let Γ = {l : (Z?)∗→ Zl,one : →None,x∗ : Zl,z∗ : Zl,y : Z?,N <: Z}. Then the expression
l(x∗,y,z∗)≺≺[Z?] l(one())−→ (y) is well-typed and its deduction tree is:

C. Tavares 5

Γ ` l() : Zl T-EMPTY
Γ ` x∗ : Zl T-SVAR

Γ ` l(x∗) : Zl T-MERGE
Γ ` y : Z? T-VAR

Γ ` l(x∗,y) : Zl T-ELEM
Γ ` z∗ : Zl T-SVAR

Γ ` l(x∗,y,z∗) : Zl T-MERGE

Γ ` l(x∗,y,z∗) : Z? T-GEN

····················

Γ ` l() : Zl T-EMPTY

Γ ` one() : None T-FUN

Γ ` one() : N? GEN

Γ ` one() : Z? SUB

Γ ` l(one()) : Zl T-ELEM

Γ ` l(one()) : Z? T-GEN

Γ ` (l(x∗,y,z∗)≺≺[Z?] l(one())) : wt
T-MATCH

Γ ` y : Z? T-VAR

Γ ` (l(x∗,y,z∗)≺≺[Z?] l(one())−→ (y)) : wt
T-RULE

3 Type inference

The type system presented in Section 2 needs rules to control its use in order to find the expected deduc-
tion tree of an expression. Without these rules, it is possible to find more than one deduction tree for the
same expression. For instance, in Example 2.2 the rule [SUB] can be applied to the leaves resulting of
application of rule [T-VAR]. The resulting tree will still be a valid deduction tree since the variables in
the leaves will have type N? instead of type Z? declared in the context and N <: Z. For that reason, we
are interested in defining another type system able to infer the most general types of terms. We add type
variables in the set of types (defined up to here as a set of decorated sorts) to describe a possibly infinite
set of decorated sorts. The set of types Type(D ∪{wt},V) is given by a set of decorated sorts D , a set of
type variables V and a special sort wt:

τ ::= α | sg | wt

where τ ∈Type(D ∪{wt},V), α ∈ V , g ∈F ∪Fv∪{?} and sg ∈D .
In order to build the subtyping rule into the rules, we use a constraint set C to store all equality and

subtyping constraints. These constraints limit types that terms can have. The language C is built from
the set of types Type(D ∪{wt},V) and the operators “=s” and “<:s”:

c ::= τ1 =s τ2 | τ1 <:s τ2

where c ∈ C , τ1,τ2 ∈Type(D ∪{wt},V).
A substitution σ is said to satisfy an equation τ1 =s τ2 if στ1 = στ2. Moreover, σ is said to satisfy

a subtype relation τ1 <:s τ2 if |στ1| <: |στ2| , where function |_| : Type(D ∪{wt},V)→ S is used to
remove the decoration of decorated types and it is defined by |sg|= s. Thus, σ satisfies C if it satisfies
all constraints in C. This is written σ |= C. The set V (C) denotes the set of type variables in C.

Constraints are calculated according to application of rules of type inference system given in Fig. 3
where we can read the judgment Γ `ct e : τ •C as “the term e has type τ under assumptions Γ whenever
the constraints C are satisfied”. More formally, this judgment states that ∀σ � (σ |= C→ σΓ ` e : στ).

3.1 Type inference algorithm

In Fig. 3 we give a type inference system with constraints. Each type variable introduced in a sub-
derivation is a fresh type variable and the fresh type variables in different sub-derivations are distinct.

6 A Type System for Tom

As in Section 2.2, we explain the rules concerning lists: [CT-EMPTY] infers for an empty list l() a type
variable α with the constraint α = sl , sl given by the signature of l; [CT-ELEM] treats applications of
lists to elements which are neither lists with the same function symbol nor star variables; [CT-MERGE] is
applied to concatenate two lists of same type sl; and [CT-STAR] is applied to concatenate a list and a star
variable of the same type sl .

Γ(x : τ) `ct x : α •{α = τ} CT-VAR
Γ(x∗ : α1) `ct x∗ : α •{α1 = α} CT-SVAR

Γ `ct e1 : α1 •C1 . . . Γ `ct en : αn •Cn C = {α = s f }
n⋃

i=1
Ci∪{αi <:s s?

i }

Γ(f : s?
1, . . . ,s

?
n→ s f) `ct f (e1, . . . ,en) : α •C

CT-FUN

Γ(l : (s?
1)
∗→ sl) `ct l() : α •{α = sl}

CT-EMPTY

Γ `ct l(e1, . . . ,en) : α •C1 Γ `ct e : α1 •C2 C = C1∪C2∪{α = sl ,α1 <:s s?
1}

Γ(l : (s?
1)
∗→ sl) `ct l(e1, . . . ,en,e) : α •C

CT-ELEM

if sortOf(Γ,e) 6= sl and e 6= x∗

Γ `ct l(e1, . . . ,en) : α •C1 Γ `ct e : α •C2 C = C1∪C2∪{α = sl}
Γ(l : (s?

1)
∗→ sl) `ct l(e1, . . . ,en,e) : α •C

CT-MERGE

if sortOf(Γ,e) = sl

Γ `ct l(e1, . . . ,en) : α •C1 Γ `ct x∗ : α1 •C2 C = C1∪C2∪{α = sl ,α1 = sl}
Γ(l : (s?

1)
∗→ sl) `ct l(e1, . . . ,en,x∗) : α •C

CT-STAR

if sortOf(Γ,x∗) 6= sl

Γ `ct e1 : α1 •C1 Γ `ct e2 : α2 •C2 C = C1∪C2∪{α1 <:s τ,α2 = τ}
Γ `ct (e1 ≺≺[τ] e2) : wt •C

CT-MATCH

Γ `ct (cond1) : wt •C1 . . . Γ `ct (condn) : wt •Cn C =
n⋃

i=1
Ci

Γ `ct (cond1∧ . . .∧ condn) : wt •C
CT-CONJ

Γ `ct (cond) : wt •Ccond Γ `ct e1 : τ1 •C1 . . . Γ `ct en : τn •Cn C = Ccond
n⋃

i=1
Ci

Γ `ct (cond −→ (e1, . . . ,en)) : wt •C
CT-RULE

if sortOf(Γ,ei) = τi, for i ∈ [1,n]

Figure 3: Type inference rules.

Example 3.1. Let Γ = {l : (Z?)∗→ Zl,one : →None,x∗ : α1,y : α2,z∗ : α3,N <: Z}. Then the expression
l(x∗,y,z∗)≺≺[α4] l(one())−→ (y) is well-typed and the deduction tree is:

C. Tavares 7

Γ `ct l() : α5 •{α5 = Zl}
CT-EMPTY

Γ `ct x∗ : α1 •{α10 = α1}
CT-SVAR

C2 = {α5 = Zl}∪{α10 = α1}∪{α5 = Zl ,α10 = Zl}
Γ `ct l(x∗) : α5 •C2

CT-STAR
Γ `ct y : α9 •{α9 = α2}

CT-VAR

C1 = C2 ∪{α9 = α2}∪{α5 = Zl ,α9 <:s Z?}
Γ `ct l(x∗,y) : α5 •C1

CT-ELEM

········ Γ `ct z∗ : α8 •{α8 = α3}
CT-SVAR

Cp = C1 ∪{α8 = α3}∪{α5 = Zl ,α8 = Zl}
Γ `ct l(x∗,y,z∗) : α5 •Cp

CT-STAR

(1)

Γ `ct l() : α6 •{α6 = Zl}
CT-EMPTY

Γ `ct one() : α7 •{α7 = None}
CT-FUN

Cs = {α6 = Zl}∪{α7 = None}∪{α6 = Zl ,α7 <:s Z?}
Γ `ct l(one()) : α6 •Cs

CT-ELEM

(2)

(1) (2) Ccond = Cp ∪Cs ∪{α5 <:s α4,α6 = α4}
Γ `ct (l(x∗,y,z∗)≺≺[α4] l(one())) : wt •Ccond

CT-MATCH
Γ `ct y : α2 •{α2 = α2}

CT-VAR

Cr = Ccond ∪{α2 = α2}
Γ `ct (l(x∗,y,z∗)≺≺[α4] l(one())−→ (y)) : wt •Cr

CT-RULE

3.2 Constraint resolution

To determine if a rule expression is well-typed, its constraint set C needs to be solved in order to gen-
erate a most general solution σ of C from which all solutions can be generated straightforwardly. The
substitution σ is said to be the most general solution for C if:

1. σ is a solution for C which means that σ |= C; and

2. for all solutions σ ′ for C, σ ′α <: σα for all α ∈ V in C.
The rules for the constraint resolution algorithm are provided in Fig. 4, where g,g1,g2 ∈F ∪Fv∪

{?}. The algorithm starts by applying closure in Γ which means it generates an assertion s1 <: s3 in Γ

whenever {s1 <: s2,s2 <: s3} ⊆ Γ and two other assertions s1 <: s1 and s2 <: s2 in Γ whenever s1 <: s2 ∈ Γ.
Then, rules (1)-(11) are recursively applied over C. More precisely, rules (1)-(3) work as a garbage
collector removing constraints that are no more useful. Rules (4) and (5) generate σ . Rules (6) and (7)
generate simplified constraints. Rules (8) and (9) treat failure. Rules (10) and (11) are applied when
none of previous rules can be applied generating a new σ from a constraint over a type variable that has
no other constraints. The algorithm stops if: a rule returns C = ∅, then the algorithm returns the most
general solution σ ; or if a rule returns f ail or C reaches a stable form, then the algorithm returns an error.
Example 3.2. Let Γ = {l : (Z?)∗→ Zl,one : → None,x∗ : α1,y : α2,z∗ : α3,N <: Z} and Ccond = {α5 =
Zl,α10 = α1,α5 = Zl,α10 = Zl,α9 = α2,α5 = Zl,α9 <:s Z?,α8 = α3,α5 = Zl,α8 = Zl,α6 = Zl,α7 =
None,α6 = Zl,α7 <:s Z?,α5 <:s α4,α6 = α4,α2 = α2} from the Example 3.1. Let σ = ∅ and C = Ccond .
The constraint resolution algorithm starts by:

8 A Type System for Tom

(1) {τ = τ}]C′,σ =⇒ C′,σ
(2) {τ <:s τ}]C′,σ =⇒ C′,σ
(3) {sg1

1 <:s sg2
2 }]C′,σ =⇒ C′,σ if |sg1

1 | <: |sg2
2 | ∈ Γ

(4) {α = τ}]C′,σ =⇒ [α 7→ τ]C′,{α 7→ τ}∪σ

(5) {τ = α}]C′,σ =⇒ [α 7→ τ]C′,{α 7→ τ}∪σ

(6) {τ1 <:s τ2,τ2 <:s τ1}]C′,σ =⇒ {τ1 = τ2}∪C′,σ
(7) {α <:s sg1

1 ,α <:s sg2
2 }]C′,σ =⇒ {α <:s min(sg1

1 ,sg2
2)}∪C′,σ

(8) {sg1
1 = sg2

2 }∪C′,σ =⇒ f ail if sg1
1 6= sg2

2
(9) {sg1

1 <:s sg2
2 }∪C′,σ =⇒ f ail if |sg1

1 | <: |sg2
2 | /∈ Γ

(10) {α <:s sg}]C′,σ =⇒ {α = sg}∪C′,{α 7→ sg}∪σ if α /∈ V (C′)
(11) {sg <:s α}]C′,σ =⇒ {sg = α}∪C′,{α 7→ sg}∪σ if α /∈ V (C′)

Figure 4: Constraint resolution rules.

1. Application of closure in Γ, generating N <: N and Z <: Z;

2. Application of rules (1), (4) and (5) generating {Zl = Zl ,Zl = Zl ,Zl = Zl ,Zl = Zl ,α2 = α2,Zl =
Zl ,α2 <:s Z?,Zl = Zl ,Zl = Zl ,Zl = Zl ,Zl = Zl ,None = None,α6 = Zl ,None <:s Z?,Zl <:s Zl ,α6 = Zl}∪C
and {α5 7→ Zl ,α10 7→ α1,α1 7→ Zl ,α9 7→ α2,α8 7→ α3,α3 7→ Zl ,α6 7→ Zl ,α7 7→ None,α4 7→ Zl}∪σ

3. Application of rules (1), (2) and (3) generating {α2 <:s Z?} and σ ;

4. Application of rule (10) generating ∅ and {α2 7→ Z?}∪σ , the algorithm then stops and returns σ

providing a substitution for all type variables in the deduction tree of l(x∗,y,z∗)≺≺[α4] l(one())−→
(y).

4 Properties

Since our type checking system and our type inference system address the same issue, we must check
two properties. First, we show that every typing judgment that can be derived from the inference rules
also follows from the checking rules (Theorem 4.2), in particular the soundness. Then we show that
a solution given by the checking rules can be extended to a solution proposed by the inference rules
(Theorem 4.4).

Definition 4.1 (Solution). Let Γ be a context and e a term. A solution for (Γ,e) is a pair (σ ,sg
1) such

that σΓ ` e : sg
1. Moreover, suppose that Γ ` e : τ •C. A solution for (Γ,e,τ,C) is a pair (σ ,sg

2) such that
σ satisfies C and |στ | <: sg

2, where g ∈F ∪Fv∪{?} and τ,sc
1,s

c
2 ∈Type(D ∪{wt},V).

Theorem 4.2 (Soundness of constraint typing). Suppose that Γ `ct e : τ •C. If (σ ,sg) is a solution for
(Γ,e,τ,C), then it is also a solution for (Γ,e).

Proof. By induction on the given constraint typing derivation for Γ `ct e : τ •C.

Definition 4.3 (Normal form of typing derivation). A typing derivation is in normal form if it does not
have successive applications of rule [SUB].

C. Tavares 9

Theorem 4.4 (Completeness of constraint typing). Suppose that π = Γ `ct e : τ •C and write V (π) for
the set of all type variables mentioned in the last rule used to derive π . If (σ ,sg) is a solution for (Γ,e)
and dom(σ)∩V (π) = ∅, then there is some solution (σ ′,sg) for (Γ,e,τ,C) such that σ ′ = σ ∪V (π).

Proof. By induction on the given constraint typing derivation in normal form, but we must take care with
fresh names of variables.

Proposition 4.5 (Uniqueness of type). Suppose that Γ `ct e : τ •C. If there are two solutions (σ1,s
g1
1)

and (σ2,s
g2
2) for (Γ,e,τ,C) where σ1 and σ2 are two most general solutions for C then σ1 = σ2 and

sg1
1 = sg2

2 .

Theorem 4.6 (Termination of algorithm). The constraint resolution algorithm always terminates, failing
when given a non-satisfiable constraint set as input and otherwise returning the most general solution.
More formally:

1. the algorithm halts, either by failing or by returning a substitution, for all C;

2. if the algorithm returns a σ , then σ is a solution for C;

3. if there exists a σ ′ solution for C, then the algorithm returns a σ and σ ′α <: σα for all α ∈ V in
C.

We can already sketch a proof of Theorem 4.6 following Pierce [8].

Proof. For part 1, define the degree of a constraint set C to be the pair (m,n), where m is the number of
constraints in C and n is the number of subtyping constraints in C. The algorithm terminates immediately
(with success in the case of an empty constraint set or failure for an equation involving two different
primitive types) or makes recursive calls to itself with a constraint set of lexicographically smaller degree.

For part 2, by induction on the number of recursive calls in the computation of the algorithm.
For part 3, by induction on the number of recursive calls in the computation of the algorithm, reason-

ing by cases on the shapes of the types involved in the constraints.

5 Conclusion

In this paper we have presented a type system for the pattern matching constructs of Tom. The system
is composed of type checking and type inference algorithms with subtyping over sorts. Since Tom also
implements associative pattern matching over variadic operators, we were interested in defining both a
way to distinguish these from syntatic operators and checking and inferring their types.

We have obtained the following: our type inference system is sound and complete w.r.t. checking,
showed by Theorems 4.4 and 4.2. This is the first step towards an effective implementation, thus leading
to a safer Tom. However, we still need to turn the Proposition 4.5 into a theorem, which we do not expect
to be too difficult. Moreover, before the implementation of the type inference algorithm, we need to have
a formal proof of termination — in contrast to the sketch we currently have — as stated by Theorem 4.6.

As we have considered a subset of the Tom language, future work will focus on extending the type
system to handle the other constructions of the language such as anti-patterns [5, 6]. As a slightly more
prospective research area, we also want parametric polymorphism over types for Tom: our type system
will therefore have to be able to handle that as well.

10 A Type System for Tom

References
[1] Alexander Aiken and Edward L. Wimmers. Solving systems of set constraints (extended abstract). In In

Seventh Annual IEEE Symposium on Logic in Computer Science, pages 329–340. IEEE Computer Society
Press, 1992.

[2] Emilie Balland. Conception d’un langage dédié à l’analyse et la transformation de programmes. PhD thesis,
Université Henri Poincaré, 2009.

[3] Emilie Balland, Claude Kirchner, and Pierre-Etienne Moreau. Formal Islands. In Michael Johnson and Varmo
Vene, editors, 11th International Conference on Algebraic Methodology and Software Technology, volume
4019 of LNCS, pages 51–65. Springer, 2006.

[4] Duggan Dominic. Finite subtype inference with explicit polymorphism. Sci. Comput. Program., 39(1):57–92,
2001.

[5] Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau. Anti-pattern matching. In 16th European Sympo-
sium on Programming, volume 4421 of Lecture Notes in Computer Science, pages 110–124, Braga, Portugal,
2007. Springer.

[6] Radu Kopetz. Contraintes d’anti-filtrage et programmation par réécriture. PhD thesis, Institut National
Polytechnique de Lorraine, 2008.

[7] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348–375, 1978.

[8] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. Chapter 22.
[9] François Pottier. Simplifying subtyping constraints: a theory. Inf. Comput., 170(2):153–183, 2001.

EPTCS ??, 2009, pp. 1–11.

Programming Games and their Equilibria in Maude

Christiano Braga
Instituto de Computação, UFF

Brazil
cbraga@ic.uff.br

Edward Hermann Hæusler
Departamento de Informática, PUC-Rio

Brazil
hermann@inf.puc-rio.br

In this short paper we explore how strategic and extensive games, from Game Theory, may be rep-
resented as rewrite theories. We also discuss how to calculate Nash and Subgame Perfect Equilibria
using term rewriting. We have coded some simple, and yet relevant, games in the rewriting lan-
guage Maude, an implementation of Rewriting Logic. Our coding technique takes advantage of the
Rewriting Logic calculus and rewriting modulo theories implemented in Maude.

1 Introduction

Game Theory (e.g. [12]) is a branch of Mathematics, extensively used by economists and social sci-
entists, well-suited to define and study rational behavior of players in the context of cooperative and
non-cooperative environments. Game Theory has been considered in many theoretical notions in Com-
puter Science and Logic (e.g. [16, 14, 13, 1, 3]).

Equilibria notions (after the contributions of John Nash) play a central role in solution concepts
regarding a great variety of Games assuming that the players are rational. Game Theory is mainly
taken into account when researchers want to predict and study global phenomena from individual known
behavior. Typical examples of this kind of research come from Markets, Auctions and Elections (e.g.
[2]).

Game Theory provides general Game definitions, such as strategic and extensive games. It also
provides solution concepts for each kind of Game, in the form of equilibria, pointing out relationships
among the different solution concepts.

Algorithms for searching and formally identifying solution concepts in a (generic) game are worth
studying for theoretical and pragmatical reasons. From one hand, it is known (e.g. [8]) that the decision
problems associated with most of Game Theory solution concepts belong to high complexity classes,
starting with the NP class, of course, and beyond. On the other hand, it seems to be no better alternative
for the social sciences, for instance, mainly when analytical tools do not apply.

Let us start with the classical example of the Prisoner’s Dilemma1(PD). “Two suspects in crime are
put in separate cells. If they both confess, each will be sentenced to three years in prison. If only one
confess, he will be freed and used as witness against the other, who will receive a sentence of four years.
If neither confess, they will both be convicted of a minor offense and spend one year in prison.” This
situation has the main and essential components of a Game: (i) there is more than one rational player,
(ii) there are actions each player can take, and, finally, (iii) there are penalties (or profits) associated with
each action. There is also the assumption of rationality of their players.

Let us interpret the Prisoner’s Dilemma as a Strategic Game. In such games, an event happens only
once, each player knows the details of the game and, as mentioned before, all players are assumed ratio-
nal. The players choose their actions simultaneously and independently. Thus, each player is unaware

1In this paper we have chosen to present our ideas in an informal way. A more precise, mathematical presentation, will be
left to a longer version of this work.

2 Programming Games and their Equilibria in Maude

of the choices made by the other players. A player has no information to base his/her expectations of
another player’s behavior. In this way, strategic games can always be represented by a matrix. Figure 1
shows the matrix representation of the Prisoner’s Dilemma. The rows represent one of the prisoners
(player 1) and columns represent the other (player 2). Each row/column is named after a possible action
to be taken by the respective player. The entries in the matrix inform the profit/penalty regarding the
respective action taken by each player.

An alternative representation for a game, called Extensive Game, considers the actions taken by each
player as time elapses. It is usually represented as a tree, where the leafs carry the information on profit
or penalty, each internal node is associated with a player and the edges between nodes are labeled after
the actions. Figure 2 shows extensive representation of the Prisoner’s Dilemma. (Note that any game
in extensive form can be also modeled as a strategic game. The strategic game matrix associated with a
game in extensive form uses the players histories as rows or columns to index the corresponding leaf of
the tree as an entry of the matrix.)

Capítulo 2. Teoria dos Jogos 38

〈C〉

〈NC〉

〈C〉 〈NC〉

2,2

0,4

4,0

3,3

(a) - Jogo Estratégico (b) - Jogo Extensivo

2,2 4,0 0,4 3,3

C NC

C NC C NC

!1
!

!
!!"

#
#

##$!2
!

!!"
#

##$

!2
!

!!"
#

##$

Figura 2.7: Dilema do Prisioneiro na versão extensiva.

O conceito de solução de equilíbrio de subjogo perfeito requer que um
jogador ao tomar sua decisão, leve em consideração que cada jogador é racional
a cada instante, e que cada jogador também racionaliza desta forma. Assim, no
exemplo 2.13, o jogador 2 decide tomar a decisão C no histórico não-terminal
(C), uma vez que ele recebe uma melhor utilidade (2 em vez de 0 quando
ele escolhe NC). De forma semelhante, ele escolhe novamente C no histórico
não-terminal (NC). A partir daí, o jogador 1 toma a sua decisão, sabendo que
o jogador 2 é racional, e escolhe C, pois obtém uma utilidade 2 em vez de 0

(quando ele escolhe NC). Perceba que mesmo em exemplos simples como este,
estamos considerando que a cada histórico não-terminal os jogadores acreditam
que os outros jogadores racionalizam desta forma, e eles também. Esta definição
torna-se complicada quando consideramos jogos com longas durações. Veremos
um exemplo disto a seguir.

Nem sempre o conceito de equilíbrio de subjogo perfeito obtém um
solução que seja considerada “razoável”. Um exemplo disso é o caso do jogo
Centipede como mostrado na figura 2.8. Neste exemplo, a única solução de
equilíbrio de subjogo perfeito é quando cada jogador escolhe S a cada histórico
não-terminal, i.e., s1 = s2 = 〈S, S, S〉. Assim, as utilidades dos jogadores 1 e
2 são 1 e 0, respectivamente. Verifique que quase todas as soluções neste jogo
são melhores para ambos os jogadores. Nesta solução devemos notar que cada
jogador deve raciocinar que cada jogador é racional em todos os históricos, até
mesmo nos históricos que não são alcançáveis, quando cada jogador segue a sua
estratégia. A justificativa para isto é que, a decisão de qual caminho tomar é
influenciada pelos históricos que não são alcançáveis quando cada jogador segue
a sua estratégia. Voltando ao exemplo da figura 2.8, temos que no histórico
não-terminal (C,C, C, C, C) o jogador 2 escolhe S, pois ele obtém uma melhor
utilidade, e a partir daí, então, começa-se uma cadeia de escolhas de S que
são as melhores estratégias. Neste tipo de raciocínio, estamos exigindo que,
a cada momento, cada jogador acredite que os outros jogadores atuam desta

Figure 1: Strategic PD

Capítulo 2. Teoria dos Jogos 38

〈C〉

〈NC〉

〈C〉 〈NC〉

2,2

0,4

4,0

3,3

(a) - Jogo Estratégico (b) - Jogo Extensivo

2,2 4,0 0,4 3,3

C NC

C NC C NC

!1
!

!
!!"

#
#

##$!2
!

!!"
#

##$

!2
!

!!"
#

##$

Figura 2.7: Dilema do Prisioneiro na versão extensiva.

O conceito de solução de equilíbrio de subjogo perfeito requer que um
jogador ao tomar sua decisão, leve em consideração que cada jogador é racional
a cada instante, e que cada jogador também racionaliza desta forma. Assim, no
exemplo 2.13, o jogador 2 decide tomar a decisão C no histórico não-terminal
(C), uma vez que ele recebe uma melhor utilidade (2 em vez de 0 quando
ele escolhe NC). De forma semelhante, ele escolhe novamente C no histórico
não-terminal (NC). A partir daí, o jogador 1 toma a sua decisão, sabendo que
o jogador 2 é racional, e escolhe C, pois obtém uma utilidade 2 em vez de 0

(quando ele escolhe NC). Perceba que mesmo em exemplos simples como este,
estamos considerando que a cada histórico não-terminal os jogadores acreditam
que os outros jogadores racionalizam desta forma, e eles também. Esta definição
torna-se complicada quando consideramos jogos com longas durações. Veremos
um exemplo disto a seguir.

Nem sempre o conceito de equilíbrio de subjogo perfeito obtém um
solução que seja considerada “razoável”. Um exemplo disso é o caso do jogo
Centipede como mostrado na figura 2.8. Neste exemplo, a única solução de
equilíbrio de subjogo perfeito é quando cada jogador escolhe S a cada histórico
não-terminal, i.e., s1 = s2 = 〈S, S, S〉. Assim, as utilidades dos jogadores 1 e
2 são 1 e 0, respectivamente. Verifique que quase todas as soluções neste jogo
são melhores para ambos os jogadores. Nesta solução devemos notar que cada
jogador deve raciocinar que cada jogador é racional em todos os históricos, até
mesmo nos históricos que não são alcançáveis, quando cada jogador segue a sua
estratégia. A justificativa para isto é que, a decisão de qual caminho tomar é
influenciada pelos históricos que não são alcançáveis quando cada jogador segue
a sua estratégia. Voltando ao exemplo da figura 2.8, temos que no histórico
não-terminal (C,C, C, C, C) o jogador 2 escolhe S, pois ele obtém uma melhor
utilidade, e a partir daí, então, começa-se uma cadeia de escolhas de S que
são as melhores estratégias. Neste tipo de raciocínio, estamos exigindo que,
a cada momento, cada jogador acredite que os outros jogadores atuam desta

Figure 2: Extensive PD

Capítulo 2. Teoria dos Jogos 39

Figura 2.8: Exemplo de uma instância do jogo Centipede.

forma, criando crenças sobre o comportamento dos outros a cada momento,
mesmo nos históricos que nunca são alcançados quando cada jogador segue a
sua estratégia a exemplo deste jogo.

2.3
Jogo Extensivo com Informação Quase Perfeita

Um jogo extensivo com informação quase perfeita é um jogo extensivo
no qual os jogadores podem atuar de forma simultânea em um dado momento
do jogo. Formalmente, um jogo extensivo com informação quase perfeita é
definido por 〈N,H, P, (ui)〉, onde N , H e (ui) são definidos como na definição
2.9, P é uma função que atribui a cada histórico não-terminal um conjunto
de jogadores, e H e P satisfazem a condição de que para todo histórico
não-terminal h existe (Ai)i∈P (h) para o qual A(h) = {a | (h, a) ∈ H} =∏

i∈P (h) Ai(h). O conceito de estratégia para um jogador i é então uma função
que associa uma ação ai ∈ Ai(h) para cada não-terminal h tal que i ∈ P (h). O
conceito de equilíbrio de subjogo perfeito é definido como na definição 2.11 com
a exceção de que P (h) = i é substituído por i ∈ P (h). Abaixo apresentamos
a versão do Dilema do Prisioneiro como jogo extensivo com informação quase
perfeita.

Exemplo 2.14 O Dilema do Prisioneiro na versão de jogo com informação
quase perfeita 〈N, H, P, (ui)〉, onde:

– N = {1, 2}.
– H = {∅, (〈C, C〉), (〈C,NC〉), (〈NC,C〉), (〈NC,NC〉)}.
– T = {(〈C, C〉), (〈C, NC〉), (〈NC, C〉), (〈NC, NC〉)}
– P (∅) = {1, 2}.

Figure 3: Extensive Centipede

Solution concepts are analysis of games regarding their global configuration. They are usually related
with steady Equilibria states in the game. Nash Equilibrium (NE) [12] is one of the most well-known
solution concepts. A NE requires from each players strategy to be optimal given the other players strate-
gies. The only NE for the Prisoner’s Dilemma is 〈C,C〉, meaning that both players should confess. When
a game is modeled by its extensive form, a more informative solution concept is the Subgame Perfect
Equilibrium (SPE) [12]. SPE requires from the action prescribed by each players strategy to be optimal
given the other players strategies, after every history. SPE considers the structure of the extensive game
explicitly as opposed to NE where the structure is implicit in the definition of the strategies. If one takes
NE of the strategic form of an extensive game, one will see that NE contains SPE. A detailed study of
this fact points out that NE considers more strategies than those really taken by rational agents on each
turn of the game. NE Equilibrium ignores the sequential structure of the games; it considers the strategies
as choices that are made once and for all before the game begins. Thus, it is always worth to have both
solutions while performing a game analysis.

The Centipede game [12], represented in Figure 3 in its extensive representation, is interesting as an
example that the SPE equilibrium is not always “reasonable”: the SPE in the Centipede game is reached
with a payoff of (1,0), which is worse than most of the solutions for both players in the game.

In this article we discuss how strategic and extensive games can be represented as rewrite theories in
Rewriting Logic [11] and NE and SPE equilibria computed as rewrites. Our embedding was carefully
designed. Rewriting Logic’s congruence rule, which may be interpreted as parallel rewriting, is crucial
for efficiently searching for equilibria. Rewriting modulo axioms has an important rôle in Game repre-
sentation as rewrite theories. In particular, multiset rewriting, that is, rewriting modulo associativity and
commutativity, is essential to produce succinct and elegant Game representations. We have prototyped
our embedding in the Maude language [6], a realization of Rewriting Logic. We explore how to use
Maude to search for solutions to strategic and extensive games. The contribution of this paper is twofold:

C. Braga & E. Hermann Hæusler 3

first, we present an embedding from basic Game Theoretic concepts to Rewriting Logic that, by taking
advantage of the Rewriting Logic calculus, allows for efficient search for Nash and SP equilibria and
second, we present a prototype implementation in the Maude language for simple and yet meaningful
examples of basic Games.

This short paper is organized as follows. Section 2 gives background information on the Maude
language. Section 3 explains how we have represented strategic games, extensive games, NE equilibrium
and SPE equilibrium in Maude. Section 4 concludes this paper with related and future work.

2 Maude

Maude2 is an implementation of rewriting logic with a concrete syntax quite similar to its mathematical
notation.

A signature in rewriting logic is an equational theory (Σ,E), where Σ is an equational signature
and E is a set of Σ-equations. Rewriting operates on equivalence classes of terms modulo E. In this
way, rewriting is freed from the syntactic constraints of a term representation and gain a much greater
flexibility in deciding what counts as a data structure. For example, string rewriting is obtained by
imposing an associativity axiom, and multiset rewriting by imposing associativity and commutativity.
Standard term rewriting is obtained as the particular case in which the set of equations E is empty. Maude
implements techniques for rewriting modulo equations using attributes given in operator declarations,
such as associativity, commutativity, identity, and idempotency, to rewrite modulo such axioms.

Given a signature (Σ,E), sentences of rewriting logic are sequents of the form [t]E → [t ′]E , where t
and t ′ are Σ-terms, possibly involving some variables, and [t]E denotes the equivalence class of the term t
modulo the equations E. A rewrite theory R is a 4-tuple R = (Σ,E,L,R) where Σ is a ranked alphabet of
function symbols, E is a set of Σ-equations, L is a set of labels, and R is a set of pairs R⊆ L×TΣ,E(X)2

whose first component is a label and whose second component is a pair of E-equivalence classes of
terms, with X = {x1, . . . ,xn, . . .} a countably infinite set of variables. Elements of R are called rewrite
rules. The rule (r,([t], [t ′])) is understood as a labeled sequent, written with the notation r : [t]→ [t ′]. The
rule r: [t(x1, . . . ,xn)]→ [t ′(x1, . . . ,xn)] indicates that {x1, . . . ,xn} is the set of variables occurring in either
t or t ′, or, in abbreviated notation, r : [t(x)]→ [t ′(x)].

Given a rewrite theory R, R entails a sentence [t]→ [t ′], or that [t]→ [t ′] is a concurrent R-rewrite.
The deduction R ` [t]→ [t ′] holds if and only if [t]→ [t ′] can be obtained by a finite application of the
following rules of deduction (where it is assumed that all the terms are well formed and t(w/x) denotes
the simultaneous substitution of wi for xi in t):

Reflexivity, for each [t] ∈ TΣ,E(X), [t]→ [t] ,

Congruence, for each f ∈ Σn,n ∈ N,
[t1]→ [t ′1] . . . [tn]→ [t ′n]

[f (t1, . . . , tn)]→ [f (t ′1, . . . , t
′
n)] ,

Replacement, for each rule r : [t(x1, . . . ,xn)]→ [t ′(x1, . . . ,xn)] ∈ R,

[w1]→ [w′1] . . . [wn]→ [w′n]

[t(w/x)]→ [t ′(w′/x)] and

Transitivity
[t1]→ [t2] [t2]→ [t3]

[t1]→ [t3] .
Maude’s search command3 performs a breadth-first search for rewrite proofs starting at a given term

to a final term that matches a given pattern. When the search type =>! is used, only canonical final terms,

2This section adapts material from [5, Section 4.2.1].
3This prose adapts text from [7, Section 18.4]

4 Programming Games and their Equilibria in Maude

that cannot be further rewritten, are allowed as solutions.

3 Programming Games in Maude

In this section we discuss our Maude implementation for strategic games, extensive games with perfect
information, Nash Equilibrium and Subgame Perfect Equilibrium. The Maude code used in the follow-
ing sections may be downloaded from http://www.ic.uff.br/~cbraga/rule.maude and run in the
latest version of the Maude system which may be downloaded from http://maude.cs.uiuc.edu.

3.1 Programming strategic games

The matrix representation of a strategic game of two players and two actions may be coded in Maude
quite straight forwardly by the abstract datatype MatrixRep constructed by a juxtaposition operation
that puts payoffs (pairs of natural numbers) side-by-side. The lines and columns’ labels are represented
as constants. We also define the constant matrix of sort MatrixRep to capture the matrix of a particular
strategic game. Essentially, the module MATRIX is a module parameterized by the payoffs and labels. We
discuss the basic 2×2 case first and the general case later.

mod MATRIX is pr NAT .

sorts PayOff MatrixRep Solution Action .

op _,_ : Nat Nat -> PayOff . op ____ : PayOff PayOff PayOff PayOff -> MatrixRep .

ops l1 l2 c1 c2 : -> Action . op matrix : -> MatrixRep .

endm

The strategic representation of the Prisioner’s Dilema (or simply Dilema) is programmed in Maude
in the module DILEMA, extending MATRIX, that makes the abstract datatype MatrixRep concrete with
the Dilema’s payoffs and labels. Figure 1 shows the strategic representation of the Dilema game.

mod DILEMA is ex MATRIX .

ops C NC : -> Action . eq l1 = C . eq l2 = NC . eq c1 = C . eq c2 = NC .

eq matrix = 2,2 4,0

0,4 3,3 .

endm

The games Battle of Sexes (where a couple must decide whether to attend a concert of an orchestra
playing Bach or another playing Stravinsky) and Matching Pennies (where two children play “head and
tail” with a coin and one must pay the other if their choices coincide) may be represented as instances of
MATRIX in a similar manner.

The general case Given a n-player game, its strategic representation is a n-dimensional matrix. More
precisely, it would be a hyperrectangle, which is a generalization of a rectangle for higher dimensions,
with each player associated with a dimension in the hyperrectangle. The value of each cell in the matrix
is a tuple with n components. Each projection of the tuple represents the payoff of the associated player
for the actions that the cell represents.

A game with three players and two actions for each player For example, in a three-players strategic
game with two actions each, the player in the third dimension would choose one of two possible 2×
2 matrices (such as in the Prisioner’s Dilema) representing the possible actions of the remaining two
players. Figure 4 illustrates such a game. One player may take actions L and R (the column dimension),

http://www.ic.uff.br/~cbraga/rule.maude
http://maude.cs.uiuc.edu

C. Braga & E. Hermann Hæusler 5

another player may take actions T and B (line dimension) and the last player may take actions l and r
(a dimension orthogonal to the column-line plane). For each action l and r there is an associated 2× 2
matrix representing the possibilities for the remaining players. On each cell there is a triple representing
the payoffs with the first projection representing the player associated with the line dimension, the second
projection the player in the column dimension and the third projection the player in the orthogonal
dimension. The game in Figure 4 has two NE when actions (B,L,l) and (T,L,l) are taken.

L R
T 1,1,1 1,0,1
B 1,1,1 0,0,1

l

L R
T 1,1,0 0,0,0
B 0,1,0 1,0,0

r

Figure 4: Three-players game

We may represent this game as an extension of the strategic game with two players and two actions.
Essentially, our extension to the game representation includes an overloaded declaration for the PayOff
constructor and a new multiset of matrices to represent the alternatives of the third player, as in Figure 4.

mod MATRIX-3 is ex MATRIX .

sorts Matrix-3 .

op _,_,_ : Int Int Int -> PayOff .

ops o1 o2 : -> Action .

op matrix-3 : -> Matrix-3 .

op __ : MatrixRep MatrixRep -> Matrix-3 [assoc comm] .

endm

mod EXAMPLE2 is ex MATRIX-3 .

ops L R T B l r : -> Action .

eq matrix-3 = (1,1,1 1,0,1

1,1,1 0,0,1)

(1,1,0 0,0,0

0,1,0 1,0,0) .

eq l1 = T . eq l2 = B . eq c1 = L . eq c2 = R .

eq o1 = l . eq o2 = r .

endm

A fully generalized representation of strategic game is parameterized by the number of players and
the number of actions for each player. It may be implemented in Maude following the ideas for the game
with three players and two actions illustrated above. Such a representation is left to an extended version
of this paper.

3.2 Programming the Nash equilibrium in strategic games

Intuitively speaking, the Nash equilibrium is a solution for a game when “I am happy when everyone
else is happy”. The best choice for an individual is also the best choice for everyone. (Pretty much as in
the movie “Beatiful mind” when John Nash, played by Russel Crowe, develops a strategy to approach a
woman in a bar in such a way that all his friends would also approach the women they wanted to.)

For a two players game with two actions, we defined a rule for each case with the appropriate com-
parisons of the payoffs. In a two player-two action game, a player must take an action if the payoff of the
given action is better than the payoff for the alternative action. The nash equilibrium is achieved in a two

6 Programming Games and their Equilibria in Maude

players-two actions game if the situation described in the previous sentence is achieved for both players
simultaneously.

Let us analyse the first rule of module NASH, our specification for the Nash Equilibrium for a two
players-two action game. The remaining rules follow the same idea. Variables Ni are number variables
of type integer that represent payoffs. Variable P represents a pair of payoffs and is used here to simplify
the readability of the pattern in the rule. The constants l1 and c1 are the same ones defined in module
MATRIX.

crl nash(N1,N2 N3,N4

N5,N6 P) => < l1 , c1 > if N1 >= N5 ∧ N2 >= N4 .

The rule compares the payoffs for the first and second players in the first cell c11 with the payoffs of
their alternatives which are the first projection of the payoff in the cell c21 and the second projection in
the cell c12, where the indices i and j in ci j represent line and column numbers of the matrix, respectively.

mod NASH is ex MATRIX .

sorts Solution . op nash : MatrixRep -> Solution . op <_,_> : Action Action -> Solution .

var P : PayOff . vars N1 N2 N3 N4 N5 N6 : Int .

crl nash(N1,N2 N3,N4

N5,N6 P) => < l1 , c1 > if N1 >= N5 ∧ N2 >= N4 .

crl nash(N1,N2 N3,N4

P N5,N6) => < l1 , c2 > if N3 >= N5 ∧ N4 >= N2 .

crl nash(N1,N2 P

N3,N4 N5,N6) => < l2 , c1 > if N3 >= N1 ∧ N4 >= N6 .

crl nash(P N1,N2

N3,N4 N5,N6) => < l2 , c2 > if N5 >= N1 ∧ N6 >= N4 .

endm

Note on efficiency Strategic games are called “one-shot” games. In our rewriting semantics this means
precisely that they are solved in O(1)∗M, where M is the complexity of Maude’s associativity-commuta-
tivity matching algorithm. We refer to [9] for a through discussion on associativity-commutativity match-
ing in Maude.

To calculate the nash equilibrium of a two players-two actions game we must declare yet another
module that imports the module that defines the game together with the NASH module. Then, we simply
run the search command over the matrix constant looking for canonical forms. Note that a game may
have more than one Nash Equilibrium or even none at all. The Dilema has precisely one equilibrium.
The Battle of Sexes has two (either the couple decide to attend the Bach concert or decide to attend
Stravinsky concert) and Matching Pennies has none, as shown by the following Maude session.

==

search in NASH-DILEMA : nash(matrix) =>! S:Solution .

Solution 1 (state 1)

states: 2 rewrites: 10 in 0ms cpu (0ms real) (98039 rewrites/second)

S:Solution --> < C,C >

No more solutions.

states: 2 rewrites: 10 in 0ms cpu (0ms real) (50761 rewrites/second)

==

search in NASH-BS : nash(matrix) =>! S:Solution .

Solution 1 (state 1)

states: 3 rewrites: 13 in 0ms cpu (0ms real) (117117 rewrites/second)

C. Braga & E. Hermann Hæusler 7

S:Solution --> < B,B >

Solution 2 (state 2)

states: 3 rewrites: 13 in 0ms cpu (0ms real) (71823 rewrites/second)

S:Solution --> < S,S >

No more solutions.

states: 3 rewrites: 13 in 0ms cpu (0ms real) (48327 rewrites/second)

==

search in NASH-MP : nash(matrix) =>! S:Solution .

Solution 1 (state 0)

states: 1 rewrites: 7 in 0ms cpu (0ms real) (92105 rewrites/second)

S:Solution --> nash(1,-1 -1,1 -1,1 1,-1)

No more solutions.

states: 1 rewrites: 7 in 0ms cpu (0ms real) (36842 rewrites/second)

The NE for a game with three players and two actions The implementation for the NE in the three
players game follows the same idea of the two players game by comparing the projections of the PayOff
tuple for each cell appropriately. Now, for the third player, in a given cell, we need to compare the
third projection of the tuple of that cell of each matrix. Note that variables N3 and M3 represent the
third projection of the tuple on each matrix. Due to space constraints, we show only two of the rules as
the remaining ones follow the same idea. The complete specification can be downloaded from http:
//www.ic.uff.br/~cbraga/rule.maude.

mod NASH-3 is pr MATRIX-3 .

sorts Solution .

op nash : Matrix-3 -> Solution .

op <_,_,_> : Action Action Action -> Solution .

vars P1 P2 : PayOff .

vars N1 N2 N3 N4 N5 N6 N7 N8 N9

M1 M2 M3 M4 M5 M6 M7 M8 M9 : Int .

crl nash((N1,N2,N3 N4,N5,N6

N7,N8,N9 P1)

(M1,M2,M3 M4,M5,M6

M7,M8,M9 P2)) => < l1, c1, o1 >

if N1 >= N7 / N2 >= N5 / N3 >= M3 .

crl nash((N1,N2,N3 N4,N5,N6

N7,N8,N9 P1)

(M1,M2,M3 M4,M5,M6

M7,M8,M9 P2)) => < l1, c1, o2 >

if N1 >= N7 / N2 >= N5 / N3 < M3 .

...

endm

Searching for the NE of the game in Figure 4 produces the following Maude session.

==

search in NASH-3-EXAMPLE2 : nash(matrix-3) =>! S:Solution .

Solution 1 (state 1)

states: 3 rewrites: 27 in 0ms cpu (0ms real) (150837 rewrites/second)

S:Solution --> < T,L,l >

Solution 2 (state 2)

http://www.ic.uff.br/~cbraga/rule.maude
http://www.ic.uff.br/~cbraga/rule.maude

8 Programming Games and their Equilibria in Maude

states: 3 rewrites: 27 in 0ms cpu (0ms real) (117391 rewrites/second)

S:Solution --> < B,L,l >

No more solutions.

states: 3 rewrites: 27 in 0ms cpu (0ms real) (99630 rewrites/second)

Note on general strategic games To the best of our knowledge, when there are more than two players,
different solution concepts, such as Core [12, Ch. 13], are used, instead of the NE. Moreover, in such
situations, many results regarding equilibria equivalences are not valid [12].

3.3 Programming extensive games with perfect information

In extensive games the players take a decision based on the history of the game. Intuitively, if all the
information is available the game is called extensive with perfect information. An extensive game is
represented as a tree where the nodes are labeled with the turn and the arrows are labeled with the
actions. The leaves of the tree hold the payoff of the associated branch. Figure 2 shows the extensive
representation of the Dilema game.

We have coded the tree representation of an extensive game in Maude as a set of branches, declared
as the sort BranchSet constructed with operator mt-bs and the composition operator , . The latter
is declared with attributes assoc, comm and id: mt-bs, which means that the operator is associative,
commutative and has the operator mt-bs as identity. Therefore, rewriting of terms of sort BranchSet
occurs modulo associativity, commutativity and identity.

A branch is a list of pairs turn-action followed by a utility. A branch is represented by the sort Branch
which is constructed by the operator : that created a pair of a list of turn-action pairs and a utility. A
turn is a natural number and Action is an abstract sort.

mod EGPI is pr NAT .

sorts Action TurnAction TurnActionList . subsort TurnAction < TurnActionList .

sorts Utility . sorts Branch BranchSet . subsort Branch < BranchSet .

op (_,_) : Nat Nat -> Utility . op (_,_) : Nat Action -> TurnAction .

op mt-tal : -> TurnActionList . op mt-bs : -> BranchSet .

op __ : TurnActionList TurnActionList -> TurnActionList [assoc id: mt-tal prec 10] .

op _:_ : TurnActionList Utility -> Branch [prec 20] .

op _,_ : BranchSet BranchSet -> BranchSet [assoc comm id: mt-bs prec 40] .

endm

The Dilema game is coded by the following Maude module.

mod DILEMA is ex EGPI .

ops C NC : -> Action . op dilema : -> BranchSet .

eq dilema = ((1, C) (2, C) : (2, 2)),

((1, C) (2, NC) : (4, 0)),

((1, NC) (2, C) : (0, 4)),

((1, NC) (2, NC) : (3, 3)) .

endm

The general case To generalize our extensional game representation to a n-players game, we would
only need to extend the arity of the utility constructor operator to n. Since the different actions of a
player are captured as branches in the tree, a general mn-action game may already be represented with
our current implementation.

C. Braga & E. Hermann Hæusler 9

3.4 Programming subgame perfect equilibrium in extensive games with perfect informa-
tion

Subgame perfect equilibrium (SPE) in an extensive game with perfect information occurs when the action
taken by each player on each history is optimal given the strategies of the remaining players.

We have implemented the computation of SPE using the concept known as backward induction.
From the leafs to the root, we identify the action that, at a given level in the tree, represents the best
action to be taken.

Module SPE-2 performs rewriting modulo associativity, commutativity and identity on terms of sort
BranchSet. Assuming that a node may have a maximum of K children (two in the case of module
SPE-2), that is to say, at a given step, there is a maximum of K different actions, our implementation
compares the payoffs of K branches and chooses the best one, replacing the matched subtree by the best
payoff. Moreover, this happens in parallel due to the congruence rule of rewriting logic that allows for
parallel rewriting to take place. That is, in our Maude code, in one rewriting step, many branches are
compared at once.

Note on efficiency Thanks to the congruence rule of rewriting logic, the complexity of our algorithm is
O(log(n))∗M where n is the number of nodes on the tree representing the game and M is the complexity
of associativity-commutativity matching algorithm implemented in Maude.

mod SPE-2 is pr NAT . pr EGPI .

sorts ActionList . subsort Action < ActionList .

op mt-al : -> ActionList . op _,_ : ActionList ActionList -> ActionList [assoc id: mt-al] .

op spe : BranchSet -> ActionList .

var TL : TurnActionList . vars A1 A2 : Action . vars N1 N2 N3 N4 : Nat . var BS : BranchSet .

eq spe(mt-tal : (N1,N2)) = mt-al .

rl [spe1] : spe(TL (1, A1) : (N1,N2) , TL (1, A2) : (N3,N4) , BS) =>

if N1 >= N3 then (spe((TL : (N1,N2)), BS), A1) else (spe((TL : (N3, N4)), BS), A2) fi .

rl [spe2] : spe(TL (2, A1) : (N1,N2) , TL (2, A2) : (N3,N4) , BS) =>

if N2 >= N4 then (spe((TL : (N1,N2)), BS), A1) else (spe((TL : (N3, N4)), BS), A2) fi .

endm

The SPE is calculated by the operator spe. Its behavior is given by rules spe1 and spe2, for players
1 and 2, respectively. Let us take a look at rule spe1. The rule compares two branches with the same
prefix TL, of sort TurnActionList, and with the same turn in the last action. The rule chooses the
branch which has a bigger payoff for the current player and calls the operator spe recursively.

rl [spe1] : spe(TL (1, A1) : (N1,N2) , TL (1, A2) : (N3,N4) , BS) =>

if N1 >= N3 then (spe((TL : (N1,N2)), BS), A1) else (spe((TL : (N3, N4)), BS), A2) fi .

The following Maude session shows the calculation of SPE for the Dilema and the Centipede games.
The results of the session should be interpreted4 as: the actions 〈C〉 and 〈C,C〉 should be followed by the
first and second players in the Dilema game and the strategy 〈S,S,S〉 should be follows by both players
in the Centipede game.

==

search in SPE-DILEMA : spe(dilema) =>! AL:ActionList .

Solution 1 (state 4)

4A proper organization of the actions for each player, as an output of operator spe, must be implemented.

10 Programming Games and their Equilibria in Maude

states: 5 rewrites: 33 in 0ms cpu (0ms real) (100303 rewrites/second)

AL:ActionList --> C,C,C

No more solutions.

states: 5 rewrites: 33 in 0ms cpu (0ms real) (87533 rewrites/second)

==

search in SPE-CENTIPEDE : spe(centipede) =>! AL:ActionList .

Solution 1 (state 6)

states: 7 rewrites: 39 in 0ms cpu (0ms real) (98236 rewrites/second)

AL:ActionList --> S,S,S,S,S,S

No more solutions.

states: 7 rewrites: 39 in 0ms cpu (0ms real) (85152 rewrites/second)

The general case The extension of the computation of SPE to a n-player game is twofold: first, the
rules would have to be adapted to cope with n-ary utility function and, second, there would be as many
rules as there are players.

4 Final Remarks

It is important to note that the extensive form that we deal with is particular to perfect information
games. Future research involves to extend this approach to handle generic games, which include a theory
transformation to generate SPE-K modules. Also, imperfect information games, as well as other solution
concepts should be treated.

We refer to [4] in the context of relating Game Theory and Rewriting. The authors apply Conver-
sion/Preference (C/P) games and abstract Nash Equilibria to models of Gene Regulation. C/P games
subsume Strategic Games and abstract Nash Equilibria is a form of Change-of-Mind equlibria that co-
incides with Nash Equilibrium in concrete cases. They capture Change-of-Mind equilibria as a set of
normal forms in the rewriting system corresponding to a C/P game. When compared to our approach, it
does not provide any way to deal with Extensive Games, unless the game is transformed into its strategic
form. This would however lose analysis capabilities since SPE could not be used. Also, their approach
is not logic-based as ours. They can not take advantage of congruence or rewriting modulo axioms as we
do. It remains to be seen if our approach could be used to implement their proposal.

Our approach differs from a Modal Logic approach, since our goal in this paper was to use the
efficiency of Maude rewriting in order to perform game analysis using search. Maude’s LTL model
checker may be used in the context of Game based Model Checking as in [15, 10]. This is, however, left
as future work. It is worth mentioning that our approach can also play the game in either form, strategic
or extensive. This is not the case regarding Modal Logic approaches.

References

[1] T. Ågotnes, M. Wooldridge, and W. van der Hoek. On the logic of coalitional games. In P. Stone and
G. Weiss, editors, AAMAS’06: Proceedings of the Fifth International Conference on Autonomous Agents and
Multiagent Systems, pages 153–160, Hakodate, Japan, May 2006. ACM Press.

[2] R. Aumann and S. Hart, editors. Handbook of Game Theory with Economic Applications, volume 1. Elsevier
North-Holland, 3rd. edition, 2002.

[3] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56:151–166, 1992.

C. Braga & E. Hermann Hæusler 11

[4] C. Chettaoui, F. Delaplace, P. Lescanne, M. Vestergaard, and R. Vestergaard. Rewriting game theory as a
foundation for state-based models of gene regulation. In C. Priami, editor, CMSB, volume 4210 of LNCS,
pages 257–270. Springer-Verlag, 2006.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. Maude: Specification
and Programming in Rewriting Logic. Computer Science Laboratory, SRI International. http://maude.cs.
uiuc.edu/maude1/manual/maude-manual-html/maude-manual_62.html.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All About Maude.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. M.-O. J. Meseguer, and C. Talcott. Maude Manual
version 2.4, February 2009. http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch18.html#

x96-25500018.4.
[8] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash equilibrium.

In STOC’06, pages 71–78, New York, NY, USA, 2006. ACM Press.
[9] S. Eker. Associative-commutative rewriting on large terms. In R. Nieuwenhuis, editor, Rewriting Techniques

and Applications (RTA 2003), number 2706 in Lecture Notes in Computer Science, pages 14–29. Springer-
Verlag, June 2003.

[10] M. Kacprzak and W. Penczek. Unbounded model checking for alternating-time temporal logic. In AA-
MAS’04, pages 646–653. IEEE Computer Society, 2004.

[11] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci., 96(1):73–
155, 1992.

[12] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[13] R. Parikh. The logic of games and its applications. In Selected papers of the International Conference on

Foundations of computation theory - Topics in the theory of computation, pages 111–139, New York, NY,
USA, 1985. Elsevier North-Holland, Inc.

[14] S. van Otterloo, W. van der Hoek, and M. Wooldridge. Preferences in game logics. In AAMAS’04, pages
152–159, Washington, DC, USA, 2004. IEEE Computer Society.

[15] D. R. Vasconcelos, E. H. Haeusler, and M. F. Benevides. Reasoning about games via temporal logic. In 7th
Augustus de Morgan Workshop, London, 2005.

[16] D. R. Vasconcelos, E. H. Haeusler, and M. F. Benevides. Defining agents via strategies: Towards a view of
MAS as games. In WRAC 2005: Workshop on Radical Agent Concepts, volume 3825 of Lecture Notes in
Artificial Intelligence, pages 299–311. Springer Verlag, 2006.

http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/maude-manual_62.html
http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/maude-manual_62.html
http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch18.html#x96-25500018.4
http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch18.html#x96-25500018.4

EPTCS , 2009, pp. 1–10.

The Semantics of Graph Programs

Detlef Plump
Department of Computer Science

The University of York, UK

Sandra Steinert
Department of Computer Science

The University of York, UK

GP (for Graph Programs) is a rule-based, nondeterministic programming language for solving graph
problems at a high level of abstraction, freeing programmers from handling low-level data struc-
tures. The core of GP consists of four constructs: single-step application of a set of conditional
graph-transformation rules, sequential composition, branching and iteration. We present a formal
semantics for GP in the style of structural operational semantics. A special feature of our semantics
is how it uses the notion offinitely failingprograms to define GP’s powerful branching and iteration
commands.

1 Introduction

This paper defines the semantics of GP, an experimental nondeterministic programming language for
high-level problem solving in the domain of graphs. The language is based on conditional rule schemata
for graph transformation (introduced in [10]) and thereby frees programmers from handling low-level
data structures for graphs. The prototype implementation of GP compiles graph programs into bytecode
for the York abstract machine, and comes with a graphical editor for programs and graphs [7].

GP has a simple syntax as its core contains only four commands: single-step application of a set of
rule schemata, sequential composition, branching and as-long-as-possible iteration. Despite its simplic-
ity, GP is computationally complete in that every computable function on graphs can be programmed [4].
A major goal of the GP project is to obtain a practical graph-transformation language that comes with
a concise formal semantics, to facilitate program verification and other formal reasoning on programs.
Also, a formal semantics provides implementors with a rigorous definition of the language that does not
depend on a compiler or machine.

To the best of our knowledge, PROGRES [12] has been the only graph-transformation language
with a complete formal semantics so far. The semantics givenby Schürr in his dissertation [11], how-
ever, reflects the complexity of PROGRES and is in our opiniontoo complicated to be used for formal
reasoning.

For GP, we adopt Plotkin’s method of structural operationalsemantics [9] to define the meaning of
programs. This approach is well established for imperativeprogramming languages [8] but is novel in the
field of graph transformation. In brief, the method consistsin devising inference rules which inductively
define the effect of commands on program states. Whereas a classic state consists of the values of all
program variables at a certain point in time, the analogue for graph transformation is the graph on which
the rules of a program operate.

As GP is nondeterministic, our semantics assigns to a program P and an input graphG all graphs that
can result from executingP on G. A special feature of the semantics is the use of failing computations
to define powerful branching and iteration constructs. (Failure occurs when a set of rule schemata to
be executed is not applicable to the current graph.) While the conditions of branching commands in
traditional programming languages are boolean expressions, GP uses arbitrary programs as conditions.
The evaluation of a conditionC succeeds if thereexistsan execution ofC on the current graph that

2 Semantics of Graph Programs

produces a graph. On the other hand, the evaluation ofC is unsuccessful if all executions ofC on the
current graph result in failure. In this caseC finitely failson the current graph.

In logic programming, finite failure (of SLD resolution) is used to define negation [2]. In the case
of GP, it allows to “hide” destructive executions of the condition C of a statementif C then P else Q.
This is because after evaluatingC, the resulting graph is discarded and eitherP or Q is executed on the
graph with which the branching statement was entered. Finite failure also allows to elegantly lift the
application of as-long-as-possible iteration from sets ofrule schemata (as in [10]) to arbitrary programs:
the body of a loop can no longer be applied if it finitely fails on the current graph.

The rest of this paper is structured as follows. The next section briefly reviews the graph-trans-
formation formalism underlying GP, the so-called double-pushout approach with relabelling, and then
introduces conditional rule schemata as the building blocks of GP programs. In Section 3, we discuss
an example program for graph colouring and define the abstract syntax of graph programs. Section 4
presents our formal semantics of GP in the style of structural operational semantics. In Section 5, we
conclude and mention some topics for future work.

2 Graph Transformation with Conditional Rule Schemata

We briefly review the model of graph transformation underlying GP, the double-pushout approach with
relabelling [5], and then introduce conditional rule schemata as the building blocks of GP programs.

2.1 Graphs and Rules

GP programs operate on graphs labelled with sequences of integers and strings. (The reason for using
sequences will become clear in Section 3.) To formalise this, let Z be the set of integers and Char be a
finite set of characters—we may think of Char as the characters that can be typed on a keyboard. We fix
the label alphabetL = (Z∪Char∗)+ consisting of all nonempty sequences made up from integers and
character strings.

A partially labelled graphoverL (or graphfor short) is a systemG= (VG,EG,sG, tG, lG,mG), where
VG andEG are finite sets ofnodes(or vertices) andedges, sG, tG : EG→ VG are thesourceand target
functions for edges,lG : VG→L is the partial node labelling function1 andmG : EG→L is the (total)
edge labelling function. GraphG is totally labelledif lG is a total function. The set of all totally labelled
graphs overL is denoted byG .

A graph morphism g: G→ H between graphsG and H consists of two functionsgV : VG → VH

andgE : EG→ EH that preserve sources, targets and labels (that is,sH ◦gE = gV ◦sG, tH ◦gE = gV ◦ tG,
mH ◦gE = mG, andlH(g(v)) = lG(v) for all v such thatlG(v) 6=⊥). Morphismg is aninclusionif g(x) = x
for all nodes and edgesx. It is injectiveif gV andgE are injective.

A rule r = (L← K → R) consists of two inclusionsK → L andK → R whereL andR are totally
labelled graphs. GraphK is the interfaceof r. Intuitively, an application ofr to a graph will remove
the items inL−K, preserveK, and add the items inR−K. Given a graphG in G , an injective graph
morphismg: L→ G is a matchfor r if it satisfies thedangling condition: no node ing(L)− g(K) is
incident to an edge inG−g(L). In this caseG directly derivesthe graphH in G that is constructed from
G as follows:2

1. Remove all nodes and edges ing(L)−g(K).

1We write lG(v) =⊥ if lG(v) is undefined.
2See [5] for an equivalent definition by graph pushouts.

D. Plump & S. Steinert 3

2. Add disjointly all nodes and edges fromR−K, keeping their labels. Fore∈ ER−EK, sH(e) is
sR(e) if sR(e) ∈VR−VK, otherwisegV(sR(e)). Targets are defined analogously.

3. For each nodev in K with lK(v) =⊥, lH(gV(v)) becomeslR(v).

We writeG⇒r,g H (or justG⇒r H) if G directly derivesH as above.
To define conditional rules, we equip rules with predicates that restrict sets of matches. Aconditional

rule q= (r,P) consists of a ruler and a predicateP on graph morphisms. Given totally labelled graphs
G, H and a matchg: L→G for q, we writeG⇒q,g H (or justG⇒q H) if P(g) holds andG⇒r,g H. For
a set of conditional rulesR, we writeG⇒R H if there is someq in R such thatG⇒q H.

2.2 Conditional Rule Schemata

A GP program is essentially a list of declarations of conditional rule schemata together with a command
sequence for controlling the application of the schemata. Rule schemata generalise rules in that labels
can contain expressions over parameters of type integer or string. In this subsection, we give an abstract
syntax for the textual components of conditional rule schemata and interpret them as sets of conditional
rules.

Figure 1 shows an example for the declaration of a conditional rule schema. It consists of the iden-
tifier bridge followed by the declaration of formal parameters, the left and right graphs of the schema
which are labelled with expressions over the parameters, the node identifiers1, 2, 3 determining the
interface of the schema, and the keywordwhere followed by the condition.

bridge(a,b,x,y,z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a+b

a b

where a >= 0 and b >= 0 and notedge(1,3)

Figure 1: A conditional rule schema

In the GP programming system [7], rule schemata are constructed with a graphical editor. Figure
2 gives a grammar in Extended Backus-Naur Form for node and edge labels in the left and right graph
of a rule schema (categories LeftLabel and RightLabel).3 Labels can be sequences of expressions sepa-
rated by underscores, as will be demonstrated by Example 1 inSection 3. We require that labels in the
left graph must be simple expressions because their values at execution time are determined by graph
matching. All variable identifiers in the right graph must also occur in the left graph. Every expression
in category Exp has typeint or string, where arithmetical operators expect arguments of typeint and
the type of variable identifiers is determined by their declarations.

The condition of a rule schema is a boolean expression built from expressions of category Exp and
the special predicateedge (we omit the syntax). Again, all variable identifiers occurring in the condition
must also occur in the left graph of the schema. The predicateedge demands the (non-)existence of an
edge between two nodes in the graph to which the rule schema isapplied. For example, the expression

3The grammar is ambiguous, we use parentheses to disambiguate expressions where necessary.

4 Semantics of Graph Programs

LeftLabel ::= SimpleExp [’’ LeftLabel]

RightLabel ::= Exp [’ ’ RightLabel]

SimpleExp ::= [’-’] Num | String | VarId

Exp ::= SimpleExp| Exp ArithOp Exp

ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’

Num ::= Digit {Digit}

String ::= ’ ” ’ {Char} ’ ” ’

Figure 2: Syntax of node and edge labels

notedge(1,3) in the condition of Figure 1 forbids an edge from node 1 to node3 when the left graph is
matched.

We interpret a conditional rule schema as the (possibly infinite) set of conditional rules that is ob-
tained by instantiating variables with any values and evaluating expressions. To define this, consider a
declarationD of a conditional rule-schema. LetL andR be the left and right graphs ofD, andc the
condition. We write Var(D) for the set of variable identifiers occurring inD. Givenx in Var(D), type(x)
denotes the type associated withx. An assignmentis a mappingα : Var(D)→ (Z∪Char∗) such that for
eachx in Var(D), type(x) = int impliesα(x) ∈ Z, and type(x) = string impliesα(x) ∈ Char∗.

Given a labell of category RightLabel occuring inD and an assignmentα , the valuelα ∈ L is
inductively defined. Ifl is a numeral or a sequence of characters, thenlα is the integer or character string
represented byl (which is independent ofα). If l is a variable identifier, thenlα = α(l). Otherwise,lα

is obtained from the values ofl ’s components. Ifl has the forme1⊕e2 with ⊕ in ArithOp ande1,e2 in
Exp, thenlα = eα

1 ⊕Z eα
2 where⊕Z is the integer operation represented by⊕.4 If l has the forme mwith

e in Exp andm in RightLabel, thenlα = eαmα . Note that our definition oflα covers all labels inD since
LeftLabel is a subcategory of RightLabel.

The value of the conditionc in D not only depends on an assignment but also on a graph morphism.
For, if ccontains the predicateedge, then we need to consider the structure of the graph to which we want
to apply the rule schema. Consider an assignmentα and letLα be obtained fromL by replacing each
label l with lα . Let g: Lα →G be a graph morphism withG∈ G . Then for each Boolean subexpression
b of c, the valuebα ,g in B = {tt,ff} is inductively defined. For example, ifb has the forme1 ⊲⊳ e2

with ⊲⊳ in RelOp ande1,e2 in Exp, thenbα ,g = tt if and only if eα
1 ⊲⊳Z eα

2 where⊲⊳Z is the relation on
integers represented by⊲⊳. A special case is given ifb has the formedge(v,w) wherev,w are identifiers
of interface nodes inD. We then have

bα ,g =

{

tt if there is an edge fromg(v) to g(w),
ff otherwise.

Let now r be the rule-schema identifier associated with declarationD. For every assignmentα , let
rα = (Lα ← K→ Rα , Pα) be the conditional rule given as follows:

• Lα andRα are obtained fromL andR by replacing each labell with lα .

• K is the discrete subgraph ofL andR determined by the node identifiers for the interface, where
all nodes are unlabelled.

4For simplicity, we consider division by zero as an implementation-level issue.

D. Plump & S. Steinert 5

• Pα is defined by: Pα(g) if and only if g is a graph morphismLα → G such thatG ∈ G and
cα ,g = tt.

Now theinterpretationof r is the rule set I(r) = {rα | α is an assignment}. For notational convenience,
we sometimes denote the relation⇒I(r) by⇒r .

For example, the upper rows of Figure 3 show the rule schemabridge of Figure 1 (without con-
dition) and its instancebridgeα , whereα(x) = 0, α(y) = α(z) = 1, α(a) = 3 andα(b) = 2. The
conditionc of bridge evaluates to the predicatePα which is true for a matchg of the left-hand graph
if and only if there is no edge fromg(1) to g(3). (Note that the subexpressionsa >= 0 andb >= 0

evaluate tott and hence can be ignored.) The lower rows of Figure 3 show an application ofbridgeα

by a graph morphism satisfyingPα .

Schema: x

1

y

2

z

3

a b
⇒ x

1

y

2

z

3

a b

a+b

↓α ↓α

Instance: 0

1

1

2

1

3

3 2
⇒ 0

1

1

2

1

3

3 2

5

↓ ↓

0 1

2

1
3 2

01

⇒ 0 1

2

1
3 2

5

01

Figure 3: Application of a rule schema using instantiation

3 Graph Programs

We start by discussing an example program for graph colouring.
Example1 (Computing a 2-colouring). A colouring for a graph is an assignment of colours (integers)
to nodes such that the source and target of each edge have different colours. A graph is2-colourable
(or bipartite) if it possesses a colouring with at most two colours. The program2-colouring in Fig-
ure 4 generates a 2-colouring for nonempty, connected inputgraphs without loops if such a colouring
exists—otherwise the input graph is returned. The program consists of five rule-schema declarations, the
macrocolour representing the rule-schema set{colour1, colour2}, and the main command sequence
following the key wordmain.

Given an integer-labelled input graph, the program first uses the rule schemachoose to pick any
node and replace its labelx with x 0. The underscore operator allows to add atag to a label, used

6 Semantics of Graph Programs

here to add colours to labels. In general, a tagged label consists of a sequence of expressions joined by
underscores. After the first node has been coloured, the commandcolour! applies the rule schemata

main= choose; colour!; if illegal then undo!

colour= {colour1, colour2}

choose(x : int) illegal(a,i,x,y : int)

1

x ⇒

1

x 0 x i y i

1 2
a

⇒ x i y i

1 2
a

colour1(a,i,x,y : int) undo(i,x : int)

x i y

1 2
a

⇒ x i y 1−i

1
2

a
1

x i ⇒

1

x

colour2(a,i,x,y : int)

x i y

1 2
a

⇒ x i y 1−i

1
2

a

Figure 4: The program2-colouring

colour1 andcolour2 nondeterministically as long as possible to colour all remaining nodes. In each
iteration of the loop, an uncoloured node adjacent to an already coloured nodev gets the colour in{0,1}
that is complementary tov’s colour. If the input graph is connected, the graph resulting fromcolour! is
correctly coloured if and only if the rule schemaillegal is not applicable. The latter is checked by the
if-statement. Ifillegal is applicable, then the input must contain an undirected cycle of odd length and
hence is not 2-colourable (see for example [6]). In this casethe loopundo! removes all tags to return the
input graph unmodified. Note that the number of rule-schema applications performed by2-colouring
is linear in the number of input nodes.

We can extend2-colouring’s applicability to graphs that are possibly empty or disconnected by
inserting a nested loop:

main = (choose; colour!)!; if illegal then undo!.

Now if the input graph is empty,choose fails which causes the outer loop to terminate and return the
current (empty) graph. On the other hand, if the input consists of several connected components, the
body of the outer loop is repeatedly called to colour each component.

Figure 5 shows the abstract syntax of GP programs.5 A program consists of a number of declarations
of conditional rule schemata and macros, and exactly one declaration of a main command sequence. The
rule-schema identifiers (category RuleId) occurring in a call of category RuleSetCall refer to declarations
of conditional rule schemata in category RuleDecl (see Section 2.2). Semantically, each rule-schema
identifier r stands for the set I(r) of conditional rules induced by that identifier. A call of theform
{r1, . . . , rn} stands for the union

⋃n
i=1 I(r i).

5Where necessary we use parentheses to disambiguate programs.

D. Plump & S. Steinert 7

Prog ::= Decl{Decl}

Decl ::= RuleDecl| MacroDecl| MainDecl

MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com{’;’ Com}

Com ::= RuleSetCall| MacroCall

| if ComSeqthen ComSeq [else ComSeq]

| ComSeq ’!’

| skip | fail

RuleSetCall ::= RuleId| ’{’ [RuleId {’,’ RuleId}] ’ }’

MacroCall ::= MacroId

Figure 5: Abstract syntax of GP

Macros are a simple means to structure programs and thereby to make them more readable. Every
program can be transformed into an equivalent macro-free program by replacing macro calls with their
associated command sequences (recursive macros are not allowed). In the next section we use the terms
“program” and “command sequence” synonymously, assuming that all macro calls have been replaced.

The commandsskip andfail can be expressed through the other commands (see next section),
hence the core of GP includes only the call of a set of conditional rule schemata (RuleSetCall), sequential
composition (’;’), the if-then-else statement and as-long-as-possible iteration (’!’).

4 Semantics of Graph Programs

We present a formal semantics of GP in the style of Plotkin’s structural operational semantics [9]. As
usual for this approach, inference rules inductively definea small-step transition relation→ on configu-
rations. In our setting, a configuration is either a command sequencetogether with a graph, just a graph
or the special element fail:

→ ⊆ (ComSeq×G)× ((ComSeq×G)∪G ∪{fail}).

Configurations in ComSeq×G represent unfinished computations, given by a rest program and a state in
the form of a graph, while graphs inG are proper results of computations. In addition, the element fail
represents a failure state. A configurationγ is terminal if there is no configurationδ such thatγ → δ .

Each inference rule in Figure 6 consists of a premise and a conclusion separated by a horizontal
bar. Both parts contain meta-variables for command sequences and graphs, whereR stands for a call in
category RuleSetCall,C,P,P′,Q stand for command sequences in category ComSeq andG,H stand for
graphs inG . Given a rule-set callR, let I(R) =

⋃

{I(r) | r is a rule-schema identifier inR} (see Section
2.2 for the definition of I(r)). Thedomainof⇒I(R), denoted by Dom(⇒I(R)), is the set of all graphsG
in G such thatG⇒I(R) H for some graphH. Meta-variables are considered to be universally quantified.
For example, the rule[Call1] should be read as: “For allR in RuleSetCall and allG,H in G , G⇒I(R) H
implies〈R, G〉 → H.”

Figure 6 shows the inference rules for the core constructs ofGP. We write→+ and→∗ for the
transitive and reflexive-transitive closures of→. A command sequenceC finitely failson a graphG ∈

8 Semantics of Graph Programs

G if (1) there does not exist an infinite sequence〈C, G〉 → 〈C1, G1〉 → . . . and (2) for each terminal
configurationγ such that〈C, G〉 →∗ γ , γ = fail. In other words,C finitely fails onG if all computations
starting from(C, G) eventually end in the configuration fail.

[Call1]
G⇒I(R) H
〈R, G〉 → H [Call2]

G 6∈ Dom(⇒I(R))
〈R, G〉 → fail

[Seq1]
〈P, G〉 → 〈P′, H〉

〈P;Q, G〉 → 〈P′;Q, H〉
[Seq2]

〈P, G〉 → H
〈P;Q, G〉 → 〈Q, H〉

[Seq3]
〈P, G〉 → fail
〈P;Q, G〉 → fail

[If1]
〈C, G〉 →+ H

〈ifC then P else Q, G〉 → 〈P, G〉 [If2]
C finitely fails onG

〈if C then P else Q, G〉 → 〈Q, G〉

[Alap1]
〈P, G〉 →+ H

〈P!, G〉 → 〈P!, H〉 [Alap2]
P finitely fails onG
〈P!, G〉 →G

Figure 6: Inference rules for core commands

The concept of finite failure stems from logic programming where it is used to definenegation as
failure [2]. In the case of GP, we use it to define powerful branching and iteration constructs. In particular,
our definition of the if-then-else command allows to “hide” destructive tests.

Example2 (Recognizing series-parallel graphs). A graph is aseries-parallel graphif it reduces to a
graph consisting of two nodes and an edge between them by the following two operations [1, 3]: (1)
Replace a pair of parallel edges by an edge from their source to their target. (2) Given a nodev with
exactly one incoming edgee1 and exactly one outgoing edgee2 such that the source ofe1 and the target
of e2 are distinct, replacee1, e2 andv by an edge from the source ofe1 to the target ofe2.

Suppose that we want to check whether a connected, integer-labelled graphG is a series-parallel
graph and, depending on the result, execute either a programP or a programQ on G. We can do this
with the program

main = if {par, seq}!; base then P else Q.

The subprogram{par, seq}! applies as long as possible the operations (1) and (2) to theinput graph
G, then the rule schemabase checks if the resulting graph consists of two nodes connected by an edge.
GraphG is a series-parallel graph if and only ifbase is applicable to the reduced graph. (Note that
{par, seq}! preserves connectedness and that, by the dangling condition, base is applicable only if the
images of its left-hand nodes have degree one.) It is important to note that by the inference rules[If1] and
[If2], the main program executesP or Q on the input graph Gwhereas the graph resulting from the test
is discarded. The rule schematapar, seq andbase are shown in Figure 7.

The meaning of the remaining GP commands is defined in terms ofthe meaning of the core com-
mands, see Figure 8. We refer to these commands asderivedcommands.

We can now summarise the meaning of GP programs by a semantic function J K which assigns to
each programP the functionJPK mapping an input graphG to the set of all possible results of runningP
onG. The result set may contain, besides proper results in the form of graphs, the special value⊥ which
indicates a nonterminating or stuck computation. Thesemantic functionJ K : ComSeq→ (G → 2G∪{⊥})

D. Plump & S. Steinert 9

par(a,b,x,y : int)

x y

1 2

a

b

=⇒ x y

1 2

0

seq(a,b,x,y,z : int)

x y z

1 2

a b
=⇒ x z

1 2

0

base(a,x,y : int)

x y
a

=⇒ /0

Figure 7: Rule schemata for recognizing series-parallel graphs

[Skip] 〈skip, G〉 → 〈r /0, G〉
wherer /0 is an identifier for the rule schema /0⇒ /0

[[Fail] 〈fail, G〉 → 〈{}, G〉

[If3] 〈ifC then P, G〉 → 〈if C then P else skip, G〉

Figure 8: Inference rules for derived commands

is defined by6

JPKG = {H ∈ G | 〈P, G〉
+
→H}∪{⊥ | P can diverge or get stuck fromG}

whereP can diverge from Gif there is an infinite sequence〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . , andP
can get stuck from Gif there is a terminal configuration〈Q, H〉 such that〈P, G〉 →∗ 〈Q, H〉.

Note thatJPKG = /0 if and only if P finitely fails on G. In Example 2, for instance, we have
J{par, seq}!; baseKG = /0 for every connected graphG containing a cycle. This is because the graph
resulting from{par, seq}! is still connected and cyclic, so the rule schemabase is not applicable.

A program can get stuck only in two situations: either it contains a subprogramifC then P else Q
whereC both can diverge from some graph and cannot produce a proper result from that graph, or it con-
tains a subprogramB! where the loop’s bodyB possesses the said property ofC. The evaluation of these
subprograms will get stuck because the inference rules for branching and iteration are not applicable.

5 Conclusion

GP is an experimental rule-based language for high-level problem solving in the domain of graphs,
freeing programmers from handling low-level data structures. The hallmark of GP is syntactic and

6We writeJPKG for the application ofJPK to a graphG.

10 Semantics of Graph Programs

semantic simplicity. Conditional rule schemata for graph transformation allow to express application
conditions and computations on labels, in addition to structural changes.

The operational semantics describes the effect of GP’s control constructs in a natural way and cap-
tures the nondeterminism of the language. In particular, powerful branching and iteration commands
have been defined using the concept of finite failure. Destructive tests on the current graph can be hidden
in the condition of the branching command, and nested loops can be coded since arbitrary subprograms
can be iterated as long as possible.

Future extensions of GP may include recursive procedures for writing complex algorithms (see [13]),
and a type concept for restricting the shape of graphs. Our goal is to support formal reasoning on graph
programs by developing static analyses for properties suchas termination and confluence (uniqueness of
results), and a calculus and tool support for program verification.

References

[1] Jørgen Bang-Jensen and Gregory Gutin.Digraphs: Theory, Algorithms and Applications. Springer-Verlag,
2000.

[2] Keith L. Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors,Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[3] R. J. Duffin. Topology of series-parallel networks.Journal of Mathematical Analysis and Applications,
10:303–318, 1965.

[4] Annegret Habel and Detlef Plump. Computational completeness of programming languages based on graph
transformation. InProc. Foundations of Software Science and Computation Structures (FOSSACS 2001),
volume 2030 ofLecture Notes in Computer Science, pages 230–245. Springer-Verlag, 2001.

[5] Annegret Habel and Detlef Plump. Relabelling in graph transformation. InProc. International Conference
on Graph Transformation (ICGT 2002), volume 2505 ofLecture Notes in Computer Science, pages 135–147.
Springer-Verlag, 2002.

[6] Jon Kleinberg and́Eva Tardos.Algorithm Design. Addison Wesley, 2006.

[7] Greg Manning and Detlef Plump. The GP programming system. In Proc. Graph Transformation and Visual
Modelling Techniques (GT-VMT 2008), volume 10 ofElectronic Communications of the EASST, 2008.

[8] Hanne Riis Nielson and Flemming Nielson.Semantics with Applications: An Appetizer. Springer-Verlag,
2007.

[9] Gordon D. Plotkin. A structural approach to operationalsemantics.Journal of Logic and Algebraic Pro-
gramming, 60–61:17–139, 2004.

[10] Detlef Plump and Sandra Steinert. Towards graph programs for graph algorithms. InProc. International
Conference on Graph Transformation (ICGT 2004), volume 3256 ofLecture Notes in Computer Science,
pages 128–143. Springer-Verlag, 2004.

[11] Andy Schürr.Operationales Spezifizieren mit programmierten Graphersetzungssystemen. Deutscher Univer-
sitäts-Verlag, 1991. In German.

[12] Andy Schürr, Andreas Winter, and Albert Zündorf. ThePROGRES approach: Language and environment.
In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 2, chapter 13, pages 487–550. World Scientific, 1999.

[13] Sandra Steinert.The Graph Programming Language GP. PhD thesis, The University of York, 2007.

An Improved Algorithm for Generating Database Transactions
from Relational Algebra Specifications

Daniel J. Dougherty
Worcester Polytechnic Institute

Abstract

Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler,
Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications
into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm
for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent
progress in improving the robustness and efficiency of this transformation.

1 Introduction
Alloy [Jac06] is a popular modeling language that implements the lightweight formal methods philosophy [JW96].
Its expressive power is that of first-order logic extended with transitive closure, and its syntax, based on relational
algebra, is strongly influenced by object modeling notations. The language is accompanied by the Alloy Analyzer:
the analyzer builds models (or “instances”) for a specification using SAT-solving techniques. Users can employ a
graphical browser to explore instances and counter-examples to claims.

Having written an Alloy specification, the user must then write the corresponding code by hand; consequently
there are no formal guarantees that the resulting code has any relationship to the specification. The Alchemy project
addresses this issue. Alchemy is a tool under active development [KDFY08, GDFK] at Worcester Polytechnic
Institute and Brown University, by Kathi Fisler, Shriram Krishnamurthi, and the author, with our students Theo
Giannakopoulos and Daniel Yoo, that compiles Alloy specifications into libraries of database operations. This is
not a straightforward enterprise since, in contrast to Z [Spi92] and B [Abr96], where a notion of state machine is
built into the language, Alloy does not have a native machine model.

Alchemy opens up a new way of working with Alloy specifications: as declarative notations for imperative
programs. In this way Alloy models support a novel kind of rule-based programming, in which underspecification
is a central aspect of program design.

In this note we report on recent progress in improving the process of generating imperative code for declarative
specifications in a language like Alloy. This paper is a companion to [GDFK], which developed a better semantic
foundation for interpreting Alloy predicates as operations. With this better foundation we are able to generate code
for a wider class of predicates than that treated in [KDFY08] and also prove a more robust correctness theorem
relating the imperative code to the original specification.

2 Alloy and Alchemy
Notation. For consistency with the presentation and analysis of the algorithms below, we use standard
mathematical notation in specifications in some places where Alloy uses ASCII notation. In particular ∪ is “+” in
Alloy, and ∩ is “&” there.

Some of the material in this expository section is taken from [KDFY08].

1

sig Submission {}
sig Grade {}
sig Student {}

sig Course {
roster : set Student,
work : roster→ Submission,
gradebook : work→ lone Grade }

pred Enroll (c, c’ : Course, sNew : Student) {
c’.roster = c.roster ∪ sNew and
c’.work[sNew] = /0 }

pred Drop (c, c’ : Course, s: Student) {
s not in c’.roster }

pred SubmitForPair (c, c’ : Course, s1, s2 : Student,
bNew : Submission) {

// pre-condition
s1 in c.roster and s2 in c.roster and
// update
c’.work = c.work ∪ <s1, bNew> ∪ <s2, bNew> and
// frame condition
c’.gradebook = c.gradebook }

pred AssignGrade (c, c’ : Course, s : Student,
b : Submission, g : Grade) {

c’.gradebook in c.gradebook ∪ <s, b, g> and
c’.roster = c.roster }

fact SameGradeForPair {
all c : Course, s1, s2 : Student, b : Submission |

b in (c.work[s1] & c.work[s2]) implies
c.gradebook[s1][b] = c.gradebook[s2][b] }

Figure 1: Alloy specification of a gradebook.

2.1 An overview of Alloy
An excellent introduction to Alloy is Daniel Jackson’s book [Jac06]. Here we start with an informal introduction
to Alloy syntax and semantics via an example. The example is a homework submission and grading system, shown
in Figure 1. In this system, students may submit work in pairs. The gradebook stores the grade for each student on
each submission. Students may be added to or deleted from the system at any time, as they enroll in or drop the
course.

The system’s data model centers around a course, which has three fields: a roster (set of students), submitted
work (relation from enrolled students to submissions), and a gradebook. Alloy uses signatures to capture the sets
and relations that comprise a data model. Each sig (Submission, etc.) defines a unary relation. The elements of
these relations are called atoms; the type of each atom is its containing relation.

Fields of signatures define additional relations. The sig for Course, for example, declares roster to be a relation
on Course×Student. Similarly, the relation work is of type Course×Student×Submission, but with the projection
on Course and Student restricted to pairs in the roster relation. The lone annotation on gradebook allows at most

2

one grade per submission.
The predicates (Enroll, etc.) capture the actions supported in the system. The predicates follow a standard

Alloy idiom for stateful operations: each has parameters for the pre- and post-states of the operation (c and c’,
respectively), with the intended interpretation that latter reflects a change applied to the former. Alloy facts (such
as SameGradeForPair) capture invariants on the models. This particular fact states that students who submit joint
work get the same grade.

An important aspect of Alloy is that everything is a relation. In particular sets are viewed as unary relations, and
individual atoms are viewed as singleton unary relations. As a consequence the in operator does double-duty: it is
interpreted formally as subset, but also stands in for the “element-of” relation, in the sense that if—intuitively—a
is an atom that is an element of a set r, this is expressed in Alloy as a in r, since a is formally a (singleton) set.

The Alloy semantics defines a set of models for the signatures and facts. Operators over sets and relations have
their usual semantics: + (union), & (intersection), 〈 , 〉 (tupling), and . (join). As noted above, in denotes subset
and is alos used to encode membership. Square brackets provide a convenient syntactic sugar for certain joins:
e2[e1] is equivalent to e1.e2. The following relations constitute a model under the Alloy semantics.

Student = {Harry, Meg}
Submission = {hwk1}
Grade = {A, A−, B+, B}
Course = {c0, c1}
roster = (〈c0,Harry〉, 〈c1,Harry〉, 〈c1,Meg〉)
work = {〈c1,Harry,hwk1〉}
gradebook = {〈c1,Harry,hwk1,A−〉}

A model of a predicate also associates each predicate parameter with an atom in the model such that the predicate
body holds. The above set of relations models the Enroll predicate under bindings c = c0, c’ = c1 and sNew = Meg.
A model may include tuples beyond those required to satisfy a predicate: the Enroll predicate does not constrain
the work relation for pre-existing students, so the appearance of tuple 〈c1,Harry,hwk1〉 in the work relation is
semantically acceptable.

The reader may want to check that the relations shown do not happen to model the predicate SubmitForPair,
in the sense that no bindings for c,c′,s1,s2,andbNew make the body of SubmitForPair true. Under c0 and c’ = c1,
for example, the requirement c’.gradebook = c.gradebook fails because the gradebook starting from c’ has one
tuple while that starting from c has none. The requirement on work also fails. Similar inconsistencies contradict
other possible bindings for c and c’.

2.2 An overview of Alchemy
We illustrate Alchemy in the context of the gradebook specification from Figure 1. Alchemy creates a database
table for each relation (e.g., Submission, roster), a procedure for each predicate (e.g., Enroll), and a function for
creating new elements of each atomic signature (e.g., CreateSubmission). A sample session using Alchemy might
proceed as follows. We create a course with two students using the following command sequence:

cs311 = CreateCourse(”cs311”);
pete = CreateStudent(”Pete”);
caitlin = CreateStudent(”Caitlin”);
Enroll(cs311, pete);
Enroll(cs311, caitlin)

Note that the Enroll function takes only one course-argument, in contrast to the two in the original Alloy
predicate, since the implementation maintains only a single set of tables over time (the second course parameter
in the predicate corresponds to the resulting updated table). Executing the Enroll function adds the pairs
〈”cs311”, ”Pete”〉 and 〈”cs311”, ”Caitlin”〉 to the roster table. The second clause of the Enroll specification
guarantees that the work table will not have entries for either student.

Next, we submit a new homework for ”Pete” and ”Caitlin”:

hwk1 = CreateSubmission(”hwk1”);
SubmitForPair(cs311, pete, caitlin, hwk1)

3

The implementation of SubmitForPair is straightforward relative to the specification. It treats the first clause in the
specification as a pre-condition by terminating the computation with an error if the clause is false in the database at
the start of the function execution. Next, it adds the work tuples required in the second (update) clause. It ensures
that the gradebook table is unchanged, as required by the third clause.

Assigning a grade illustrates the way that Alloy facts constrain Alchemy’s updates:

gradeA = CreateGrade(”A”);
AssignGrade(cs311, pete, hwk1, gradeA)

AssignGrade inserts a tuple into the gradebook relation according to the first clause, and checks that the roster is
unchanged according to the second. If execution were to stop here, however, the resulting tables would contradict
the SameGradeForPair invariant (which requires ”Caitlin” to receive the same grade on the joint assignment).
Alchemy determines that adding the tuple 〈”cs311”,”Caitlin”,”hwk1”, ”A”〉 to gradebook will satisfy both the
predicate body and the SameGradeForPair fact, and executes this command automatically. If there is no way to
update the database to respect both the predicate and the fact, Alchemy will raise an exception. This could happen,
for example, if the first clause in AssignGrade used =instead of in : in this case, adding the repairing tuple would
violate the predicate body).

Maintaining invariants Alloy’s use of facts to constrain possibly-underspecified predicates offers a powerful
lightweight modeling tool. The facts in an Alloy specification are axioms in the sense that they hold in any instance
for the specification. We may view the facts as integrity constraints: they capture the fundamental invariants to be
maintained across all transactions. Alchemy will guarantee preservation of all facts as database invariants. This is
akin to the notion of repair of database transactions.

2.3 Formalities
Alloy specifications Formally, the Alloy specifications we treat in this paper are tuples of signatures, predicates,
and facts. In practice Alloy specifications may also include assertions to be checked by the analyzer, but they do
not play a direct role in Alchemy’s code generation so we omit them here.

• A signature specifies its type name and a set of fields. Each field has a name and a type specification
A0→A1→ . . .→An, where each Ai is the type name of some signature.

• A predicate has a header and a body. The header declares a set of variable names, each with an associated
signature type name; the body is a formula in which the only free variables are defined in the header.

• A fact is a closed formula, having the force of an axiom: models of a specification are required to satisfy
these facts. Alloy permits the user to specify certain constraints on the signatures and fields when they are
declared, such as “relation r may have at most one tuple.” These can be alternatively expressed as facts and,
for simplicity of presentation, we assume this is always done.

The following language for expressions and formulas is essentially equivalent to the Kernel language of
Alloy [Jac06] (modulo the lexical differences between standard mathematical notation used here and Alloy’s
ASCII).

expr ::= rel | var | none | expr binop expr | unop expr
binop ::= ∪ | ∩ | − | . | 〈,〉
unop ::= ∼| ∗

formula ::= elemFormula | compFormula | quantFormula
elemFormula ::= expr in expr | expr = expr
compFormula ::= not formula | formula ∧ formula | formula ∨ formula
quantFormula ::= ∀ var: expr { formula } | ∃ var: expr { formula }

4

State-based specifications The elements of an Alloy specification suggest natural implementation counterparts.
The signatures lay out relations that translate directly into persistent database schemas. The facts—those properties
that are meant to hold of all models constructed by Alloy—function as database integrity constraints. Finally,
under a commonly idiom, certain predicates in an Alloy specification connote state changes. It is these state-based
specifications that Alchemy (currently) treats.

The state-transition idiom is a commonly understood convention rather than a formal notion in Alloy. To
precisely define the class of specifications that Alchemy treats, we first require some terminology. Fix a
distinguished signature, which we will call State. An immutable type is one with no occurrences of the State
signature.

The assumptions Alchemy makes about the specifications it treats are:

• specifications are state-based, and

• facts have at most one variable of type State and that this variable is unprimed and universally
quantified.

An operational semantics The static semantics of Alloy is based on the class of relational algebras. To give
an operational semantics for state-based Alloy specifications, one that takes seriously the reading of predicates as
state-transformers, we pass to the class of transition systems whose nodes are relational algebras. We also assume
that each state have a single atom of type State. When individual relation algebras are read as database instances,
transitions between states can be viewed as database update sequences transforming one state to another. We adopt
a constant-domain assumption concerning our transition systems. Space consideration prohibit us from presenting
the motivation and justification for this (including the explanation why it is not as great a restriction as it may
appear); details are in [GDFK].

Since predicates have parameters, the meaning of a predicate is relative to bindings from variables to values. It
is technically convenient to assume that for a given specification we identify, for each type, a universe of possible
values at this type. Then an environment η is a mapping from typed variables to values.

Definition 1 (Operational semantics of predicates). Let p be a predicate with the property that p has among its
parameters exactly two variables s and s’ of type State, and let η be an environment. The meaning JpKη of p
under η is the set of pairs 〈I, I′〉 of instances such that

• η maps the parameters of p into the set of atoms of I (which equals the set of atoms of I′), mapping the
unprimed State parameter to the State-atom of I and the primed State parameter to the State-atom of I′;

• (I, I′) makes the body of p true under the environment η: occurrences of the State variable s are interpreted
in I, while occurrences of the State variable s′ are interpreted in I′.

The meaning of a predicate p is a set of transitions because p can be applied to different nodes, with different
bindings of the parameters of course, but also—and more interestingly—because predicates typically under-specify
actions: different implementations of a predicate can yield different outcomes I′ on the same input I. Any of these
should be considered acceptable as long as the relation between pre- and post-states is described by the predicate.

3 Main Result
We observed that a predicate p determines a family of binary relations over instances, parametrized by
environments. That is, for a given environment η:

JpKη : Inst→2Inst . (1)

Now suppose t is a procedure defining a database transaction (so t is the sort of procedure that a predicate p
specifies). Given an instance I and an environment η, t may return a new instance I′, terminate with failure, or

5

may diverge. None of the procedures we describe in this paper will diverge, so we are considering procedures t
that (under an environment) determine a function over instances:

JtKη : Inst→(Inst + f ail). (2)

Alchemy’s job is precisely the following: given predicate p, construct a procedure t = code(p) such that the
semantics of code(p) as given in Equation 2 refines the semantics of p as given in Equation 1 in the following
sense.

Theorem 2 (Main theorem). Let p be a predicate and let code(p) be a backtracking implementation of the
algorithm Ap, given in Definition 5 below. Then for each instance I and each environment η

1. Jcode(p)Kη terminates on I;

2. If there exists any instance I′ such that (I, I′) satisfies p under η then the result of Jcode(p)Kη is such an I′.
In particular in this situation Jcode(p)K does not return “failure” under η on I.

It is worth noting that the task of generating updates from specification submits to an uninteresting trivial
solution, particularly if we are willing to tolerate partial functions. Given predicate p we could define code(p) by:

on input I, exhaustively generate all possible I′; for each one test whether (I, I′) in JpK. If and when
such an I′ is found, replace I by I′.

Obviously this is a silly algorithm, even though it is “correct” in a formal sense. Our goal with Alchemy is to write
code that is intuitively reasonable, and still is correct in the sense of Theorem 2.

4 Code generation
Suppose we are given an Alloy predicate p. Alchemy generates code for a procedure with parameters
corresponding to those of p (without the primed parameter).

As observed above, a crucial aspect of Alloy is that it encourages “lightweight” specifications of procedures:
the designer is free to ignore details about the computation that she may consider inessential. As a consequence,
Alchemy must be extremely flexible: different input instances may require quite different computations in order to
satisfy a specification, yet Alchemy must generate code that works uniformly across all instances.

The top-level view of how Alchemy generates code for a procedure is as follows.

4.1 Outline
• In Definition 5 below we present a construction that, based on predicate p, builds a non-deterministic

procedure Ap.

• The code generated by Alchemy, code(p), is a backtracking implementation of Ap. Computation paths that
do not succeed are recognized as such and abandoned, and Ap is finite-branching, so code(p) will always
terminate.

• If there exists any instance I′ such that (I, I′) satisfies p under η then some branch of Ap is guaranteed to
compute such some such instance.

Coping with inconsistent predicates It is possible for the code for a predicate p to fail on a given database
instance I, either because the predicate is internally inconsistent or because no update of I can implement p without
violating the facts. Alchemy is guaranteed to detect such situations; we treat predicates as transactions that rollback
if they cannot be executed without violating their bodies or a fact.

6

4.2 A normal form for predicates
The general form of an Alloy predicate that specifies an operation and that Alchemy treats is

pred p(s,s′ : State, a1 : A1, . . . ,an : An){ ~Qx . β(~a,~x)}

where ~Q is a sequence of quantified atoms and β is a quantifier free formula of relational algebra. Before giving
an imperative interpretation of a predicate it is convenient to massage it into a convenient form.

Skolemization By the classical technique of Skolemization any formula ~Qx . β(~a,~x) can be converted into a
universal formula which is satisfiable if and only if ~Qx . β(~a,~x) is satisfiable. We exploit this trick in Alchemy as
follows. Given a predicate p we convert it to a predicate p∀ whose the body is in universal form; this involves
expanding the specification language to include the appropriate Skolem functions. Suppose we generate code for
p∀ (over the expanded language). Then given an original instance I we may view it as an instance I+ over the
enlarged schema, and apply the generated code to obtain an instance I′+. We ultimately return the instance I′ that
is the reduct of I′+ to the original schema. So in what follows we restrict attention to predicates whose body is a
universal formula.

Incorporating the facts Intuitively the facts in a specification comprise a separate set of constraints on how a
predicate may build new instances from old ones. But by the following simple trick we can avoid treating the facts
separately. When compiling a predicate to code we take each fact, prime every occurrence of the State sig, and add
the fact to the body of the predicate. The use of primed State names means that the fact acts as a post-condition
on the predicate. (Strictly speaking this is only true under an assumption of “state-boundedness” on the form of
the facts, defined in [GDFK]. The specifics of this syntactic assumption are irrelevant to the current paper so we
omit details) This in turn guarantees that any post-instance defined by the predicate will satisfy the facts.

The following is a convenient form for formulas.

Definition 3 (Special formulas). A special formula is a formula in either of the two forms

(e1∩ . . .∩ ek) = /0 or (e1∩ . . .∩ ek) 6= /0

for k ≥ 1, with each ei not containing ∪ or /0 and with converse applied only to variables and relation names.

Lemma 4. Any quantifier-free formula can be transformed into an equivalent Boolean combination of special
formulas.

The proof of the Lemma is straightforward. The convenience afforded by special formulas will be made clear
in the next section.

4.3 Algorithms
Bridging the declarative/imperative gap The main procedure Ap below is generated by an induction that walks
the structure of the formula that is the body of p. There is a natural correspondence between the logical operators in
the predicate and control-flow operators in the generated procedure. The disjunctive (logical ∨ and ∃) constructors
in predicates naturally suggest imperative nondeterminism; this of course results in backtracking in generated code.
Likewise, conjunctive (logical ∧ and ∀) constructors lead naturally to sequencing. This is natural enough, but a
difficulty arises due to the fact that the logical operators are commutative but command-sequencing certainly is
not. Indeed, implementing one part of a predicate can undo the effect achieved by an earlier part. The solution is
to iterate computation until a fixed-point is reached on the post-state. So we must be careful to ensure that such an
iteration will always halt.

Compiling special formulas to code Consider for example the body of the Drop predicate in Figure 1. There
are certainly many ways to update the data to make this true; for example we could delete all the tuples in the roster
table! This is not what the specifier had in mind. But even this silly example points out the need for a principled
approach to update. We start with the following goal: we attempt to make a minimal set of updates (measured by
the number of tuples inserted or deleted into tables) to the system to satisfy the predicate.

7

The virtue of special formulas is that they facilitate identifying minimal updates to make a formula true. For
example the formula a in s′.r, which, when a is an atom, is to say that a is in the relation s′.r is equivalent to the
formula a− (s′.r) = /0. So suppose a− (s′.r) = /0 is part of the body of a predicate. We evaluate the expression
a− (s′.r) in the prestate and the current poststate: if the value of this expression is indeed empty then there is
nothing to do. If it is not empty then a is not in s′.r, and it is clear what action to take: add a to s′.r.

More generally, when confronted with a special formula e = /0 we may view any tuples in the current value
of e as obstacles to the truth of the formula. Then the action suggested by the formula is clear: make whatever
insertions or deletions we can to ensure the formula becomes true. (The presence of the difference operator means
that making an expression empty may involve insertions.) The important thing to note is that, obviously, we may
focus exclusively on tuples that are already in the value of e in attempting to make e = /0 in the updated state. This
is our strategy for doing minimal updates for a predicate.

Inserting and deleting tuples We have seen that compiling a special formula amounts to orchestrating the
insertion or deletion of individual tuples from the relations denoted by expressions. These expressions correspond
to database views, and indeed the task of inserting or deleting a tuple from a view is an instance of the well-known
view update problem [BLT86, BDH04]. Our code proceeds by a structural induction over the expression: see the
procedures insertTuple and deleteTuple below.

Putting it all together After the preceding discussion the pseudocode for the Alchemy’s translation algorithm
should be largely self-explanatory. For simplicity in notation we adopt the following conventions. There are global
variables pre-state and post-state ranging over instances, and a global variable Updates which keeps a record of
the insertions and deletions done as the algorithm progresses.

We make use of the following function Eval(e : expression, J,J′ : database instances) that returns the set of
tuples denoted by expression e under the convention that immutable relation-name occurrences are interpreted in
J and mutable relation-name occurrences are interpreted in J′. The pseudocode given here for procedures Ap, Bp,
insertTuple, and deleteTuple is directly based on the discussion in the previous paragraphs.

Definition 5 (Algorithm Ap). Let p be a Alloy predicate of the form

pred p(s,s′ : State, a1 : A1, . . . ,an : An) . {∀~x .
^

i

_
j

σi, j}

where each σi, j is a special formula. The procedure Ap determined by p is as follows. Each of Ap and Bp reads
the instance I globally and reads and writes I’ and Updates globally.

procedure Ap (I: database instance) {
initialize poststate I’ to be I;
initialize Updates to be empty;
repeat Bp(a1 : A1, . . . ,an : An)
until no change in Updates

}
procedure Bp(a1 : A1, . . . ,an : An) {

for each binding~b of values in I for the variables in~x:
let

V
i
W

j σ̄i, j be the body of p instantiated by~b:
for each conjunct

W
j σ̄i, j

choose some σ̄i, j and realize σ̄i, j as follows:
Case 1: σ̄i, j is of the form (e1∩ . . .∩ ek) = /0)
set e≡ (e1∩ . . .∩ ek)
for each tuple t in Eval(e, I, I′):

call deleteTuple(t,e, I, I′);
Case 2: σ̄i, j is of the form (e1∩ . . .∩ ek) 6= /0)
set e≡ (e1∩ . . .∩ ek)
choose some t of the same type as e

call insertTuple(t, e. I, I’)
update Updates accordingly;

}

8

procedure insertTuple(t : tuple, e: expression) {
match e:
atom a: if a 6= t then FAIL else RETURN
immutable relation r: if t /∈ r then FAIL else RETURN
mutable relation r: if t has been previously deleted from r then FAIL

else add t to the table r in J′

e1∪ e2: choose some ei ; insertTuple(t,ei)
e1∩ e2: insertTuple(t,e1) ; insertTuple(t,e2)
∼ e: insertTuple(t,e)
〈e1,e2〉: let t = 〈t1, t2〉 where ti matches type of ei; insertTuple(t1,e1) ; insertTuple(t2,e2)
e1− e2: choose: insertTuple(t,e1) or deleteTuple(t,e2)
e1.e2: let T be the common sig-type that joins e1 and e2;

if T is the type of e1 then for some a in Eval(e1, I, I′), insertTuple(〈a, t〉,e2)
elseif T is the type of e2 then for some a in Eval(e2, I, I′), insertTuple(〈t,a〉,e1)
else choose a : T ; set t1 = 〈s1,a〉 and set t2 = 〈a,s2〉;

insertTuple(t1,e1) ; insertTuple(t2,e2)
(e1)

∗: insertTuple(t,e1)

procedure deleteTuple(t : tuple, e: expression) {
match e:
atom a: if a = t then FAIL else RETURN
immutable relation r: if t ∈ r then FAIL else RETURN
mutable relation r: if t has been previously inserted into r then FAIL

else delete t from the table r in J′

e1∪ e2: deleteTuple(t,e1) ; deleteTuple(t,e2)
e1∩ e2: choose some ei ; deleteTuple(t,ei)
∼ e: deleteTuple(t,e)
〈e1,e2〉: let t = 〈t1, t2〉 where ti matches type of ei; choose some ei; deleteTuple(ti,ei)
e1− e2: choose: deleteTuple(t,e1) or insertTuple(t,e2)
e1.e2: let T be the common sig-type that joins e1 and e2;

if T is the type of e1 then for each a in Eval(e1, I, I′), deleteTuple(〈a, t〉,e2)
elseif T is the type of e2 then for each a in Eval(e2, I, I′), deleteTuple(〈t,a〉,e1)
else for each a : T such that for some s1,s2,

〈s1,a〉= t1 is in e1 and 〈a,s2〉= t2 is in e2 and t1.t2 = t;
choose ei then deleteTuple(ti,ei)

(e1)
∗: for each (x,y1),(y1,y2), . . . ,(yn,y) such that t = (x,y) and each pair is in e1

choose some pair (yi,yi+1); deleteTuple(〈yi,yi+1〉,e1)

4.4 Proof of correctness
Proof of Theorem 2 Theorem 2 follows from the following lemma about Ap.

Lemma 6. Let p be a predicate; let Ap be the non-deterministic procedure constructed from p by Definition 5.
Then for every instance I and binding η for the parameters of p:

1. Every computation of Ap terminates on I under η, and if Ap returns an instance I′, we have (I, I′) ∈ JpKη;

2. If there is an instance I′ such that (I, I′) ∈ JpK(η) then Ap will not fail.

Proof of the lemma. For the first claim, first note that algorithm Bp proceeds by primitive recursion over the body
of the predicates and algorithms insertTuple and deleteTuple proceed by primitive recursion over the body of
expressions. So it suffices to argue that the iteration till fixed point in algorithm Ap always terminates. But this
follows from the fact that we never add or delete the same tuple from a given relation and the total size of the
domain we work with never changes. It is easy to see that when Ap halts without failure it is the case that the body
of the predicate has been satisfied.

9

To establish the second claim we start with a definition. Given instances I and I′ let us say that instance J is an
(I, I′)-approximation if

I− J ⊆ I− I′ and J− I ⊆ I′− I.

We abuse notation slightly above: these calculations are done on a per-relation basis. Intuitively J is an (I, I′)-
approximation if J can be obtained from I by making some of the inserts and deletes that transform I into I′. Note
that I is an (I, I′)-approximation, as is I′. Now the second claim follows from the fact that, for initial instance I and
chosen I′ with (I, I′) ∈ JpK(η), whenever algorithm Bp is called (by Ap) when the current value of the poststate
is an (I, I′)-approximation then there is a computation of Bp that (i) does not fail, and (ii) updates the poststate so
that it still is an (I, I′)-approximation. In particular Ap will never fail.

Complexity There is nothing interesting that can be said about the run-time complexity of code(p) since it
depends on the nature of the predicate p, and p can be an arbitrary predicate. On the other hand it is natural to
ask about the complexity of code() itself. In other words, what is the running time of Alchemy’s code generation
algorithm? Since code(p) comprises a backtracking wrapper around the algorithm Ap the question is essentially
the same as asking: what is the complexity of building the text of algorithm Ap from the text of predicate p? It is
easy to see that this is linear in p. Note in particular that the procedures insertTuple and deleteTuple do not depend
on p at all.

5 Related Work
For an extensive discussion of previous research relevant to the Alchemy project itself we refer the reader to the
related work section in [KDFY08]. The relationship of the present paper to the previous work on Alchemy is as
follows. In [KDFY08] we did not handle the relational difference operator, we did not treat Skolemization, and our
correctness result was only for a subset of Alloy predicates (those admitting “homogeneous” implementations as
defined there). But most importantly, the treatment of when relation names were evaluated in the pre-state and when
in the post-state was ad-hoc: in the current paper this important semantic decision rests on the secure foundations
of the work in [GDFK]. This allows us to prove a true soundness and completeness theorem (Theorem 2) for our
code-generation algorithm.

References
[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996.

[BDH04] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. From XML view updates to
relational view updates: old solutions to a new problem. In Mario A. Nascimento, M. Tamer Özsu,
Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors, VLDB, pages
276–287. Morgan Kaufmann, 2004.

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently updating materialized views.
In Carlo Zaniolo, editor, SIGMOD Conference, pages 61–71. ACM Press, 1986.

[GDFK] Theophilos Giannokopoulos, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Towards
an operational semantics for Alloy. Submitted for publication.

[Jac06] Daniel Jackson. Software Abstractions. MIT Press, 2006.

[JW96] Daniel Jackson and Jeanette Wing. Lightweight formal methods. IEEE Computer, April 1996.

[KDFY08] Shriram Krishnamurthi, Daniel J. Dougherty, Kathi Fisler, and Daniel Yoo. Alchemy: Transmuting
base Alloy specifications into implementations. In ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2008.

[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.

10

EPTCS , 2009, pp. 1–8.

Modeling and Reasoning over Distributed Systems using
Aspect-Oriented Graph Grammars

Rodrigo Machado
Univ. Federal do Rio Grande do Sul

Porto Alegre, Brazil
rma@inf.ufrgs.br

Reiko Heckel
Univ. of Leicester

Leicester, UK
reiko@mcs.le.ac.uk

Leila Ribeiro
Univ. Federal do Rio Grande do Sul

Porto Alegre, Brazil
leila@inf.ufrgs.br

Aspect-orientation is a relatively new paradigm whose purpose is to provide better abstractions to
represent system-wide policies. It is based on a composition operation that modifies a base system
by performing changes at specific places. Aspect-oriented graph grammars are an extension of the
classic graph grammar formalism, where aspects are defined as sets of rewriting rules that actuate
over an original specification. Despite the obtained advantages of the paradigm, the implicit nature of
the aspect weaving operation may introduce some issues when reasoning about the system behavior.
By using aspect-oriented graph grammars we can apply known analysis techniques from the graph
transformation literature to reason over diagrammatic aspect-oriented systems. In this paper, we
present a case study of a distributed client-server system with global policies, modeled as an aspect-
oriented graph grammar, and discuss how we may represent it in the AGG tool in order to analyze
the aspect weaving operation.

1 Introduction

Aspect-oriented programming [10] is a relatively new paradigm that aims to provide better abstractions
to global system requirements that usually affect many modules. It is based on a composition operation,
called aspect weaving, that modifies a base system globally according to a global policy such as, for
instance, “register in a global log all modifications in the value of the variable x of class C”. As char-
acterized in [6], an aspect is a module that i) identifies in other modules sets of execution points, which
are called pointcuts, and ii) define transformation rules associated with pointcuts. Those rules are called
advices. Once we have a pointcut language expressive enough, the implementation of global policies
become extremely small, modularized and consistent as the system evolves, i.e. new modules will abide
by the global policy in the same way as the current ones.

Those advantages stimulated the adoption of aspect-oriented programming in software development.
Several languages now have aspect-oriented extensions, the most popular being the Java superset As-
pectJ [9]. Moreover, the usage of AOP-related concepts also started to appear in languages for system
modeling, such as UML diagrams [8]. However, the widely usage of aspect-oriented concepts also intro-
duces issues in the software development process. The pervasiveness of aspect influence may introduce
unpredictable behaviors which are difficult to reason about by source code analysis. Also, when the
system has more than one aspect they may interfere with each other, resulting in different final systems
according to the order they are combined. To deal with those problems, the developer needs proper mod-
els to reason consistently about the aspect influence. On the formal side, several aspect-oriented calculi
have been proposed to characterize aspect interference over programming languages [13, 7, 5, 4]. On the
implementation side, integrated development environments start to offer support to new views related to
aspect weaving [1]. However, outside the scope of source-code level aspects, there are still few models
and techniques available to reason about aspect-oriented diagrams.

2 Modeling and Reasoning over Distributed Systems using AOGGs

The current proposals for studying aspect weaving over diagrams have a strong connection with graph
grammars, models where the system state is represented by a graph, and its execution, by the application
of graph rewriting rules. This is due their common characteristics: diagrams may be naturally encoded
as graphs, pointcuts resemble matches for graph rules, and advices resemble graph rules themselves. In
[11], aspect-oriented graph grammars (AOGGs) were proposed as an extension of the traditional graph
grammars, where aspects were modeled as second-order transformations over the original specification.
The advantage of this approach is that the same rewriting mechanism is used for both aspect-composition
and the base system execution, allowing to relate them formally. However, up to now it was not shown
how to reason about AOGG models. In this work, we propose the use of AGG [2], a attributed graph
grammar specification and analysis tool to reason over AOGG models. Since AGG does not support
AOGGs, we propose to encode the whole base graph grammar as a single typed graph, with aspects
being modeled as sets of rewriting rules.

The text is organized as follows: in Section 2, we review the graph grammar model, and introduce
the base client-server example. In Section 3, we recall aspect-oriented graph grammars and present an
example of aspect over the base model. In Section 4 we present the encoding of AOGGs as typed graphs
in order to use the AGG tool, and discuss about the analysis results we may achieve using its capabilities.
Final remarks, related work and future steps are discussed in Section 5.

2 Graph Grammars

A typed graph grammar is a visual model where the states of the system are graphs and the system
behavior is described by the application of graph rewriting rules. Formally, a typed graph grammar is
a tuple 〈T,G0,P,π〉. The graph T is said to be the type graph and defines the kinds of nodes and edges
allowed within the specification. The graph G0 is the initial state of the system. The set P represents a
set of rule names, and the function π : P→ Rules(T) map every rule name to is respective typed graph
transformation rule. A graph transformation rule is specified by a left-hand side (LHS) graph, and a
right-hand side (RHS) graph. The LHS graph represents the pattern to be found within the current graph
in order to apply the rule. The RHS graph is a modification of the LHS graph, with some elements being
deleted, some being created, and some being preserved. The preserved elements must be identified as
the same in the LHS and the RHS graphs. Roughly, the execution of a graph grammar may be described
by the following steps:

1. Set G0 as the current graph.

2. Find in the current graph all possible occurrences (or matches) of LHS graphs of rules in P.

3. If there is no match at all, then STOP. Otherwise, non-deterministically choose a rule and a match
to be applied.

4. Delete from G all matched elements that occur in the LHS but not in the RHS. This will generate
a graph G−.

5. Create in G− all matched elements that occur in the RHS but not in the LHS. This will generate a
graph G+.

6. Set G+ as the current graph. Return to step 2.

A graph rewriting tool such as AGG also allows the use of several useful extensions to the basic typed
graph grammar language, such as attributes for graph elements, layered rule execution or the definition

Machado R., Heckel R., Ribeiro L. 3

of application conditions for rules. Those and other features reduce considerably the effort of system
modeling using graph grammars.
Example 1 (Graph grammar). Figure 1 depicts a simple example of a distributed client-server system
modeled as a graph grammar. The type graph T defines four kinds of nodes (Client, Server, Data
and Message) and four kinds of edges. The initial graph G0 defines the initial state of the system: two
clients with messages to be sent to three servers with data. The behavior of the system is given by its
set of rules. The clients may retrieve values from servers or update the information contained in them
by message exchange. A GET message is sent to the server by the rule SendGET, then it obtains the
information by the rule ExecuteGET, and it is returned to the client by the rule ReceiveGET. The
rules SendSET, ExecuteSET and ReceiveSET work in a similar way for SET messages.

3 Aspect-Oriented Graph Grammars

Aspect-Oriented Graph Grammars (AOGGs) [11] are graph grammars with aspects, i.e. modular de-
scriptions of system-wide policies. Formally, an AOGG is a pair 〈G ,∆〉, where G = 〈T,G0,P,π〉 is a
base graph grammar, and ∆ = [A1,A2, . . . ,An] is a sequence of graph aspects over G . A graph aspect rep-
resents a set of modifications over the base graph grammar, and it is defined by a triple 〈D, t,g〉, where
D is a set of graph advices, t : T ↪→ T ′ is an extension of the original type graph and g : G0 ↪→ G′ is an
extension of the original initial graph. Graph advices modify the base system rules according to a given
rule pattern. Advices are specified in the same way as conventional rules, but their LHS and RHS are
graph rules. To make a distinction between advices and base system rules, the components of a graph
advice receives new names: pointcut for the LHS, and effect for the RHS. As an example of graph aspect,
we define a logging policy for the graph grammar of Figure 1.
Example 2 (Log Aspect). Suppose we want to implement a logging mechanism over the client-server
system such that every operation leaves an execution trace over a global object (the system logger). To
implement this functionality, we should extend the type graph to introduce the logger type, initialize it in
the initial graph and modify all rules to register their execution in this global object. Using AOGG, all
this modifications can be enclosed within one single aspect, as shown in Figure 2. This aspect has only
one advice, which has an empty pointcut. The advice effect adds a Logger object to both the LHS and
RHS of the rule such that the occurrence on the RHS has the rule name appended to the log string. 1

The empty pointcut matches all possible rules of the specification, thus all of them will be modified to
read the global log object and to record its respective execution.

Given a graph grammar G = 〈T,G0,P,π〉 and a graph aspect < D, t : T → T ′,g : G0→G′0 > over G ,
the result of weaving A and G is the graph grammar G ′ = 〈T ′,G′0,P′,π ′〉. The pair (P′,π ′) defines the
rules of the resulting graph grammar, and is calculated based on (P,π), as follows:

• If a rule in (P,π) is not matched by any advice in A, them the rule appears in (P′,π ′).

• If a rule is matched by at least one advice in A, all of their rewritings (considering all advices and
matchings) appears in (P′,π ′).

Notice that the rewriting for advices is non-reentrant, i.e. a given rule may not be modified more than
once per advice and match. This assures termination for the weaving process, even for advices that do
not delete anything from rules, such as the unique advice of the log aspect. The semantics of an AOGG
〈G ,∆〉 is given by its weaved graph grammar G ∆

W , which is the result of weaving all aspects of ∆ over G
in order.

1this is possible only when information about rules is available as data within the model.

4 Modeling and Reasoning over Distributed Systems using AOGGs

Figure 1: Client-server system as a graph grammar.

Machado R., Heckel R., Ribeiro L. 5

Figure 2: Log Aspect

4 Encoding AOGGs in AGG

The use of graph rewriting as an aspect weaving mechanism opens the possibility of using known tech-
niques from the graph transformation area to reason about aspect-oriented systems. Those techniques
allow the system modeler to identify potentially harmful behaviors of the final weaved system, such as
unintended aspect interactions, at early stages of the system development. To be able to use existing
tools, such as AGG, for modeling and analysis of aspects over graph transformation system, we propose
an encoding of the whole base graph grammar as one single graph. Then, advices may be represented as
conventional system rules and may be tested for conflicts and dependencies.

The main idea is to augment the type graph T with elements that allow the unambiguous represen-
tation of graph rules. Those new elements are calculated automatically based on the type graph T by
means of the operation R. This operation is defined as R3 ◦R2 ◦R1, the composition of three simpler
transformations, described as follows. The transformation R1 turns edges into nodes. The transformation
R2 creates three copies of the input graph, connected element-wise by edges. The left copy represent ele-
ments in the LHS, the right copy, elements in the RHS, and the central copy, elements that are preserved
by the rule (i.e. that are the same in the LHS and the RHS). The transformation R3 connects all types to
a single node. This last step is needed to describe individual rules.

Example 3 (Type graph encoding R). The following example shows how to obtain R(T) from a simple
type graph T , stepwise.

T R1(T) R2 ◦R1(T) R3 ◦R2 ◦R1(T)

♠
a
��
♣

b

GG

♠

a

��

��
♣

b

 TT

♠ ♠oo // ♠

a

��

��

aoo //

��

��

a

��

��
♣ ♣oo // ♣

b

 TT

boo //

 TT

b

 TT

♠

��9999999999999999999999999999999999999
♠oo //

��0
0000000000000000000000000000000

♠

��'
''''''''''''''''''''''''''''

a

��

��

 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB aoo //

��

��

��666666666666666666666666666 a

��

��

��*

♣

%%LLLLLLLLLLLLLLLLLLLLLLLLLL ♣oo //

 AAAAAAAAAAAAAAAAAAA
♣

��/
/////////////

b

 TT

**VVVVVVVVVVVVVVVVVVVVVVVV boo //

 TT

((QQQQQQQQQQQQQQQQ b

 TT

 BBBBBBBB

•

6 Modeling and Reasoning over Distributed Systems using AOGGs

Let G = 〈T,G0,P,π〉 be a graph grammar, where r1, . . . ,rn ∈ range(π) represent the individual rules.
We say that the graph GG , defined as G0 +E(r1)+ . . .+E(rn) and typed over T +R(T), is as the encoded
representation of G . The “+” operation means disjoint union of graphs. The initial graph G0 remains
typed over T , while all the rules are converted by means of the operation E to graphs typed over R(T).
The typing discipline allows one to differ the initial graph from the rules within GG .

The operation E encodes the rule structure into a graph. Initially it converts edges of LHS and RHS
into nodes, just like R1. Next, it executes the disjoint union of the LHS, RHS and preserved elements
graph, and puts edges between the preserved elements and their respective representations in the LHS
and RHS. Finally, it creates a new node and connects all other nodes to it.

Example 4 (Rule encoding E). The figure below shows the effect of the encoding E over a simple rule
that deletes one edge, preserves one node and creates a new node with and incident edge.

r1 E(r1)

♠

a

GG ♠

b
��
♦

LHS RHS

♠

��*

♠oo //

��

♠

		�����������������������

a

 TT

��0
000000000000000 b

��

��

������������������

♦

~~||||||||

•

By using the transformations R and E, we are able to enter a whole base system as the initial graph
of an AGG specification, as shown in Figure 3. However, the graph aspects must also be encoded. Given
a graph aspect A = 〈D, t : T → T ′,g : G0 → G′0〉, type graph extension t and initial graph extension g
may be directly applied over the specification. The only subtlety comes from the fact that the type graph
becomes T ′+ R(T ′), instead of T ′+ R(T). When representing advices as graph rewriting rules, the
following should be taken into account:

• the rule marker (node introduced during the last step in both R and E transformations) and their
respective incident edges are needed to assure that the rewriting rule does not actuate over elements
of different rules.

• it may be necessary to define application conditions (either positive or negative) in order to assure
one-step rewriting.

The AGG tool allows to reason about a given graph grammar specification in many ways. From the
point of view of aspect weaving, two are particularly interesting: critical pair analysis and termination
checks. Critical pairs formalize the idea of a minimal example of a conflicting situation between rewrit-
ing rules. From the set of all critical pairs we can extract the objects and links that cause conflicts or
dependencies. In the context of AOGG, it means that we have tool support to verify conflicting situa-
tions between aspects. The termination checker is important to help the system designer to avoid sets of
graph advices that may generate infinite rewriting.

Machado R., Heckel R., Ribeiro L. 7

Figure 3: Client-Server system with Logging and Server Replication in AGG

5 Final Remarks

This work proposed the use of AOGG to model and reason over aspect-oriented diagrams. We started
motivating the need for verification tools in aspect-oriented contexts. Next, we presented aspect-oriented
graph grammars as a modeling tool to describe global policies over graph grammars. We described
how to encode a whole graph grammar into a single typed graph specification, in order to fit an AOGG
specification into the AGG tool. Finally, we briefly discussed about how AGG may be used as a reasoning
tool to verify weaving in aspect-oriented models.

There are also some other proposals for studying aspects using graph grammars. The MATA ap-
proach [14], for instance, uses graph representation of diagrams to perform aspect-oriented composition.
In [12], graph transformation used to verify aspect conflicts and dependencies between aspects defined
over a variant of UML to model requirements. Both use AGG as modeling and analysis tool. The work
by Aksit et al. [3] encodes a aspect-oriented formal language into a graph transformation tool, and uses
the tool capabilities to study the interference of aspects in the space state of the rewriting. This last work
uses the Groove tool.

As future work, we intend to define different sets of aspects over this base specification and explore
the different kinds of interaction between them.

References

[1] Eclipse AJDT: AspectJ Development Tools. http://www.eclipse.org/ajdt/.

http://www.eclipse.org/ajdt/

8 Modeling and Reasoning over Distributed Systems using AOGGs

[2] The AGG Homepage. http://user.cs.tu-berlin.de/˜gragra/agg/.
[3] Mehmet Aksit, Arend Rensink, and Tom Staijen. A graph-transformation-based simulation approach for

analysing aspect interference on shared join points. In AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages 39–50, New York, NY, USA, 2009. ACM.

[4] Curtis Clifton and Gary T. Leavens. Minimao1: an imperative core language for studying aspect-oriented
reasonings. Sci. Comput. Program., 63(3):321–374, 2006.

[5] Simplice Djoko Djoko, Rémi Douence, Pascal Fradet, and Didier Le Botlan. Casb: Common aspect se-
mantics base,. Technical report, Research Report, Network of Excellence in AOSD (AOSD-Europe, August
2006, no D54)., 2006.

[6] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantification and obliviousness.
Technical report, 2000.

[7] Radha Jagadeesan, Alan Jeffrey, and James Riely. Typed parametric polymorphism for aspects. Sci. Comput.
Program., 63(3):267–296, 2006.

[8] José Uetanabara Júnior, Valter Vieira Camargo, and Christina Von Flach Chavez. UML-AOF: a profile for
modeling aspect-oriented frameworks. In AOM ’09: Proceedings of the 13th workshop on Aspect-oriented
modeling, pages 1–6, New York, NY, USA, 2009. ACM.

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. An
overview of aspectj. In ECOOP, pages 327–353, 2001.

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented programming. In ECOOP, pages 220–242, 1997.

[11] Rodrigo Machado, Luciana Foss, and Leila Ribeiro. Aspects for graph grammars. In Proceedings of the 8th
International Workshop on Graph Transformation and Visual Modeling Techniques, 2009.

[12] Katharina Mehner, Mattia Monga, and Gabriele Taentzer. Interaction analysis in aspect-oriented models.
Requirements Engineering, 14th IEEE International Conference, pages 69–78, Sept. 2006.

[13] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In ICFP ’03: Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming, pages 127–139, New York, NY, USA,
2003. ACM Press.

[14] Jon Whittle and Praveen K. Jayaraman. Mata: A tool for aspect-oriented modeling based on graph transfor-
mation. In Holger Giese, editor, MoDELS Workshops, volume 5002 of Lecture Notes in Computer Science,
pages 16–27. Springer, 2007.

http://user.cs.tu-berlin.de/~gragra/agg/

This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

© Gabriel Falconieri Freitas et al.
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Object-oriented Programming Laws for Annotated Java
Programs

Gabriel Falconieri Freitas, Márcio Cornélio
Universidade de Pernambuco (UPE), Brazil

{grff, marcio}@dsc.upe.br

Tiago Massoni, Rohit Gheyi
Universidade Federal de Campina Grande (UFCG), Brazil

{massoni, rohit}@dsc.ufcg.edu.br

Object-oriented programming laws have been proposed in the context of languages that are not com-
bined with a behavioral interface specification language (BISL). The strong dependence between
source-code and interface specifications may cause a number of difficulties when transforming pro-
grams. In this paper we introduce a set of programming laws for object-oriented languages like Java
combined with the Java Modeling Language (JML). The set of laws deals with object-oriented fea-
tures taking into account their specifications. Other laws deal only with features of the specification
language. These laws constitute a set of small transformations for the development of more elaborate
ones.

1 Introduction

Programming laws serve as guidelines to informal programming practices and establish a basis for formal
and rigorous program development. They are largely known for imperative programming [12, 18]. Also,
functional programming and logic programming have a set of laws described by Bird and de Moor [3]
and Seres [19], respectively. Laws of object-oriented programming have also been addressed in [4, 6, 7].

Design by Contract (DbC) [17] is development methodology that aims at the construction of reliable
object-oriented systems. Its basic idea is that a contract is established among classes of a system. In this
way, software developers should formally specify what is required and ensured by methods and types.
The Java Modeling Language (JML) [1, 14] is a notation for formally specifying the behavior of Java
classes and methods.

The set of programming laws for object-oriented programming we have nowadays is designed for
program transformation with no relation to specifications languages designed for DbC. Changes in spec-
ification usually should discharge code updates, maintaining the conformance between code and spec-
ification. On the other hand, changes in program code may require changes in specifications as the
behavior implemented by code may diverge from the meaning of the original specification. For instance,
moving a redefined method to its superclass can be illegal if this transformation causes weakening of
pre-conditions and strengthening of post-conditions.

In this paper, we define laws (Section 3) of object-oriented programming for Java that are aware of
specifications written in JML, which we describe in Section 2. Our proposed hybrid laws were created
by extending object-oriented programming laws from other works [4, 6, 7, 16]. Additionally, we present
a law for invariants written in JML. The laws precisely indicate the modifications that can be done to
a program, stating their corresponding proof obligations that are discharged for application. In Java
and JML context, we need to guarantee that source-code continues meeting its specifications written
in JML, taking into account the semantics of JML specifications along with the notion of specification
inheritance [13]. The laws we present in this paper and other ones present in a more comprehensive set
were applied to refactoring a JML-specified version of a core module from a Manufacturing Execution
System (MES) [21].

2 Object-oriented Programming Laws for Annotated Java Programs

1 p u b l i c c l a s s Person {
2 p r i v a t e / * @ s p e c p u b l i c @ * / String name ;
3 p r i v a t e / * @ s p e c p u b l i c @ * / i n t weight ;
4 / * @ p r i v a t e i n v a r i a n t ! name . equals (” ”) && weight >= 0 ; @ * /

5 p u b l i c Person () { /* . . . */ }
6

7 / / @ a l s o
8 / / @ ensures \ r e s u l t != n u l l ;
9 p u b l i c String toString () { /* . . . */ }

10

11 / / @ ensures \ r e s u l t == weight ;
12 p u b l i c / * @ pure @ * / i n t getWeight () { /* . . . */ }
13 / * @ r e q u i r e s kgs > 0 && weight + kgs >= 0
14 @ a s s i g n a b l e weight ;
15 @ ensures weight == \ old (weight + kgs) ; @ * /

16 p u b l i c vo id addKgs (i n t kgs) { /* . . . */ }
17 }

Figure 1: JML specification of the class Person.

2 The Java Modeling Language

The Java Modeling Language (JML) is a behavioral interface specification language (BISL) [1, 14]
tailored to Java [11]. Thus, JML serves to describe names and static information that appear in Java
declarations and how they act, how they behave. JML specifications are written in the form of special
annotation comments that are inserted directly in source code of programs. These comments must begin
with an at-sign (@) and can be written in two ways: by using //@ ... or /*@ ... @*/. Comments in the
forms // @ and /* @ are ignored by the JML compiler due to space between the backslashes and the
at-sign(@).

In Figure 1 we present the class Person (this example was originally presented in [14]) . In Line 4,
we introduce an instance invariant, which is a predicate that is true in all visible states of objects of a
class [1]. The invariant in the example has public visibility and establishes that the value of attribute name

is different from an empty string and the value of weight is greater than or equal to zero. The keyword
also indicates that the method toString is extending the specification it inherits from its supertype.

JML uses the requires clause to specify the obligations of the caller of a method, what must be true
to call a method. For instance, the precondition of the method addKgs insists on the value to be added to
be greater than zero. A postcondition specifies the implementor’s obligation, what must be true at the
end of a method, just before it returns to the caller. In JML, the ensures clause introduces a postcondition.
For instance, the Line 15 introduces a normal postcondition that asserts the value of the attribute weight

at the end of the method addKgs is equal to the value of the expression “\old(weight + kgs)”. By using the
\old (.) operator we can refer to the value of an expression in the pre-state of a method.

The assignable clause gives a frame axiom for a specification. Only locations named, and locations in
data groups (a set of locations) associated with these locations, can be assigned during method execution.
In Line 14, we state that only the attribute weight is assigned in method addKgs. In Line 11, we state that
when we execute the method getWeight, it returns the value of the attribute weight. The JML modifier pure
(Line 12) indicates that the method doesn’t have any side effects and hence can appear in specifications.

Gabriel Falconieri Freitas et al. 3

3 Laws

A catalog of primitive transformations (laws) to deal with JML annotations and JML-aware Java pro-
grams has been proposed in [9], which specifies about 80 laws. Here we present one law that deals only
with JML specifications and two hybrid JML-aware Java laws that deals with attributes and methods,
respectively. A law that only deals with JML can impose conditions only on JML elements present in
the program, whereas laws that deal with Java code can involve both JML and Java elements for stating
conditions.

The laws are written in an equational style. Each side of the equation corresponds to a template
of a well-formed program. Programming laws, in which left-hand and right-hand sides are related by
equality, are a concise presentation of a pair of laws. These laws precisely indicate the modifications
that can be done to a program, stating their corresponding proof obligations. In fact, to apply a law, it is
necessary to check (syntactic or semantic) side-conditions that ensure that the transformation is behavior-
preserving and also maintains its well-formedness. In our approach we consider that we are dealing with
only one package and working in a limited open system [7], in which classes of our system can depend
on external libraries.

In the laws, we use cds1 =cds,Main cds2 to denote the equivalence of sets of class declarations cds1
and cds2, where cds is a context of class declarations for cds1 and cds2. Main corresponds to the unique
class in the program which has a static main method. We use cnds, ads and mds inside a class to repre-
sent the class constructors, attributes and methods, respectively. We write ‘→’ to indicate the condition
that need to be satisfied to apply a law from left to right. Likewise, we use ‘←’ to indicate what has to
be satisfied when applying the law from right to left. Conditions that must hold in both directions are
indicated by ‘↔’.

Law 1 〈move invariant to superclass〉
class B extends A {
//@ invariant ψ1;

ads
cnds
mds

}
class C extends B {
//@ invariant ψ′1 && ψ′2;

cnds′

mds′

}

=cds,Main

class B extends A {
//@ invariant ψ1 && ψ′2;

ads
cnds
mds

}
class C extends B {
//@ invariant ψ′1;

cnds′

mds′

}
where

ψ′2 =̂ this instanceof C ==> ψinv

provided

(↔) super does not appear in ψ′2.

(→) ψ′2 does not contain occurrences of model fields declared in C, nor uncast occurrences of this.

¤

4 Object-oriented Programming Laws for Annotated Java Programs

The first law we present (Law 1) allows us to move an invariant ψ′2 from a subclass C to its superclass
B. The invariant we want to move only refers to instances of C as we require the invariant to be applicable
only to instances of class C. To apply this law in any direction, we require that calls to super do not
occur in ψ′2, since after law application (in both directions) these calls may refer different elements. To
apply this law from left to right, model fields cannot appear in ψ′2 and occurrences of this must be cast
otherwise the elements they refer may not be visible.

Concerning the soundness of this law, we take in account the inheritance of specifications in JML [13],
in which inherited invariants are conjoined with locally added invariants. On the left-hand side, the in-
variant ψ′2, which is present in class C, is inherited by the subclasses of C and holds for all subclasses.
On the right-hand side of the law, the invariant ψ′2 is inherited by all subclasses of B besides those that
are not subclasses of C. For those classes that are subclasses of B, but not subclasses of C, the invariant
holds because for objects of these classes the antecedent instanceof C fails and the whole implication is
true, not changing the meaning of any original local invariant that inherits ψ′2.

Law 2 〈move reference type attribute to superclass〉
class B extends A {

ads
cnds
mds

}
class C extends B {
/*@ nullable @*/ T a;
ads′

cnds′

mds′

}

=cds,Main

class B extends A {
/*@ nullable @*/ T a;
ads
cnds
mds

}
class C extends B {

ads′

cnds′

mds′

}
provided

JML:

(←) D.a, for any D ≤ B and D � C does not occur inside specifications of cds, Main, cnds, cnds’, mds
nor mds’.

Java:

(↔) T is not a primitive type.

(→) (1) a is not declared in ads; (2) The attribute name a is not declared by the subclasses of B in cds.

(←) D.a, for any D ≤ B e D � C does not occur in cds, Main, cnds, cnds’, mds nor mds’.

¤
By using Law 2, we can move an attribute to a superclass if it is not already declared in the superclass

and if it does not cause name conflicts. The application of Law 2, from right to left, allows us to move an
attribute downward. In this case, we prevent access to the attribute by the expression this, and we allow
only accesses to a by C or subclasses of C, including accesses that appear in specifications.

In Law 2, we consider only attributes whose type is a reference type. There is another law for mov-
ing an attribute of primitive type. The reason for having two disctinct laws for dealing with attributes
of primitive and reference types comes from the nullable keyword in Law 2. In JML, any declaration
(except for local variables) whose type is a reference type is implicitly declared to be not null, except

Gabriel Falconieri Freitas et al. 5

when one adorns the declaration with a nullable annotation [1]. Thus, by default, JML always checks if
a not nullable attribute is null in all visible states of the class that declares it. When we move an attribute
to a superclass, this is not aware about the newly moved attribute and, therefore, this action can cause
a undesirable behavior. In fact, if one instantiates the superclass, JML will raise an invariant exception
reporting that the new attribute is null. To avoid this, we force attribute nullability to move it up. Then,
if one wants to move a non-null a attribute, one needs to introduce nullable annotation before moving
it. An attribute can become nullable applying a law named make attribute nullable, not presented here.
Remember that, in Java, only reference types can be null.

Law 3 〈move redefined method to superclass: overriden method with non-default specification case〉

class B extends A {
ads
cnds

//@ requires ψ1;
//@ ensures ψ2;
rt m(pds) { mbody }
mds

}
class C extends B {

ads′

cnds′

//@ also
//@ requires ψ′1;
//@ ensures ψ′2;
rt m(pds) { mbody′ }
mds′

}

=cds,Main

class B extends A {
ads
cnds
//@ requires (!(this

instanceof C) && ψ1);
//@ ensures (!(this

instanceof C) && ψ2);
//@ also
//@ requires (this

instanceof C && ψ′1);
//@ ensures (this

instanceof C && ψ′2);
rt m(pds) {

if (!(this instanceof C))
{ mbody } else { mbody′ }

}
mds

}
class C extends B {

ads′ cnds′ mds′

}
provided

JML:

(↔) super does not appear in ψ′1 nor in ψ′2.

(→) Both ψ1 and ψ2 do not contain occurrences of model fields declared in C, nor uncast occurrences
of this.

Java:

(↔) (1) super and private attributes do not appear in mbody′; (2) super.m does not appear in mds’

(→) mbody′ does not contain uncast occurrences of this nor expressions of the form ((C)this).a and
of the form ((C)this).m(e) for any attribute a nor method m, in ads′ and mds′, respectively, with
private visibility.

(←) m(pds) is not declared in mds′.

¤

6 Object-oriented Programming Laws for Annotated Java Programs

The last law we present here (Law 3), allows us to move a redefined method from a class to its
superclass. The proviso concerning super is needed because its semantics may be affected when we
move it from a subclass to a superclass, or vice-versa. We can only move the specification of a method if
it does not refer to model fields of the class in which the method is originally declared. Furthermore, this
expressions may occur in the target method specifications only if they are cast. In fact, as in the law the
method has default visibility, only non-private elements can be referenced in its pre- and postconditions.
This is similar to Java: the this expression may appear in mbody’ if they have a cast and they mention
only non-private attributes or methods of class C. The right-side of Law 3 introduces instanceof tests
in each one of the specifications. In this way we assure that the original pre- and postconditions of the
redefined method of C will only be applied to callers that are instances of C or instances of any of C’s
subclasses.

4 Proving Laws

The proofs we present here are only concerned with the JML parts of the laws. In JML, specifications
present in a class are inherited by its subclasses, provided they are not private. This leads us to two
concepts: join of specifications and specification inheritance.

4.1 Join of specifications

In a program written in Java and annotated with JML, classes inherit not only attributes and methods from
superclasses, they also inherit specifications of invariants, methods, history constraints, and initialisation
predicates [13, 15]. Concerning methods, a method specification may consist of several specifications
cases, which are introduced by the use of clauses such as requires, assignable, ensures [1]. Each specifica-
tion case has a precondition (the default predicate is true) that states when the corresponding specification
case applies to a call. The keyword also joins specifications cases. When a precondition of a specification
case holds, the corresponding postcondition must hold also. The definitions we present here are taken
from [15]. The notation T . (pre, post) is related to a specification case of an instance method that type
checks when its receiver (this) has static type T . It also type checks in contexts where this has some
subtype of T . In what follows, we introduce the definition of the join of JML method specifications [15].

Definition 1 (Join of JML method specifications) Let T ′ . (pre′, post′) and T . (pre, post) be specifica-
tions of an instance method m. Let U be a subtype of both T ′ and T . Then the join of (pre′, post′) and
(pre, post) for U, written (pre′, post′)tU (pre, post), is the specification U . (p,q) with precondition p:

pre || pre′

and postcondition q:

(\old(pre’) ==> post’) && (\old(pre) ==> post)

¤

In Definition 1, the precondition of the join of two method specifications is their disjunction. The
postcondition of the join is a conjunction of implications (written ==> in JML’s notation), stating that
when a precondition holds (in the pre-state), the corresponding postcondition must hold.

Gabriel Falconieri Freitas et al. 7

4.2 Specification Inheritance

Specifications of subtypes in JML inherit specifications, besides attributes and methods. First, we intro-
duce some notation for type specification. For a type T , the invariant predicate declared in the specifica-
tion of T (without inheritance) is denoted by added invT . For a method m declared in a type T , the nota-
tion added specT

m = (added preT
m,added postT

m) is the join of the specification cases in type T for m. If m
is declared in T with no specification and is not overriding any method, then added specT

m = (true, true),
which is the default specification in JML. We use supers(T) to denote the set of all supertypes of T (in-
cluding T) and methods(T) to denote the set of all instance method names declared in the specifications
of the types in a set T .

Definition 2 (Extended specification) Suppose T has supertypes supers(T), which includes T itself.
Then the extended specification of T is a specification such that:
methods: for all methods m ∈ methods(supers(T)), the extended specification of m is the join of all
added specifications for m in T and all its proper supertypes

ext specT
m =

⊔T {added specU
m | U ∈ supers(T)}

invariant: the extended invariant of T is the conjunction of all added invariants in T and its proper
supertypes

ext intT =
∧T {added invU | U ∈ supers(T)}

¤

The definitions we present here were introduced in [15] and are the ones we use in this paper.

4.3 Proofs

Here we present proofs for Laws 1 and 3. Both proofs involves dealing with cases associated to the
types of objects related to the classes that are emphasised in the laws. We present the proof for just one
case of these laws. The provisos of the laws guarantee that both programs that appear in the laws are
well-typed. Concerning Law 2, it is a law for attributes in which specification inheritance is not taken
into consideration.

In Figure 1, we present the proof for the case of Law 1 in which the we consider an object of exact
type B. Notice that in Law 1, on the left-hand side, an object of exact type B has to establish the (added)
invariant ψ1. The added invariant is given by ψ1 ∧ (this instanceo f C ⇒ ψinv), on the right-hand side.
For an object of type B, the type test is false and the whole implication results true. The whole effect is
the same of the invariant of class B on the left-hand side.

The proof for the case of Law 3 in which we consider an object of exact type B is presented in Fig-
ure 2. On the left-hand side of this law, the specification case for method m in class B has precondition ψ1
and postcondition ψ2. On the right-hand side, we enrich this specification case with type tests involving
the class name C, but with no impacts for objects with distinct types from C. The other specification
case for method m on the right-hand side also involves a type test, having no effects for classes other than
class C.

5 Conclusion

In this paper, we propose laws for object-oriented programming in the presence of a behavioral interface
specification language. Focusing the hybrid laws, we treat source-code transformation considering the

8 Object-oriented Programming Laws for Annotated Java Programs

ext invB
LHS

= [by Definition 2]∧{added invU | U ∈ supers(BLHS)}
= [by set theory]∧{added invU | U ∈ ((supers(BLHS) \ supers(A))∪ supers(A)}
= [by definition of conjunction]

(
∧{added invU | U ∈ ((supers(BLHS) \ supers(A))})∧ (

∧{added invW |W ∈ supers(A)})
= [by definition of added invariant in BLHS]
ψ1∧ (

∧{added invW |W ∈ supers(A)})
= [by Propositional Logic]
ψ1∧ true∧ (

∧{added invW |W ∈ supers(A)})
= [by Propositional Logic]
ψ1∧ (f alse⇒ ψinv)∧ (

∧{added invW |W ∈ supers(A)})
= [by type test for object of type B]
ψ1∧ (this instanceo f C⇒ ψinv)∧ (

∧{added invW |W ∈ supers(A)})
= [by definition of added invariant in BRHS]

(
∧{added invU | U ∈ ((supers(BRHS) \ supers(A))})∧ (

∧{added invW |W ∈ supers(A)})
= [by definition of conjunction]∧{added invU | U ∈ ((supers(BRHS) \ supers(A))∪ supers(A)}
= [by set theory]∧{added invU | U ∈ supers(BLHS)}
= [by Definition 2]

ext invB
RHS

Figure 1: Proof of Law 1 - case of object of exact type B

impacts caused by its internal specifications. These laws are based on programming laws – that do not
consider specifications – from previous work [4, 6, 7].

Object-oriented programming laws were proposed by Borba et al. [4] for an object-oriented language
called ROOL [5]. Cornélio [6] proves the laws with respect the copy semantics of ROOL [5] and for-
mally justifies, by using programming laws and data refinement, refactoring practices documented by
Fowler [8]. Silva, Sampaio, and Liu considers object-oriented programming laws in a language with a
reference semantics [20], applying such laws to code refactoring. Duarte [7] adapts the programming
laws initially written for ROOL for the Java programming and proposes other laws for language features
that are not present in ROOL.

The laws presented here and the others of our catalog were used in [9] to show how a JML-specified
version of a core module from a Manufacturing Execution System, get refactored from successive ap-
plications of primitive transformations expressed by means of our laws. Although our work does not
provide a way to transform programs automatically yet, it provides a more reliable, rigorous and extensi-
ble alternative to address refactorings. Other works, as the one by Goldstein [10], which has tool support,
apply non-systematic techniques to obtain behavior-preserving program transformations.

We have also applied our set of laws reducing a JML-specified Java program to a normal form [9]
similar to the one presented by Duarte [7], which follows the main steps of the normal form reduction
strategy of ROOL. A program in this normal form preserves the class hierarchy, but all attributes and
methods that are non-recursive and with no mutually exclusive return points are located in the class

Gabriel Falconieri Freitas et al. 9

ext specBLHS
m

= [by Definition 2]⊔B
LHS {added specU

m | U ∈ supers(B)}
= [by set theory]⊔B

LHS {added specU
m | U ∈ (supers(B) \ supers(A))∪ supers(A)}

= [by definition of join with respect to B]
(
⊔B

LHS {added specU
m | U ∈ (supers(B) \ supers(A))})tB (

⊔A{added specW
m |W ∈ supers(A)})

= [by definition of join of specification cases for BLHS]
(ψ1,\old(ψ1)⇒ ψ2)tB (

⊔A{added specW
m |W ∈ supers(A)})

= [by Propositional Logic]
((ψ1∧ true),\old(ψ1∧ true)⇒ ψ2)tB (

⊔A{added specW
m |W ∈ supers(A)})

= [by type test for object of type B]
((ψ1∧¬(this instanceo f C)),\old(ψ1∧¬(this instanceo f C))⇒ ψ2)
tB(

⊔A{added specW
m |W ∈ supers(A)})

= [by Propositional Logic]
((ψ1∧¬(this instanceo f C))∨ f alse,\old(ψ1∧¬(this instanceo f C))⇒ ψ2)∧ true)
tB(

⊔A{added specW
m |W ∈ supers(A)})

= [by type test for object of type B and Propositional Logic]
((ψ1∧¬(this instanceo f C))∨ ((this instanceo f C)∧ψ′1),

(\old(ψ1∧¬(this instanceo f C))⇒ ψ2)∧ (\old((this instanceo f C)∧ψ′1)⇒ ψ′2))
tB(

⊔A{added specW
m |W ∈ supers(A)})

= [by definition of join of specification cases for BRHS]
(
⊔B

RHS {added specU
m | U ∈ (supers(B) \ supers(A))})tB (

⊔A{added specW
m |W ∈ supers(A)})

= [by definition of join with respect to B]⊔B
RHS {added specU

m | U ∈ (supers(B) \ supers(A))∪ supers(A)}
= [by set theory]⊔B

RHS {added specU
m | U ∈ supers(B)}

= [by Definition 2]
ext specBRHS

m

Figure 2: Proof of Law 3 - case of object of exact type B

Object. Also, invariants, initially-clauses and constraints are placed in the class Object. Specification
cases of non-eliminated methods are written as JML assert statements.

Differently from laws that deal only with constructs of an object-oriented programming language, the
presence of a behavioral interface specification language requires that we be aware of issues related, for
instance, to the visibility of specification and code constructs, invariant preservation when introducing
calls to super and changing a parameter type to a supertype requires introducing casts in occurrences of
the parameter in specifications.

We have considered laws that address only a subset of the JML’s Level 0 constructs [1], specially for
lightweight specifications. Nevertheless, our preliminary focus is to cover most of the JML constructs
that form the core notation used in the design by contract methodology. As future work, we intend to
describe laws to support other JML clauses like initially, constraint, represents, and model fields. Also,
we intend to work on proofs for the Java parts of the laws based on a reference semantics [2].

10 Object-oriented Programming Laws for Annotated Java Programs

Acknowledgements

We are partially supported by the Brazilian Research Agency, CNPq, grant 484813/2007-2.

References
[1] G. T. Leavens et al. (2008): JML Reference Manual. Available at

http://www.eecs.ucf.edu/˜leavens/JML/jmlrefman/.
[2] A. Banerjee & D. A. Naumann (2005): Ownership confinement ensures representation independence for

object-oriented programs. J. ACM 52(6), pp. 894–960.
[3] R. Bird & O. de Moor (1997): Algebra of Programming. Prentice Hall.
[4] P. Borba et al. (2004): Algebraic reasoning for object-oriented programming. Sci. Comput. Program. 52(1-

3), pp. 53–100.
[5] A. L. C. Cavalcanti & D. A. Naumann (2000): A Weakest Precondition Semantics for Refinement of Object-

oriented Programs . IEEE Transactions on Software Engineering 26(8), pp. 713–728.
[6] M. Cornélio (2004): Refactoring as Formal Refinements. Ph.D. thesis, Universidade Federal de Pernambuco.
[7] R. Duarte (2008): Parallelizing Java Programs Using Transformation Laws. Master’s thesis, Universidade

Federal de Pernambuco (UFPE).
[8] M. Fowler (1999): Refactoring: improving the design of existing code. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA.
[9] G. F. Freitas, M. Cornélio & T. Massoni (2009): Transforming Java Annotated Programs. Technical Report,

Universidade de Pernambuco, Departamento de Sistemas e Computação.
[10] M. Goldstein, Y. A. Feldman & S. Tyszberowicz (2006): Refactoring with Contracts. In: AGILE ’06: Pro-

ceedings of the conference on AGILE 2006. IEEE Computer Society, Washington, DC, USA, pp. 53–64.
[11] J. Gosling, B. Joy, G. Steele & G. Bracha (2005): Java(TM) Language Specification, The. Addison-Wesley

Professional, third edition.
[12] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sorensen, J. M.

Spivey & B. A. Sufrin (1987): Laws of programming. Commun. ACM 30(8), pp. 672–686.
[13] G. T. Leavens (2006): JML’s Rich, Inherited Specifications for Behavioral Subtypes. In: Zhiming Liu &

Jifeng He, editors: ICFEM, Lecture Notes in Computer Science 4260. Springer, pp. 2–34.
[14] G. T. Leavens & Y. Cheon (2005): Design by Contract with JML. Available at

ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf. Draft, available from jmlspecs.org.
[15] G. T. Leavens & D. A. Naumann (2006): Behavioral Subtyping, Specification Inheritance, and Modular

Reasoning. Technical Report 06-20b, Department of Computer Science, Iowa State University.
[16] T. Massoni, R. Gheyi & P. Borba (2008): Formal Model-Driven Program Refactoring. In: José Luiz Fiadeiro

& Paola Inverardi, editors: FASE, Lecture Notes in Computer Science 4961. Springer, pp. 362–376. Available
at http://dx.doi.org/10.1007/978-3-540-78743-3_27.

[17] B. Meyer (1992): Applying design by contract. IEEE Computer 25, pp. 40–51.
[18] C. C. Morgan (1994): Programming from Specifications. Prentice Hall, second edition.
[19] S. Seres (2001): The Algebra of Logic Programming. Ph.D. thesis, Oxfor University Computing Laboratory.
[20] L. Silva, A. Sampaio & Z. Liu (2008): Laws of Object-Orientation with Reference Semantics. In: SEFM

’08: Proceedings of the 2008 Sixth IEEE International Conference on Software Engineering and Formal
Methods. IEEE Computer Society, Washington, DC, USA, pp. 217–226.

[21] R. R. Zagidullin & E. B. Frolov (2008): Control of manufacturing production by means of MES systems.
Russian Engineering Research 28(2), pp. 166–168.

This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

Automatic Generation of Proof Tactics
for Finite-Valued Logics ∗

João Marcos
DIMAp / CCET
UFRN, Brazil

jmarcos@dimap.ufrn.br

Dalmo Mendonça
Undergraduate in Computer Engineering

UFRN, Brazil
dalmo3@gmail.com

A number of flexible tactic-based logical frameworks are nowadays available that can implement a
wide range of mathematical theories using a common higher-order metalanguage. Used as proof
assistants, one of the advantages of such powerful systems resides in their responsiveness to exten-
sibility of their reasoning capabilities, being designed over rule-based programming languages that
allow the user to build her own ‘programs to construct proofs’ — the so-called proof tactics.

The present contribution will discuss the implementation of an algorithm that generates sound
and complete tableau systems for a very inclusive class of sufficiently expressive finite-valued propo-
sitional logics, and then illustrate some of the challenges and difficulties related to the algorithmic
formation of automated theorem proving tactics for such logics. The procedure on whose implemen-
tation we will report is based on a generalized notion of analyticity of inference rules that is intended
to guarantee termination of the corresponding automated tactics on what concerns theoremhood in
our targeted logics.
Keywords: automated theorem proving, analyticity, rule-based programming, rewriting.

1 Introduction

The early history of the LCF family of theorem provers, first implemented as proof checkers by Robin
Milner in the early 70s, based on Dana Scott’s Logic for Computable Functions, can be said to be essen-
tially based on Alonzo Church’s proposal of a simple theory of types, developed three decades before
(cf. [6]). Arguably, though, their great success as generic logical frameworks for the specification of a
wide range of useful mathematical theories within a unified setting came in fact from later developments,
namely: (1) the design of an accompanying powerful type-safe functional language that would allow for
the needs of the theorem-proving community to be quite naturally expressed; (2) the decision to use a
constructive higher-order logic as the underlying meta-language and to use higher-order unification as
the underlying mechanism in which to specify diverse genera of inference systems as theories written in
a common framework. The programming language that was designed in that process, ML, was intended
to give support both to the expression of higher-order abstract syntax for the definition and manipulation
of object-logics, and to advanced pattern-matching capabilities for the definition and manipulation of
abstract high-level datatypes. From the point of view of theorem-proving, such flexible datatypes were
to allow for the representation of useful objects such as formulas, theorems or even proofs, as well as
some strategical operations over those objects, called tactics, that represented subgoaling strategies used
in the construction of proofs. Higher-order operations for combining tactics and taking stricter control
of the result of proof-search procedures were also available as the so-called tacticals. A modern heir of
the LCF-style family of proof assistants and tactical provers, allowing for both interactive and automated
reasoning, is the system Isabelle (cf. [5]), which will be utilized in what follows.
∗Both authors acknowledge financial support by CNPq.

2 Automatic Generation of Proof Tactics for Finite-Valued Logics

A simple and elegant deductive formalism for the specification of proof procedures for both classical
and non-classical logics is provided by the refutation-oriented method of tableaux (cf. [7]). In the classi-
cal bivalent propositional case, the inference rules of (signed or unsigned) tableau systems are based on
adequate versions of a subformula principle that guarantees that the overall complexity of the involved
formulas decreases as tableau rules are applied in the construction of a tableau derivation. The resulting
collection of rules, in that case, is said to be analytic, and decidability, in general, follows from that. In-
deed, analytical proof procedures eliminate the use of the so-called ‘cut rule’ (which often presupposes
some ingenuity) and are very useful for automation as they greatly facilitate the finding of proofs. On the
other hand, exactly because they eliminate cut, such procedures render the expression of proof lemmas
more difficult, if not outright impossible. However, this expressive limitation can often be negotiated
with an additional gain in the speed-up of the corresponding derivations if one considers systems allow-
ing for the so-called ‘analytic cuts’ (cf. [3]). In one way or another, the objective is to define a rule-based
framework for propositional logics in which the termination, with more or less efficiency, of a given
theorem-proving task is guaranteed at the outset.

In [1] an algorithm was devised to extract bivalent (in general, non-truth-functional) characteriza-
tions for an extensive class of finite-valued propositional logics and then turn those characterizations into
classic-like adequate tableau systems for those logics. We have used ML to implement that algorithm
in [4],1 and the output of our program is an Isabelle theory which can be used for computer-assisted
proofs of theorems and derived rules of the corresponding finite-valued logics. Such proof systems, auto-
matically extracted from the sets of truth-tables taken as input of our program, contained a non-eliminable
version of the cut rule, and in fact no detailed proof was presented that analytic cuts would suffice for ev-
ery proof system generated by the above mentioned algorithm. An improved axiom extraction algorithm
has recently been proposed in [2], for the same class of logics, in which cut is an admissible rule. The
latter algorithm has some interesting features, being based on a non-standard complexity measure that is
intended to guarantee its analyticity. The present paper employs an illustration of the above procedure to
briefly report on the challenges and difficulties related to the implementation of the mentioned novel al-
gorithm, having again as output Isabelle theories, but this time extended with the automatic formation
of proof tactics for the complete automation of the corresponding theorem-proving tasks.

2 Tableaux
A tableau system is both a proof and a counter-model building procedure based on the construction of
refutation trees. A tableau rule is a schematic tree modifier, and its application allows us, given a branch
in which we find an instance of the rule’s heads, to extend the leaf of this branch by considering all the
possibilities provided by the corresponding instances of the rules’s daughters. For instance, the classical
tableau rules for negation and implication can be represented as:

F :(¬α)

T :α

T :(¬α)

F :α

F :(α → β)

T :α
F :β

T :(α → β)

F :α T :β

(1)

This means, for instance, that a branch containing a signed formula of the form F :(α → β) may be
extended by adding in sequence new nodes of the form T :α and F :β . Similarly, a branch containing a
signed formula of the form T :(α → β) may be extended in two different ways, both by adding a new
node of the form F :α and by adding a new node of the form T :β . The semantic reading of such rules

1Check also http://tinyurl.com/5cakro.

http://tinyurl.com/5cakro

João Marcos and Dalmo Mendonça 3

is obvious. The following closure rule, expressing an unobtainable semantic situation, completes the
characterization of classical logic:

T :α
F :α

∗

(2)

The rule is intended to say that a branch that contains an occurrence of the formula α labelled with the
sign T and an occurrence of the same formula labelled with the sign F may be said to be closed. A whole
tree is said to be closed if all of its branches are closed. Now, in case we want to verify the inference of
a formula α from a set of premises γ1, γ2, . . . , γn, using such 2-signed tableau rules for classical logic,
what we do is to try and find a closed tableau tree starting from the linear sequence of labelled nodes
T :γ1, T :γ2, . . . , T :γn, F :α .

The above tableau system for classical logic respects an obvious subformula principle, according to
which each of the daughters of a non-closure rule are proper subformulas of some of the rule heads. It is
easy to see that the following canonical complexity measure decreases with rule application:

(`1) `(p) = 0, where p is an atom
(`2) `(¬ϕ1) = `(ϕ1)+1
(`3) `(ϕ2→ ϕ3) = `(ϕ2)+ `(ϕ3)+1

(3)

Obviously, the closure rule is the only rule applicable to nodes with complexity zero. We say that a proof
system is analytical if it only allows you to apply a rule when its daughters have smaller complexity
than at least one of the corresponding heads. In other words, an analytical proof system is one to which
a convenient proof strategy has been conveniently associated in such a way that complexity always
decreases with rule application. This is obviously the case, without restriction, for each of the above
rules for classical logic, applied in any particular order.

Analyticity guarantees termination of a proof procedure. We say that a tableau tree is terminated
when: (T1) all of its branches are closed; (T2) there are open branches and no further rule is applicable.
In case (T1) we may say the the initial inference has been successfully verified; in case (T2), the open
branches allow us to extract all the counter-models to the initial inference.

3 Many-Valued Logics

Many-valued logics deviate from classical logic in allowing larger classes of truth-values, the so-called
designated and undesignated values, to represent, respectively, ‘degrees of truth’ and ‘degrees of falsity’.
The rest remains pretty much the same, from the semantical point of view, so that for each assignment
of truth-values to the atoms of a given m-ary formula ϕ there is a unique way of extending that into an
interpretation ϕ̃ of that formula as an m-ary operator over the extended algebra of truth-values.

An algorithm for obtaining analytic 2-signed tableau systems for finite-valued logics was described
in [2], and we will illustrate it in what follows, for the instructive case of Łukasiewicz’s four-valued
logic Ł4. This logic has 1 as its only designated value and 2

3 , 1
3 and 0 as its undesignated values. Its

connectives ¬ and → are interpreted as operators over {1, 2
3 , 1

3 ,0} by way of the following definitions
and their corresponding truth-tables:

(Ł4¬) ¬̃v = 1− v
(Ł4→) v1→̃v2 = Min(1,1− v1 + v2)

(4)

4 Automatic Generation of Proof Tactics for Finite-Valued Logics

Now, to produce a classic-like 2-signed tableau system for Ł4 the idea is to associate to each truth-value
of this logic a unique binary print in terms of the signs T and F that distinguishes this truth-value from
any other truth-value. Given a collection of truth-values V , its characteristic function t : V → {T,F}
is a mapping that associates T to designated values and F to undesignated values. Binary prints are
sequences of unary formulas, called separating formulas, that use the latter characteristic functions to
distinguish in between truth-values. In the case of Ł4, the following separating formulas can be seen to
do the job: θ1(ϕ) = ¬ϕ and θ2(ϕ) = ¬¬(ϕ →¬ϕ). Consider indeed the table:

v t(v) θ̃1(v) t(θ̃1(v)) θ̃2(v) t(θ̃2(v))

0 F 1 T 1 T
1
3 F 2

3 F 1 T
2
3 F 1

3 F 1
3 F

1 T 0 F 0 F

(5)

Notice how each truth-value v is associated to a unique triple
〈

t(v), t(θ̃1(v)), t(θ̃2(v))
〉

.
All rules of the corresponding tableau system will have labelled binary prints as branches. For

example, the rules corresponding to (Ł4¬) are:

F :¬α

F :α
F :θ1(α)
T :θ2(α)

F :α
F :θ1(α)
F :θ2(α)

T :α
F :θ1(α)
F :θ2(α)

T :¬α

F :α
T :θ1(α)
T :θ2(α)

(6)

An additional set of rules, with heads of the form S:θ1(ϕ) and S:θ2(ϕ), with ϕ = ¬α and ϕ = α → β ,
and S ∈ {T,F}, is needed to guarantee soundness and completeness of the 2-signed tableau system with
respect to the initial finite-valued truth-tabular characterization of the target logic, Ł4. Here are, by way
of an illustration, the rules for T :θ2(α → β) and T :θ1(¬α):

T :θ2(α → β)

F :α
F :θ1(α)
F :θ2(α)

F :β
T :θ1(β)
T :θ2(β)

T :α
F :θ1(α)
F :θ2(α)

F :β
T :θ1(β)
T :θ2(β)

T :α
F :θ1(α)
F :θ2(α)

F :β
F :θ1(β)
T :θ2(β)

T :θ1(¬α)

T :α
F :θ1(α)
F :θ2(α) (7)

Finally, the set of closure rules contains not only the classical rule (2), but also all other combinations
of labelled binary prints that do not correspond to possible valuations, according to the truth-tables of Ł4.
In the case of this logic, the closure rules will be, then:

F :α
T :θ1(α)
F :θ2(α)

∗

T :α
T :θ1(α)
T :θ2(α)

∗

T :α
F :θ1(α)
T :θ2(α)

∗

T :α
F :α

∗
(8)

João Marcos and Dalmo Mendonça 5

A closer look at the above four closure rules will reveal that the second and third rules, from left to
right, only differ in signs for θ1(α). Obviously, T :θ1(α) and F :θ1(α) are the only two possible ways of
labelling the formula θ1(α). Accordingly, those two rules should give place to a single rule:

T :α
T :θ2(α)

∗

(9)

A similar approach can in fact be used to simplify other rules of the system, reducing the number of
resulting branches and formulas (cf. [4]). Using that idea, for instance, the three branches of the rules
[F :¬] and [T :θ2→], in the left halves of (6) and (7), could be simplified into just two branches.

Analyticity for the above system is ensured by enforcing a particular strategy that regulates rule
applications based on an adequate non-canonical measure of complexity. To define that, all we have to
do is to precede definition (3) by a further clause:

(`0) `(θ(ϕ)) = `(ϕ), for every separating formula θ (10)

Notice how different clauses of this novel definition of complexity may potentially apply to the same
formula ϕ , if we look at it as a θ -formula or not. Notice that the new complexity measure is still
well-defined as a function, once it is read from (`0) to (`3), in this order. On the other hand, even
if we identify a given formula as a θ -formula, there might be, for instance, formulas ϕ1 and ϕ2 and
separating formulas θ1 and θ2 such that θ1(ϕ1) = ϕ = θ2(ϕ2). In that case, the rule to be applied
should be the one that decreases the complexity the most, and this minimality requirement can also be
conveniently internalized in the above definition of the complexity measure (check the details in [2]). For
example, the signed formula T :¬¬((α→ β)→¬(α→ β)) might equally well be read as an instance of
T :θ1(¬((α → β)→¬(α → β))) or an instance of T :θ2(α → β). The three choices of reading would
result in three different extensions of a tableau branch having the initial signed formula as one of its
nodes. The first two choices are, according to the right halves of (6) and (7):

Rule [T :¬] is applied: Rule [T :θ1¬] is applied:

T :¬¬((α → β)→¬(α → β))

F :¬((α → β)→¬(α → β))
T :θ1(¬((α → β)→¬(α → β)))
T :θ2(¬((α → β)→¬(α → β)))

T :θ1(¬((α → β)→¬(α → β)))

T :((α → β)→¬(α → β))
F :θ1(((α → β)→¬(α → β)))
F :θ2(((α → β)→¬(α → β)))

The third choice corresponds exactly to rule pictured at the left half of (7). Clearly, it is in this more
‘concrete’ case that the rule application results in less complex formulas. Our tableau strategy should
take that into consideration. Just to illustrate the importance of this strategy, if we did not follow it in the
example above, we could have chosen the first choice and then we would have observed that from the
sequence of three resulting daughters, the second would be the head of the rule reiterated, and the third
would be the more complex formula T :¬¬((¬((α → β)→ ¬(α → β)))→ ¬(¬((α → β)→ ¬(α →
β)))). The tableau building procedure, in such a situation, would not necessarily be terminating.

4 Tactics

Our axiom extraction program takes as input the definition of a many-valued logic and generates a file
with a theory ready to use with Isabelle. The theory includes the set of all tableau rules for the

6 Automatic Generation of Proof Tactics for Finite-Valued Logics

object logic. In addition, taking advantage of the analytical character of the system defined by the new
algorithm, rewrite rules and tactics for automated theorem proving are constructed.

In the ouput file for logic Ł4, the rules for F : ¬α , T : ¬α , T : θ2(α→ β) and T : θ1(¬α) exhibited at
the last section are represented in Isabelle’s syntax by:

FNeg:

"[| [$H, F:A0, F:t1(A0), T:t2(A0), $G] ;

[$H, F:A0, F:t1(A0), F:t2(A0), $G] ;

[$H, T:A0, F:t1(A0), F:t2(A0), $G] |]

==> [$H, F:~(A0), $G]"

TNeg:

"[| [$H, F:A0, T:t1(A0), T:t2(A0), $G] |]

==> [$H, T:~(A0), $G]"

Tt1Neg:

"[| [$H, T:A0, F:t1(A0), F:t2(A0), $G] |]

==> [$H, T:t1(~(A0)), $G]"

Tt2Imp:

"[| [$H, F:A0, F:t1(A0), F:t2(A0), F:A1, T:t1(A1), T:t2(A1), $G] ;

[$H, T:A0, F:t1(A0), F:t2(A0), F:A1, T:t1(A1), T:t2(A1), $G] ;

[$H, T:A0, F:t1(A0), F:t2(A0), F:A1, F:t1(A1), T:t2(A1), $G] |]

==> [$H, T:t2(A0 --> A1), $G]"

In the above higher-order sequent-style syntax, where $ marks a context, the meta-implication ==> sep-
arates the branch representing the current goal at the right from its subgoals at the left. A closure rule
such as the first one from (8), is represented as an axiom of the form:

CR1: "[$C1, F:A, $C2, T:t1(A), $C3, F:t2(A), $C4]"

We further add to the theory some convenient rewrite rules to allow the system to recognize given
formulas as instances of separating formulas whenever possible. Only the outermost formulas may be
instantiated as θ -formulas, as this rewrite is intended to be followed by a rule application, and there are
no rules for formulas with nested θs.

t1_def: "S:~A0 == S:t1(A0)"

t2_def: "S:~~(A0-->~A0) == S:t2(A0)"

Again, to guarantee termination of proofs we must follow an order of instantiation, starting with
the rewrite rules that reduce the most the complexity of the formula, namely θ2. A tactic for ordered
instantiation, in the case of Ł4, may be defined by:

val auto_rw = (rewrite_goals_tac [t2_def]) THEN

(rewrite_goals_tac [t1_def]);

where the command rewrite goals tac [t2 def] rewrites all formulas of the subgoal using the def-
inition of t2 def, and similarly for t1 def. The tactical THEN makes sure that the second line will be
executed only after the first one, and this strategy will guarantee the correct order of instantiation in the
case where different θ -rules are applicable. Here is an illustration of the use of auto rw:

1. [F:~~(A-->~A), T:~~(A-->~B)] (* Current state of proof *)

2. [T:~~((A-->B)-->~(A-->B)), T:~A, F:~~A]

ML> by auto_rw; (* Using the tactic *)

1. [F:t2(A), T:t1(~(A-->~B))] (* New state of proof *)

2. [T:t2(A-->B), T:t1(A), F:t1(~A)]

João Marcos and Dalmo Mendonça 7

We may now use again the tacticals and construct a tactic for automatic theorem proving, by describ-
ing a procedure to exhaustively repeat, for every branch of the proof tree, the following steps:

1. instantiate formulas by rewriting (auto rw), then

2. close the branch by applying one of the closure rules or

3. apply another rule of the system.

The first step will ensure that the right choice will be made when multiple rules are applicable to
a formula. Next, the tactic tries to close the branch as soon as possible, to speed-up the process. If
closure is not possible at that stage, the next step will try to apply another rule of the system, in the most
convenient application order (for instance, postponing branching as much as possible), and start again.
The procedure terminates, thanks to the analyticity of the system, and at the end either Isabelle will
deliver a message of No subgoals!, meaning that the proof has been successfully concluded, or else
there will be a list of subgoals — open branches — which are impossible to close and such that all their
formulas have complexity zero, so that no further rule is applicable. From those open branches, as usual,
counter-models can be built.

Extra details will be at hand to be surveyed by the interested reader as the full system is made
available on-line, in open source.

References
[1] Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio & João Marcos (2005): Two’s company: “The humbug

of many logical values”. In: J.-Y. Béziau, editor: Logica Universalis. Birkhäuser Verlag, Basel, Switzerland,
pp. 169–189. Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf.

[2] Carlos Caleiro & João Marcos (2009): Classic-like analytic tableaux for finite-valued logics. In: H. Ono,
M. Kanazawa & R. de Queiroz, editors: Proceedings of the XVI Workshop on Logic, Language, Information
and Computation (WoLLIC 2009), held in Tokyo, JP, June 2009, Lecture Notes in Artificial Intelligence 5514.
Springer, pp. 268–280. Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/09-CM-ClATab4FVL.pdf.

[3] Marcello D’Agostino & Marco Mondadori (1994): The taming of the cut: classical refutations with analytic
cut. Journal of Logic and Computation 4(3), pp. 285–319.

[4] João Marcos & Dalmo Mendonça (2009): Towards fully automated axiom extraction for finite-valued logics.
In: W. Carnielli, M. E. Coniglio & I. M. L. D’Ottaviano, editors: The Many Sides of Logic, Studies in Logic.
College Publications, London. Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/08-MM-towards.pdf.

[5] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS 2283. Springer.

[6] Lawrence C. Paulson (1987): Logic and Computation: Interactive proof with Cambridge LCF. Cambridge
University Press.

[7] Raymond M. Smullyan (1995): First-Order Logic. Dover.

http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/09-CM-ClATab4FVL.pdf
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/08-MM-towards.pdf

