Multigraded Castelnuovo-Mumford regularity and Gröbner bases

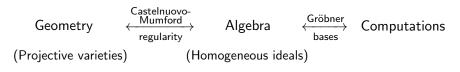
Matías Bender

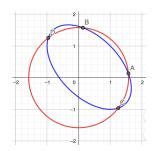
Inria - CMAP, École Polytechnique

March 25, 2024

- On-going joint work with
 - Laurent Busé (Inria Université Côte d'Azur),
 - Carles Checa (ATHENA NKU Athens), and
 - Elias Tsigardias (Inria, IMJ-PRG).
- Questions:
 - How hard is to compute a Gröbner bases for a multihomogeneous ideal?
 - What determines this hardness?
- Our answer:
 - Multigraded Castelnuovo-Mumford regularity (+ other invariants...)

Computational Algebraic Geometry





$$\begin{cases} 2x_1^2 + 2x_2^2 - 5x_0^2 = 0, \\ x_1^2 + x_1x_2 + x_2^2 - \\ x_1x_0 - x_2x_0 - x_0^2 = 0 \end{cases}$$

 $\begin{cases} 3x_0^2 - 2x_1x_0 - 2x_2x_0 + 2x_1x_2, \\ -5x_0^2 + 2x_1^2 + 2x_2^2, \\ 2x_0^3 - 3x_0^2x_1 - x_0^2x_2 - 2x_0x_1^2 + 2x_1^3 \end{cases}$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S := \mathbb{C}[x_0, \dots, x_n]$,

$$V_{\mathbb{P}^n}(I) = \emptyset \iff \exists$$
 sufficiently big d_0 st $(\forall d \geq d_0) I_d = S_d$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S := \mathbb{C}[x_0, \dots, x_n]$,

$$V_{\mathbb{P}^n}(I) = \emptyset \iff \exists$$
 sufficiently big d_0 st $(\forall d \geq d_0) I_d = S_d$

Examples

$$\langle x_0, x_1^2 \rangle_d = C[x_0, x_1]_d$$
 for $d \ge 2$ $\langle x_0^3, x_1^2 \rangle_d = C[x_0, x_1]_d$ for $d \ge 4$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S := \mathbb{C}[x_0, \dots, x_n]$,

$$V_{\mathbb{P}^n}(I) = \emptyset \iff \exists$$
 sufficiently big d_0 st $(\forall d \geq d_0) I_d = S_d$

Examples

$$\langle x_0, x_1^2 \rangle_d = C[x_0, x_1]_d \text{ for } d \ge 2$$
 $\langle x_0^3, x_1^2 \rangle_d = C[x_0, x_1]_d \text{ for } d \ge 4$

Castelnuovo-Mumford regularity in empty case

Smallest d_0 such that $I_{d_0} = S_{d_0}$

Hilbert polynomial

Consider homogeneous $I \subset S := \mathbb{C}[x_0, \dots, x_n]$.

$$\operatorname{HilbertFunction}_{S/I}(d) := \dim_{\mathbb{C}} ((S/I)_d)$$

There exist a polynomial $\operatorname{HilbertPolynomial}_{S/I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_0 such that, if $d \geq d_0$,

 $\operatorname{HilbertFunction}_{S/I}(d) = \operatorname{HilbertPolynomial}_{S/I}(d).$

Hilbert polynomial

Consider homogeneous $I \subset S := \mathbb{C}[x_0, \dots, x_n]$.

$$\operatorname{HilbertFunction}_{S/I}(d) := \dim_{\mathbb{C}} ((S/I)_d)$$

There exist a polynomial HilbertPolynomial_{S/I}(d) $\in \mathbb{Z}[d]$ and a sufficiently big d_0 such that, if $d \geq d_0$,

$$\operatorname{HilbertFunction}_{S/I}(d) = \operatorname{HilbertPolynomial}_{S/I}(d).$$

If $V_{\mathbb{P}^n}(I)$ is a finite set of δ points (counted multiplicities), then

$$HilbertPolynomial_{S/I}(d) = \delta.$$

$$\left. \begin{array}{l} I = \langle x_0^2 \left(x_0^2 - x_1^2 \right), x_1^2 \left(x_0^2 - x_1^2 \right) \rangle \\ V_{\mathbb{P}^n}(I) = \{ (1:1), (1:-1) \} \end{array} \right\} \quad \dim_{\mathbb{C}} \left((\mathbb{C}[x_0, x_1]/I)_d \right) = 2, \text{ for } d \ge 5$$

Hilbert polynomial

Consider homogeneous $I \subset S := \mathbb{C}[x_0, \dots, x_n]$.

$$\operatorname{HilbertFunction}_{S/I}(d) := \dim_{\mathbb{C}} ((S/I)_d)$$

There exist a polynomial HilbertPolynomial $S_{I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_0 such that, if $d \geq d_0$,

 $\operatorname{HilbertFunction}_{S/I}(d) = \operatorname{HilbertPolynomial}_{S/I}(d).$

If $V_{\mathbb{P}^n}(I)$ is a finite set of δ points, $\operatorname{HilbertPolynomial}_{S/I}(d) = \delta$.

$$\left. \begin{array}{l} I = \langle x_0^2 \left(x_0^2 - x_1^2 \right), x_1^2 \left(x_0^2 - x_1^2 \right) \rangle \\ V_{\mathbb{P}^n}(I) = \{ (1:1), (1:-1) \} \end{array} \right\} \quad \dim_{\mathbb{C}} \left((\mathbb{C}[x_0, x_1]/I)_d \right) = 2, \text{ for } d \geq 5$$

Hilbert polynomial

Consider homogeneous $I \subset S := \mathbb{C}[x_0, \dots, x_n]$.

$$\operatorname{HilbertFunction}_{S/I}(d) := \dim_{\mathbb{C}} ((S/I)_d)$$

There exist a polynomial HilbertPolynomial $S/I(d) \in \mathbb{Z}[d]$ and a sufficiently big d_0 such that, if $d \geq d_0$,

 $\operatorname{HilbertFunction}_{S/I}(d) = \operatorname{HilbertPolynomial}_{S/I}(d).$

If $V_{\mathbb{P}^n}(I)$ is a finite set of δ points, $\operatorname{HilbertPolynomial}_{S/I}(d) = \delta$.

$$\begin{cases} I = \langle x_0^2 (x_0^2 - x_1^2), x_1^2 (x_0^2 - x_1^2) \rangle \\ V_{\mathbb{P}^n}(I) = \{ (1:1), (1:-1) \} \end{cases}$$
 dim_{\mathbb{C}} $((\mathbb{C}[x_0, x_1]/I)_d) = 2$, for $d \ge 5$

Castelnuovo-Mumford regularity \geq smallest d_0 .

Geometry ↔ Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{\mathbf{x}}:=\langle x_0,\ldots,x_n\rangle$ be irrelevant ideal of $S:=\mathbb{C}[x_0,\ldots,x_n]$. Given homogeneous $I,J\subset S$,

$$\operatorname{Proj}(I) = \operatorname{Proj}(J) \iff \exists \text{ sufficiently big } d_0 \text{ st } (\forall d \geq d_0) I_d = J_d$$

In particular, there is big enough d_0 st $(\forall d \geq d_0)$ the ideal I is saturated at degree d, that is,

$$I_d = (I : \mathfrak{m}_x^{\infty})_d$$

Geometry ↔ Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{\mathbf{x}} := \langle x_0, \dots, x_n \rangle$ be irrelevant ideal of $S := \mathbb{C}[x_0, \dots, x_n]$. Given homogeneous $I, J \subset S$,

$$\operatorname{Proj}(I) = \operatorname{Proj}(J) \iff \exists \text{ sufficiently big } d_0 \text{ st } (\forall d \geq d_0) I_d = J_d$$

In particular, there is big enough d_0 st $(\forall d \geq d_0)$ the ideal I is saturated at degree d, that is,

$$I_d = (I : \mathfrak{m}_{\mathbf{x}}^{\infty})_d$$

$$\begin{vmatrix}
I = \langle x_0^2 (x_0^2 - x_1^2), x_1^2 (x_0^2 - x_1^2) \rangle \\
(I : \mathfrak{m}_{\boldsymbol{x}}^{\infty}) = \langle (x_0 - x_1) (x_0 + x_1) \rangle \\
V_{\mathbb{P}^n}(I) = \{(1 : 1), (1 : -1)\}
\end{vmatrix}$$
 $\leftrightarrow I_d = (I : \mathfrak{m}_{\boldsymbol{x}}^{\infty})_d, \text{ for } d \ge 5$

Geometry ↔ Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{\mathbf{x}}:=\langle x_0,\ldots,x_n\rangle$ be irrelevant ideal of $S:=\mathbb{C}[x_0,\ldots,x_n]$. Given homogeneous $I,J\subset S$,

$$\operatorname{Proj}(I) = \operatorname{Proj}(J) \iff \exists \text{ sufficiently big } d_0 \text{ st } (\forall d \geq d_0) I_d = J_d$$

In particular, there is big enough d_0 st $(\forall d \geq d_0)$ the ideal I is saturated at degree d, that is,

$$I_d = (I : \mathfrak{m}_{\mathbf{x}}^{\infty})_d$$

$$\begin{vmatrix}
I = \langle x_0^2 (x_0^2 - x_1^2), x_1^2 (x_0^2 - x_1^2) \rangle \\
(I : \mathbf{m}_{\mathbf{x}}^{\infty}) = \langle (x_0 - x_1) (x_0 + x_1) \rangle \\
V_{\mathbb{P}^n}(I) = \{ (1 : 1), (1 : -1) \}
\end{vmatrix}$$
 $\leftrightarrow I_d = (I : \mathbf{m}_{\mathbf{x}}^{\infty})_d, \text{ for } d \geq 5$

Castelnuovo-Mumford regularity \geq smallest d_0 .

CM regularity in terms of the Betti numbers

[Eisenbud-Goto '84]

Let $S := \mathbb{C}[x_0, \dots, x_n]$ and $\{\beta_{i,j}\}_{i,j}$ be the graded Betti numbers of I (shifts in minimal free resolution).

$$0 \to \bigoplus_{j} S(-j)^{\beta_{r,j}} \to \cdots \to \bigoplus_{j} S(-j)^{\beta_{1,j}} \to \bigoplus_{j} S(-j)^{\beta_{0,j}} \to I \to 0$$

CM regularity \sim maximal shift in minimal free resolution

$$\operatorname{reg}(I) = \max_{i,j} (j - i : \beta_{i,j} \neq 0)$$

$$I = \langle x_0^4 - x_0^2 x_1^2, x_0^2 x_1^2 - x_1^4 \rangle$$

$$0 \to S(-6) \xrightarrow{\left(-x_1^2 - x_0^2 \right)} S(-4)^2 \xrightarrow{\left(x_0^4 - x_0^2 x_1^2 \right) \\ \operatorname{reg}(I) = \max(6 - 1, 4 - 0) = 5} I \to 0$$

• Betti numbers: $reg(I) = max_{i,j}(j - i : \beta_{i,j}(I) \neq 0)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]

Given a degree d and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$I_{\geq d} := \bigoplus_{i \geq d} I_d.$$

• Betti numbers: $reg(I) = max_{i,j}(j - i : \beta_{i,j}(I) \neq 0)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]

Given a degree d and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$I_{\geq d} := \bigoplus_{i \geq d} I_d.$$

 $I_{>d}$ has linear resolutions, if its minimal resolution is

$$0 \to S(-d-r)^{\beta_{r,d+r}} \to \cdots \to S(-d-1)^{\beta_{1,d+1}} \to S(-d)^{\beta_{0,d}} \to I_{\geq d} \to 0$$

• Betti numbers: $reg(I) = max_{i,j}(j - i : \beta_{i,j}(I) \neq 0)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]

Given a degree d and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$I_{\geq d} := \bigoplus_{i \geq d} I_d.$$

 $I_{>d}$ has linear resolutions, if its minimal resolution is

$$0 \to S(-d-r)^{\beta_{r,d+r}} \to \cdots \to S(-d-1)^{\beta_{1,d+1}} \to S(-d)^{\beta_{0,d}} \to I_{\geq d} \to 0$$

CM regularity = minimal d st d-truncation has linear resolution.

 $reg(I) = min(d : I_{>d})$ has a linear resolution

• Betti numbers: $reg(I) = max_{i,i}(i - i : \beta_{i,i}(I) \neq 0)$

CM regularity in terms of linear resolution [Eisenbud-Goto '84]

Given d and an ideal $I \subset S$, its d-truncated ideal is $I_{\geq d} := \bigoplus_{i \geq d} I_d$. $I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$0 \to S(-d-r)^{\beta_{r,d+r}} \to \cdots \to S(-d-1)^{\beta_{1,d+1}} \to S(-d)^{\beta_{0,d}} \to I_{\geq d} \to 0$$

CM regularity = minimal d st d-truncation has linear resolution.

 $reg(I) = min(d : I_{>d})$ has a linear resolution

• Betti numbers: $reg(I) = max_{i,i}(i - i : \beta_{i,i}(I) \neq 0)$

CM regularity in terms of linear resolution [Eisenbud-Goto '84]

Given d and an ideal $I \subset S$, its d-truncated ideal is $I_{\geq d} := \bigoplus_{i \geq d} I_d$. $I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$0 \to S(-d-r)^{\beta_{r,d+r}} \to \cdots \to S(-d-1)^{\beta_{1,d+1}} \to S(-d)^{\beta_{0,d}} \to I_{\geq d} \to 0$$

CM regularity = minimal d st d-truncation has linear resolution.

$$reg(I) = min(d : I_{>d})$$
 has a linear resolution

$$0 \to S(\mathbf{-5} - 1)^3 \xrightarrow{\begin{pmatrix} -x_1 & x_0 & 0 & 0 \\ 0 & -x_1 & x_0 & 0 \\ 0 & 0 & -x_1 & x_0 \end{pmatrix}} S(\mathbf{-5})^4 \xrightarrow{\begin{pmatrix} x_0^3 - x_0^3 x_1^2 \\ x_0^4 x_1 - x_0^2 x_1^3 \\ x_0^3 x_1^2 - x_0 x_1^4 \\ x_0^2 x_1^3 - x_1^5 \end{pmatrix}} I_{\geq \mathbf{5}} \to 0$$

- Betti numbers: $reg(I) = max_{i,j}(j i : \beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{\geq d})$ has linear res)

CM reg via local cohomology

[Castelnuovo'1896] [Mumford'66]

CM regularity \sim minimal shift st local cohomology wrt \mathfrak{m}_x vanishes.

$$\operatorname{reg}(I) = \min \left(d : (\forall i) \left(H_{\mathfrak{m}_x}^i(I) \right)_{d+i-1} = 0 \right)$$

Vanishing of first local cohomology module = Ideal is saturated wrt $\mathfrak{m}_{\pmb{x}}$

$$H^1_{\mathfrak{m}_x}(I) = (I : \mathfrak{m}_x^{\infty})/I$$

$$(\langle x_0^2 - x_1^2 \rangle / \langle x_0^4 - x_0^2 x_1^2, x_0^2 x_1^2 - x_1^4 \rangle)_5 = 0$$

- Betti numbers: $reg(I) = max_{i,j}(j i : \beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{>d})$ has linear res)
- Vanishing of local cohom.: $\operatorname{reg}(I) = \min(d : (\forall i) (H_{\mathfrak{m}_x}^i(I))_{d+i-1} = 0)$

CM regularity in terms of colon ideals

[Bayer-Stillman '87]

CM regularity of an ideal I generated in degree k, is the minimal degree $d \ge k$ st there are (generic) linear forms $\ell_0, \ldots, \ell_n \in S$ satisfying

$$\left\{ \begin{array}{l} (\forall i \geq 0) \ (\langle I, \ell_0, \dots, \ell_{i-1} \rangle : \ell_i)_d = \langle I, \ell_0, \dots, \ell_{i-1} \rangle_d, \\ \langle I, \ell_0, \dots, \ell_n \rangle_d = S_d \end{array} \right.$$

- Betti numbers: $reg(I) = max_{i,j}(j i : \beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{>d})$ has linear res)
- Vanishing of local cohom.: $\operatorname{reg}(I) = \min(d : (\forall i) (H_{\mathfrak{m}_x}^i(I))_{d+i-1} = 0)$

CM regularity in terms of colon ideals

[Bayer-Stillman '87]

CM regularity of an ideal I generated in degree k, is the minimal degree $d \ge k$ st there are (generic) linear forms $\ell_0, \ldots, \ell_n \in S$ satisfying

$$\left\{ \begin{array}{l} (\forall i \geq 0) \ (\langle I, \ell_0, \dots, \ell_{i-1} \rangle : \ell_i)_d = \langle I, \ell_0, \dots, \ell_{i-1} \rangle_d, \\ \langle I, \ell_0, \dots, \ell_n \rangle_d = S_d \end{array} \right.$$

Consider
$$I = \langle x_0^4 - x_0^2 x_1^2, x_0^2 x_1^2 - x_1^4 \rangle$$
 and let $\ell_0 = x_0, \ell_1 = x_1$.
 $(I: x_0) = \langle x_0^3 - x_0 x_1^2, x_0^2 x_1^2 - x_1^4 \rangle$, $\langle I, x_0 \rangle = \langle x_0, x_1^4 \rangle$, $(\langle I, x_0 \rangle : x_1) = \langle x_0, x_1^3 \rangle$

CM Regularity is 5 as
$$\left\{ \begin{array}{l} x_1 \, (x_0^3 - x_0 \, x_1^2) \in (I:x_0)_4 \not\subseteq I_4 \\ (I:x_0)_5 = I_5 \\ (\langle I,x_0 \rangle : x_1)_5 = \langle I,x_0 \rangle_5 \end{array} \right.$$

- Betti numbers: $reg(I) = max_{i,j}(j-i:\beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{>d})$ has linear resolution)
- Vanishing of local cohom.: $\operatorname{reg}(I) = \min(d : (\forall i) (H_{\mathfrak{m}_x}^i(I))_{d+i-1} = 0)$
- Equalities in sequence of colon ideals.

- Betti numbers: $reg(I) = max_{i,j}(j i : \beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{\geq d})$ has linear res)
- ullet Vanishing of local cohom.: $\operatorname{reg}(I) = \min(d: (orall i) \left(H_{\mathfrak{m}_x}^i(I)\right)_{d+i-1} = 0)$
- Equalities in sequence of colon ideals.

- Betti numbers: $reg(I) = max_{i,j}(j i : \beta_{i,j}(I) \neq 0)$
- Linear resolutions: $reg(I) = min(d : I_{\geq d})$ has linear res)
- ullet Vanishing of local cohom.: $\operatorname{reg}(I) = \min(d: (orall i) \left(H^i_{\mathfrak{m}_{\mathbf{x}}}(I)
 ight)_{d+i-1} = 0)$
- Equalities in sequence of colon ideals.

CM regularity is independent of the coordinates x_0, \ldots, x_n

Geometry \leftrightarrow Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...

...very big

[Galligo '79] [Giusti '84]

Consider homogeneous $I \subset \mathbb{C}[x_0, \dots, x_n]$ generated in degree $\leq d$. Then,

$$\operatorname{reg}(I) \leq (2d)^{2^{n-1}}.$$

Geometry \leftrightarrow Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...

...very big

[Galligo '79] [Giusti '84]

Consider homogeneous $I \subset \mathbb{C}[x_0, \dots, x_n]$ generated in degree $\leq d$. Then,

$$\operatorname{reg}(I) \leq (2d)^{2^{n-1}}.$$

...and it can not be avoided

[Mayr-Meyer '82]

There is an ideal generated in degree 4 st its regularity $> 2^{2^{n/10}} + 1$.

Geometry ↔ Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...

...very big

[Galligo '79] [Giusti '84]

Consider homogeneous $I \subset \mathbb{C}[x_0,\ldots,x_n]$ generated in degree $\leq d$. Then,

$$\operatorname{reg}(I) \leq (2d)^{2^{n-1}}.$$

...and it can not be avoided

[Mayr-Meyer '82]

There is an ideal generated in degree 4 st its regularity $\geq 2^{2^{n/10}} + 1$.

...but generically is small

If $f_1,\ldots,f_r\in\mathbb{C}[x_0,\ldots,x_n]$ is a regular sequence of degs $\leq d$, then

$$\operatorname{reg}(\langle f_1,\ldots,f_r\rangle) \leq \sum_i \operatorname{degree}(f_i) - r + 1 \leq d(n+1)$$

Algebra ↔ Computations: Gröbner bases

We fix degree reverse lexicographical monomial order $> (\mathrm{GRevLex})$ st

$$x_0 < \cdots < x_n$$

Initial ideal of I wrt GREVLEX

$$in_{>}(I) := \langle LeadingMonomial_{>}(f) : f \in I \rangle$$

A set of generators $\{f_1,\ldots,f_r\}$ of an ideal I is a Gröbner basis (GB) if

$$\operatorname{in}_{>}(I) = \langle \operatorname{LeadingMonomial}_{>}(f_i) : 1 \leq i \leq r \rangle$$

 $reg_0(J) := max degree in a min generating set of homogeneous ideal J.$

How hard is to compute a GB for I

 $reg_0(in_>(I)) = maximal degree of an element in a GB$

March 25, 2024

 $reg_0(J) := max degree in a min generating set of homogeneous ideal J.$

How hard is to compute a GB for I

$$\operatorname{reg}_0(\operatorname{in}_>(I)) = \text{ maximal degree of an element in a GB}$$

$$\operatorname{reg}_0(I) \leq \operatorname{reg}(I) \qquad \operatorname{reg}(\operatorname{in}_>(I)) \geq \operatorname{reg}_0(\operatorname{in}_>(I))$$

 $reg_0(J) := max degree in a min generating set of homogeneous ideal J.$

How hard is to compute a GB for I

$$\operatorname{reg}_0(\operatorname{in}_>(I)) = \text{ maximal degree of an element in a GB}$$

$$\operatorname{reg}_0(I) \le \operatorname{reg}(I) \le \operatorname{reg}(\operatorname{in}_{>}(I)) \ge \operatorname{reg}_0(\operatorname{in}_{>}(I))$$

 $reg_0(J) := max degree in a min generating set of homogeneous ideal J.$

How hard is to compute a GB for I

$$\operatorname{reg}_0(\operatorname{in}_>(I)) = \text{ maximal degree of an element in a GB}$$

$$\operatorname{reg}_0(I) \leq \operatorname{reg}(I) \qquad \leq \qquad \operatorname{reg}(\operatorname{in}_{>}(I)) \geq \operatorname{reg}_0(\operatorname{in}_{>}(I))$$

 $reg_0(J) := max degree in a min generating set of homogeneous ideal <math>J$.

How hard is to compute a GB for I

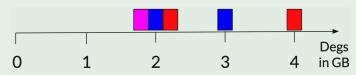
 $\operatorname{reg}_0(\operatorname{in}_>(I)) = \text{ maximal degree of an element in a GB}$

$$\operatorname{reg}_0(I) \le \operatorname{reg}(I) \le \operatorname{reg}(\operatorname{in}_{>}(I)) \ge \operatorname{reg}_0(\operatorname{in}_{>}(I))$$

Maximal deg in GB vs Castelnuovo-Mumford regularity

- $I := \langle x_2^2 + x_0^2, x_2 x_1 + x_0^2 \rangle$
- V * I, where V be change of coord: $\{x_0 = x_1', x_1 = x_0', x_2 = x_2'\}$
- U * I, U change of coord: $\{x_0 = x_0' + x_1' + x_2', x_1 = x_1' + x_2', x_2 = x_2'\}$

We have that, reg(I) = reg(V * I) = reg(U * I) = 3; but



Geometry ↔ Computations: Generic initial ideal

The maximal degree $reg_0(in_>(I))$ depends on the coordinates x_0, \ldots, x_n .

Generic initial ideal

[Galligo '74]

For each homogeneous ideal I, there exist a monomial ideal $gin_{>}(I)$ st, for every generic change of coordinates $U \in GL_{n+1}$, we have that

$$gin_{>}(I) = in(U * I)$$

Geometry ↔ Computations: Generic initial ideal

The maximal degree $reg_0(in_>(I))$ depends on the coordinates x_0, \ldots, x_n .

Generic initial ideal

[Galligo '74]

For each homogeneous ideal I, there exist a monomial ideal $gin_>(I)$ st, for every generic change of coordinates $U \in GL_{n+1}$, we have that

$$gin_{>}(I) = in(U * I)$$

Regularity and maximal degree of GB

[Bayer-Stillman '87]

Consider homogeneous $I \subset \mathbb{C}[x_0, \dots, x_n]$ and monomial order $\mathrm{GRevLex}$.

$$\operatorname{reg}(I) = \operatorname{reg}(\operatorname{gin}_{>}(I)) = \operatorname{reg}_{0}(\operatorname{gin}_{>}(I))$$

In particular, if I is in generic coordinates, $\operatorname{in}_{>}(I) = \operatorname{gin}_{>}(I)$ and $\operatorname{reg}(I)$ is the maximal degree of a polynomial in a minimal GB of I.

Multihomogeneous systems

Generalized Eigenvalue Problem

$$\left(x_0\cdot\left[\begin{array}{ccc}\mathbf{2} & \mathbf{6} \\ -\mathbf{1} & \mathbf{20}\end{array}\right] + x_1\cdot\left[\begin{array}{ccc}-\mathbf{2} & \mathbf{4} \\ \mathbf{0} & \mathbf{20}\end{array}\right]\right)\cdot\left[\begin{array}{c}y_0 \\ y_1\end{array}\right] = \mathbf{0}$$

$$\left\{ \begin{array}{l} \mathbf{2} x_0 \ y_0 + \ \mathbf{6} x_0 \ y_1 - \mathbf{2} x_1 \ y_0 + \mathbf{4} x_1 \ y_1 = 0 \\ -\mathbf{1} x_0 \ y_0 + \mathbf{20} x_0 \ y_1 + \mathbf{0} x_1 \ y_0 + \mathbf{20} x_1 \ y_1 = 0 \end{array} \right. \in \mathbb{C}[x_0, x_1]_1 \otimes \mathbb{C}[y_0, y_1]_1$$

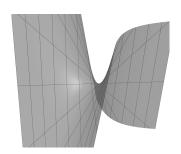
Multihomogeneous systems

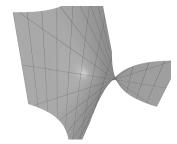
Generalized Eigenvalue Problem

$$\left(x_0\cdot\left[\begin{array}{cc}\mathbf{2} & \mathbf{6} \\ -\mathbf{1} & \mathbf{20}\end{array}\right] + x_1\cdot\left[\begin{array}{cc}-\mathbf{2} & \mathbf{4} \\ \mathbf{0} & \mathbf{20}\end{array}\right]\right)\cdot\left[\begin{array}{c}y_0 \\ y_1\end{array}\right] = \mathbf{0}$$

$$\left\{ \begin{array}{l} \mathbf{2} \, x_0 \, y_0 + \, \mathbf{6} \, x_0 \, y_1 - \mathbf{2} \, x_1 \, y_0 + \mathbf{4} \, x_1 \, y_1 = 0 \\ -\mathbf{1} \, x_0 \, y_0 + \mathbf{20} \, x_0 \, y_1 + \mathbf{0} \, x_1 \, y_0 + \mathbf{20} \, x_1 \, y_1 = 0 \end{array} \right. \in \mathbb{C}[x_0, x_1]_1 \otimes \mathbb{C}[y_0, y_1]_1$$

We look for solutions in $\mathbb{P}^1\times\mathbb{P}^1$





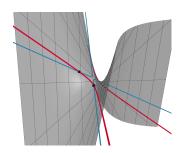
Multihomogeneous systems

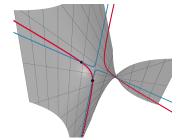
Generalized Eigenvalue Problem

$$\left(x_0\cdot\left[\begin{array}{cc}\mathbf{2} & \mathbf{6} \\ -\mathbf{1} & \mathbf{20}\end{array}\right] + x_1\cdot\left[\begin{array}{cc}-\mathbf{2} & \mathbf{4} \\ \mathbf{0} & \mathbf{20}\end{array}\right]\right)\cdot\left[\begin{array}{c}y_0 \\ y_1\end{array}\right] = \mathbf{0}$$

$$\left\{ \begin{array}{l} \mathbf{2} \, x_0 \, y_0 + \, \mathbf{6} \, x_0 \, y_1 - \mathbf{2} \, x_1 \, y_0 + \mathbf{4} \, x_1 \, y_1 = 0 \\ -\mathbf{1} \, x_0 \, y_0 + \mathbf{20} \, x_0 \, y_1 + \mathbf{0} \, x_1 \, y_0 + \mathbf{20} \, x_1 \, y_1 = 0 \end{array} \right. \in \mathbb{C}[x_0, x_1]_1 \otimes \mathbb{C}[y_0, y_1]_1$$

We look for solutions in $\mathbb{P}^1\times\mathbb{P}^1$





$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathfrak{m}_{x} = \langle x_0, \ldots, x_n \rangle, \ \mathfrak{m}_{y} = \langle y_0, \ldots, y_m \rangle.$$

$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathbf{m}_{x} = \langle x_0, \ldots, x_n \rangle, \ \mathbf{m}_{y} = \langle y_0, \ldots, y_m \rangle.$$

Geometry \leftrightarrow Algebra

$$I = \langle x_0 - x_1, x_1 y_0, x_1 y_1, x_0 y_1, x_0^2 y_0, x_0 y_0^2 \rangle \qquad V_{\mathbb{P}^n \times \mathbb{P}^m}(I) = \emptyset$$

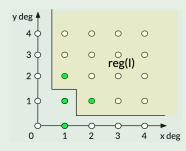
$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathfrak{m}_{x} = \langle x_0, \ldots, x_n \rangle, \ \mathfrak{m}_{y} = \langle y_0, \ldots, y_m \rangle.$$

$\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

$$I = \langle x_0 - x_1, x_1 y_0, x_1 y_1, x_0 y_1, x_0^2 y_0, x_0 y_0^2 \rangle \qquad V_{\mathbb{P}^n \times \mathbb{P}^m}(I) = \emptyset$$



$$\begin{cases} I_{0,e} = 0 & \text{for } e \geq 0 \\ I_{d,0} = \langle x_0 - x_1 \rangle_{d,0} & \text{for } d \geq 1 \\ I_{1,1} = \mathrm{Span}_{\mathbb{C}}(\{x_0 y_1, x_1 y_0, x_1 y_1\}) \\ \not \ni x_0 y_1 \\ I_{2,1} = R_{2,1}, I_{1,2} = R_{1,2}, \\ I_{e,d} = R_{e,d}, \text{ for } d \geq 2 \text{ and } e \geq 2. \end{cases}$$

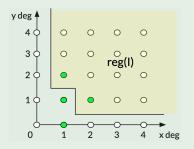
$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathfrak{m}_{x} = \langle x_0, \ldots, x_n \rangle, \ \mathfrak{m}_{y} = \langle y_0, \ldots, y_m \rangle.$$

Geometry \leftrightarrow Algebra

$$I = \langle x_0 - x_1, x_1 y_0, x_1 y_1, x_0 y_1, x_0^2 y_0, x_0 y_0^2 \rangle \qquad V_{\mathbb{P}^n \times \mathbb{P}^m}(I) = \emptyset$$



$$\begin{cases} I_{0,e} = 0 & \text{for } e \ge 0 \\ I_{d,0} = \langle x_0 - x_1 \rangle_{d,0} & \text{for } d \ge 1 \\ I_{1,1} = \operatorname{Span}_{\mathbb{C}}(\{x_0 y_1, x_1 y_0, x_1 y_1\}) & \not\ni x_0 y_1 \end{cases}$$

$$\begin{cases} I_{2,1} = R_{2,1}, I_{1,2} = R_{1,2}, \\ I_{e,d} = R_{e,d}, \text{ for } d \ge 2 \text{ and } e \ge 2. \end{cases}$$

Regularity is a region (unbounded complement)

$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathbf{m}_{\mathbf{x}} = \langle x_0, \ldots, x_n \rangle, \ \mathbf{m}_{\mathbf{y}} = \langle y_0, \ldots, y_m \rangle.$$

$\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

Regularity is a region (unbounded complement)

$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathfrak{m}_{\mathbf{x}} = \langle x_0, \ldots, x_n \rangle, \ \mathfrak{m}_{\mathbf{y}} = \langle y_0, \ldots, y_m \rangle.$$

$\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

Regularity is a region (unbounded complement)

$Algebra \leftrightarrow Computations$

Change of coordinates $U \in GL_{n+m+2}$ destroy multigraded structure.

$$U = \{x_0 = x_0' + x_1' + y_0' + y_1', \dots\}$$

$$R := \bigoplus_{(d,e)\in\mathbb{Z}^2} \mathbb{C}[x_0,\ldots,x_n]_d \otimes \mathbb{C}[y_0,\ldots,y_m]_e$$

Irrelevant ideal of R is $\mathfrak{b} = \mathfrak{m}_x \cap \mathfrak{m}_y$, where

$$\mathbf{m}_{\mathbf{x}} = \langle x_0, \ldots, x_n \rangle, \ \mathbf{m}_{\mathbf{y}} = \langle y_0, \ldots, y_m \rangle.$$

$\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

Regularity is a region (unbounded complement)

$Algebra \leftrightarrow Computations$

Change of coordinates $U \in GL_{n+m+2}$ destroy multigraded structure.

$$U = \{x_0 = x_0' + x_1' + y_0' + y_1', \dots\}$$

We need to restrict to $(U, V) \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$

$$\left\{ \begin{array}{l} U = \{x_0 = x_0' + x_1', x_0' - x_1'\} \\ V = \{y_0 = 3 y_0' - y_1', 2 y_0' + y_1'\} \end{array} \right.$$

Defined in terms of vanishing of local cohomology wrt b

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^2$ iff, for every $i \geq i$ and every shift $\lambda_x, \lambda_y \in \mathbb{Z}_{>0}$ st $\lambda_x + \lambda_y = i - 1$

$$(\forall (a',b') \geq (a-\lambda_x,b-\lambda_y)) \quad H_{\mathfrak{b}}^i(I)_{(a',b')}=0$$

March 25, 2024

Defined in terms of vanishing of local cohomology wrt b

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^2$ iff, for every $i \geq i$ and every shift $\lambda_x, \lambda_y \in \mathbb{Z}_{\geq 0}$ st $\lambda_x + \lambda_y = i - 1$

$$(\forall (a',b') \geq (a-\lambda_x,b-\lambda_y)) \quad H^i_{\mathfrak{b}}(I)_{(a',b')} = 0$$

• Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]

Defined in terms of vanishing of local cohomology wrt b

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in reg(I) \subset \mathbb{Z}^2$ iff, for every $i \geq i$ and every shift $\lambda_x, \lambda_y \in \mathbb{Z}_{>0}$ st $\lambda_x + \lambda_y = i - 1$

$$(\forall (a',b') \geq (a-\lambda_x,b-\lambda_y)) \quad H_{\mathfrak{b}}^i(I)_{(a',b')}=0$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation. [Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].

ullet Defined in terms of vanishing of local cohomology wrt ullet

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^2$ iff, for every $i \geq i$ and every shift $\lambda_x, \lambda_y \in \mathbb{Z}_{\geq 0}$ st $\lambda_x + \lambda_y = i - 1$

$$(\forall (a',b') \geq (a-\lambda_x,b-\lambda_y)) \quad H^i_{\mathfrak{b}}(I)_{(a',b')} = 0$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation.
 [Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].
- Not known criterion in terms of colon ideals à la Bayer & Stillman.

\overrightarrow{G} eometry \leftrightarrow Algebra: Multigraded \overrightarrow{C} M regularity

Defined in terms of vanishing of local cohomology wrt b

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in reg(I) \subset \mathbb{Z}^2$ iff, for every $i \geq i$ and every shift $\lambda_x, \lambda_y \in \mathbb{Z}_{>0}$ st $\lambda_x + \lambda_y = i - 1$

$$(\forall (a',b') \geq (a-\lambda_x,b-\lambda_y)) \quad H^i_{\mathfrak{b}}(I)_{(a',b')} = 0$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation. [Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].
- Not known criterion in terms of colon ideals à la Bayer & Stillman.

(there are other candidate definitions...)

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For each bihomogeneous ideal I, \exists monomial ideal bigin(I) st, for every bigeneric change of coordinates $U \in GL_{n+1} \times GL_{m+1}$, we have that

$$\operatorname{bigin}_{>}(I) = \operatorname{in}(U * I)$$

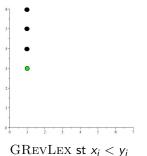
Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For each bihomogeneous ideal I, \exists monomial ideal $\operatorname{bigin}(I)$ st, for every bigeneric change of coordinates $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, we have that

$$\operatorname{bigin}_{>}(I) = \operatorname{in}(U * I)$$

Careful, not unique bigin even for GRevLex.



5--4-3-2-1-0 1 2 3 4 5 6 7

GREVLEX st $y_i < x_i$

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For I, $\exists \operatorname{bigin}(I)$ st, for generic $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, $\operatorname{bigin}(I) = \operatorname{in}(U * I)$

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For I, $\exists \operatorname{bigin}(I)$ st, for generic $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, $\operatorname{bigin}(I) = \operatorname{in}(U * I)$

Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$\mathfrak{R}_{\mathbf{x}}(\mathbf{J}) = \max(a \in \mathbb{Z} : \beta_{i,(a+i,b)}(\mathbf{J}) \text{ for some } i, b \in \mathbb{Z})$$

 $\mathfrak{R}_{\mathbf{y}}(\mathbf{J}) = \max(b \in \mathbb{Z} : \beta_{i,(a,b+i)}(\mathbf{J}) \text{ for some } i, a \in \mathbb{Z})$

For GREVLEX order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For I, $\exists \operatorname{bigin}(I)$ st, for generic $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, $\operatorname{bigin}(I) = \operatorname{in}(U * I)$

Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$\mathfrak{R}_{\mathbf{x}}(\mathbf{J}) = \max(a \in \mathbb{Z} : \beta_{i,(a+i,b)}(\mathbf{J}) \text{ for some } i, b \in \mathbb{Z})$$

 $\mathfrak{R}_{\mathbf{y}}(\mathbf{J}) = \max(b \in \mathbb{Z} : \beta_{i,(a,b+i)}(\mathbf{J}) \text{ for some } i, a \in \mathbb{Z})$

For GREVLEX order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

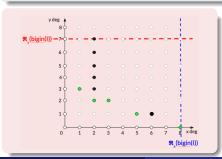
For I, $\exists \operatorname{bigin}(I)$ st, for generic $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, $\operatorname{bigin}(I) = \operatorname{in}(U * I)$

Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$\mathfrak{R}_{\mathbf{x}}(\mathbf{J}) = \max(a \in \mathbb{Z} : \beta_{i,(a+i,b)}(\mathbf{J}) \text{ for some } i, b \in \mathbb{Z})$$

 $\mathfrak{R}_{\mathbf{y}}(\mathbf{J}) = \max(b \in \mathbb{Z} : \beta_{i,(a,b+i)}(\mathbf{J}) \text{ for some } i, a \in \mathbb{Z})$

For GRevLex order, $\mathfrak{R}_x(\operatorname{bigin}(I))$ and $\mathfrak{R}_y(\operatorname{bigin}(I))$ bound GB of I.



- minimal generator of I
- minimal generator of bigin(I)

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

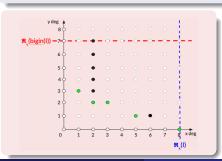
For I, $\exists \operatorname{bigin}(I)$ st, for generic $U \in \operatorname{GL}_{n+1} \times \operatorname{GL}_{m+1}$, $\operatorname{bigin}(I) = \operatorname{in}(U * I)$

Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$\mathfrak{R}_{\mathbf{x}}(\mathbf{J}) = \max(a \in \mathbb{Z} : \beta_{i,(a+i,b)}(J) \text{ for some } i, b \in \mathbb{Z})$$

 $\mathfrak{R}_{\mathbf{y}}(\mathbf{J}) = \max(b \in \mathbb{Z} : \beta_{i,(a,b+i)}(J) \text{ for some } i, a \in \mathbb{Z})$

For GRevLex order, $\Re_x(\operatorname{bigin}(I))$ and $\Re_y(\operatorname{bigin}(I))$ bound GB of I.



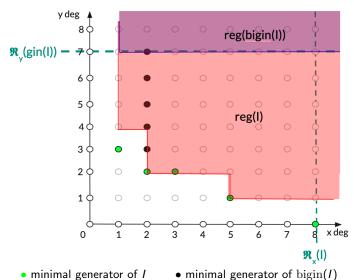
Betti of I and GB [Römmer '01]

[Itommer 01]

If GREVLEX st
$$x_0 < \cdots < x_n < y_0 < \cdots < y_m$$
, $\mathfrak{R}_x(I) = \mathfrak{R}_x(\operatorname{bigin}(I))$, $\mathfrak{R}_y(I) \neq \mathfrak{R}_y(\operatorname{bigin}(I))$.

- minimal generator of I
- minimal generator of bigin(1)

If GREVLEX st $x_0 < \cdots < x_n < y_0 < \cdots < y_m$



Matías BENDER

Geometry ↔ Computations: x-regularity and GB

Definition of x-regularity

Consider bihomogeneous I. The $\operatorname{x-reg}(I)$ is the region of bi-degrees $(a,b) \in \mathbb{Z}^2$ st for every $i \geq 1$ and $(a',b') \geq (a-i+1,b)$, $H^i_{\mathfrak{m}_x}(I)_{(a',b')} = 0$.

Geometry \leftrightarrow Computations: x-regularity and GB

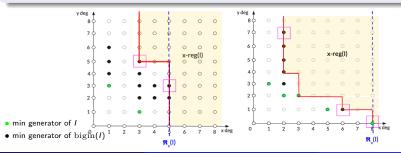
Definition of x-regularity

Consider bihomogeneous I. The x-reg(I) is the region of bi-degrees $(a,b) \in \mathbb{Z}^2$ st for every $i \geq 1$ and $(a',b') \geq (a-i+1,b)$, $H^i_{m_x}(I)_{(a',b')} = 0$.

Relation between GB and x-reg

[B.-Busé-Checa-Tsigaridas '24+]

Consider bihomogeneous I and GREVLEX st $x_0 < \cdots < x_n < y_0 < \cdots < y_m$. If $(a,b) \in x\text{-reg}(I)$ and $a \ge 0$, then



Geometry ↔ Computations: x-regularity and GB

Definition of x-regularity

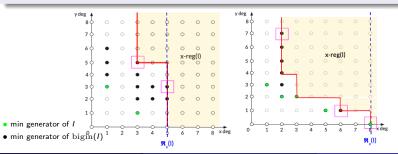
Consider bihomogeneous I. The x-reg(I) is the region of bi-degrees $(a,b) \in \mathbb{Z}^2$ st for every $i \geq 1$ and $(a',b') \geq (a-i+1,b)$, $H^i_{\mathfrak{m}_x}(I)_{(a',b')} = 0$.

Relation between GB and x-reg

[B.-Busé-Checa-Tsigaridas '24+]

Consider bihomogeneous I and GREVLEX st $x_0 < \cdots < x_n < y_0 < \cdots < y_m$. If $(a,b) \in x\text{-reg}(I)$ and $a \ge 0$, then

• For every $(a',b') \ge (a+1,b)$, there is no generator of $\operatorname{bigin}(I)$ of degree (a',b').



Geometry \leftrightarrow Computations: x-regularity and GB

Definition of x-regularity

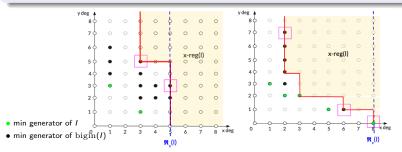
Consider bihomogeneous *I*. The x-reg(*I*) is the region of bi-degrees $(a, b) \in \mathbb{Z}^2$ st for every $i \geq 1$ and $(a', b') \geq (a - i + 1, b)$, $H_{\mathfrak{m}_{x}}^{i}(I)_{(a', b')} = 0$.

Relation between GB and x-reg

[B.-Busé-Checa-Tsigaridas '24+]

Consider bihomogeneous I and GREVLEX st $x_0 < \cdots < x_n < y_0 < \cdots < y_m$. If $(a, b) \in x\text{-reg}(I)$ and $a \ge 0$, then

- For every (a', b') > (a+1, b), there is no generator of bigin(1) of degree (a', b').
- If $a \ge 1$ and $(a-1,b) \notin x\text{-reg}(I)$, exists $b' \le b$ and a min gen of $\operatorname{bigin}(I)$ of $\operatorname{deg}(a,b')$.



Geometry ↔ Computations: GB and CM regularity

Relation x-reg and multigraded CM reg

[Chardin-Holanda '22]

There is $0 \le s \le n$ st, for every $(a, b) \in reg(I)$, $(a + s, b) \in x-reg(I)$.

Geometry ↔ Computations: GB and CM regularity

Relation x-reg and multigraded CM reg

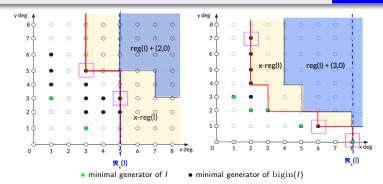
[Chardin-Holanda '22]

There is $0 \le s \le n$ st, for every $(a, b) \in reg(I)$, $(a + s, b) \in x-reg(I)$.

Corollary

[B.-Busé-Checa-Tsigaridas '24+]

Fix GREVLEX st $x_0 < \cdots < x_n < y_0 < \cdots < y_m$. There is $1 \le s < n+1$ st, if $(a,b) \in \operatorname{reg}(I)$, then there is no generator of $\operatorname{bigin}(I)$ of degree $\ge (a+s,b)$.



Geometry ↔ Computations: Extra comments

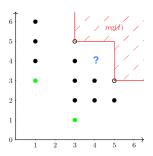
• The results holds for multihomogeneous systems, not only bihomog.

Geometry ↔ Computations: Extra comments

- The results holds for multihomogeneous systems, not only bihomog.
- We do not need generic coordinates wrt every block of variables, only generic coordinates wrt to smallest block (i.e., x_i 's).

$\overline{\text{Geometry}} \leftrightarrow \overline{\text{Computations: Extra comments}}$

- The results holds for multihomogeneous systems, not only bihomog.
- We do not need generic coordinates wrt every block of variables, only generic coordinates wrt to smallest block (i.e., x_i 's).
- It is not clear how to get tight bounds in terms of regularity.



Summing-up

What was known

- In homogeneous setting:
 - Hardness of GB computation = Castelnuovo-Mumford regularity
- In multihomogeneous setting
 - Different notions of Castelnuovo-Mumford regularity
 - No relation with known bounds for degrees in GB

Results

- ullet New region x-reg(I) where there are not elements in the GB of I
- Near boundary of x-reg(I), there are elements in GB of I
- We relate CM regularity of I with its GB

Questions

- Tighter bound between GB and CM regularity
- Better bound for GB using other invariants of I
- Criterion for multigraded reg. à la Bayer&Stillman

Summing-up

What was known

- In homogeneous setting:
 - Hardness of GB computation = Castelnuovo-Mumford regularity
- In multihomogeneous setting
 - Different notions of Castelnuovo-Mumford regularity
 - No relation with known bounds for degrees in GB

Results

- ullet New region x-reg(1) where there are not elements in the GB of 1
- Near boundary of x-reg(I), there are elements in GB of I
- We relate CM regularity of I with its GB

Questions

- Tighter bound between GB and CM regularity
- Better bound for GB using other invariants of I
- Criterion for multigraded reg. à la Bayer&Stillman

Thank you!