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Computer-assisted proofs / a posteriori validation

» Objective: prove quantitative theorems about some specific solutions of
a given ODE or PDE, using numerical simulations.
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Computer-assisted proofs / a posteriori validation

» Objective: prove quantitative theorems about some specific solutions of
a given ODE or PDE, using numerical simulations.

steady states

periodic orbits

eigenvalues/eigenfunctions

invariant manifolds

connecting orbits

traveling waves

» Starting from a numerical approximation, we prove the existence of an
exact solution nearby.

» Such computer-assisted approaches use ideas going back to [Lanford '82;
Nakao '88; Plum '90; ...].

» Possible motivation: prove theorems that cannot be proven by “classical”
pen-and-paper methods.

» Alternate viewpoint: these computer-assisted techniques can be seen as
a way to guarantee/certify the output of some numerical simulations.
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© A simple example
© Validated integration of ODEs using Chebyshev series

© Alternate strategy
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© A simple example
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Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: xp+1 = uxp(1 — xp).
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more complex when p gets close to 47
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» How to characterize the observed dynamics, which becomes more and
more complex when p gets close to 4?7 Notion of chaos.

Theorem [Sharkovsky '64, Li York '75]

“The existence of a period 3 orbit implies chaos”
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Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: xp+1 = uxp(1 — xp).
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» How to characterize the observed dynamics, which becomes more and
more complex when p gets close to 4?7 Notion of chaos.

Theorem [Sharkovsky '64, Li York '75]

“The existence of a period 3 orbit implies chaos”

» For a given value of u, how can we prove the existence of a period 3
orbit, in order to apply the above theorem?
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On the hunt for period 3 orbits

Xn+1l = an(l - Xn)
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On the hunt for period 3 orbits

Xp1 = pXn(1 — Xn)

» We start by looking numerically for a period 3 orbit.
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On the hunt for period 3 orbits

Xp1 = pXn(1 — Xn)

» We start by looking numerically for a period 3 orbit.

» To do so, we can consider the map F : R3 — R3 defined by

uxo(1 — x0) — x1
F(X07X17X2): /.LX]_(].—X]_)—X2
ux2(1 — x2) — xo

If we manage to find a zero of F (such that xp # x1 # x2), we then have
a period 3 orbit.
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such that F(X) =~ 0.
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On the hunt for period 3 orbits

Xp1 = pXn(1 — Xn)

» We start by looking numerically for a period 3 orbit.

» To do so, we can consider the map F : R3 — R3 defined by

uxo(1 — x0) — x1
F(X07X17X2): /.LXl(l—X]_)—X2
ux2(1 — x2) — xo

If we manage to find a zero of F (such that xp # x1 # x2), we then have
a period 3 orbit.

» Numerically, it is easy to find an “approximate solution” X = (Xp, X1, X2)

such that F(X) =~ 0.
» How to rigorously prove the existence of this zero of F?

Maxime Breden Computer-assisted proofs MAX team seminar



F:R®=R> F(X)=0.
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F:R®=R> F(X)=0.

» We want to prove a posteriori the existence of a zero of F close to X.
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F:R®=R> F(X)=0.

» We want to prove a posteriori the existence of a zero of F close to X.

Theorem (a la Newton-Kantorovich)
Let €, K, L > 0 such that
IE)I < e
IDF(X)~1 <
IDF(X) = DF(X)| < LIX = X|| ¥ X € R°.

If _ 1
2K2L’
then F has a unique zero X* satisfying || X* —

Y _ 1—V1-2K2L
Xl = rr= =07
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F:R®=R> F(X)=0.

» We want to prove a posteriori the existence of a zero of F close to X.

Theorem (a la Newton-Kantorovich)
Let €, K, L > 0 such that
IE)I < e
IDF(X)~1 <
IDF(X) = DF(X)| < LIX = X|| ¥ X € R°.

If _ 1
2K2L’
then F has a unique zero X* satisfying || X* —

)_<|| <r r= 1I=vi= 2/@2L5

kL )

Proof : T: X — X — DF(X)~F(X) is a contraction on the closed ball of
center X and radius r.

Maxime Breden Computer-assisted proofs MAX team seminar



A frightening example

» Can we really trust floating-point arithmetic?
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A frightening example

» Can we really trust floating-point arithmetic?

» Consider the following expression [Rump '94]
g(a, b) = 333.75b5 + a2(11a26% — b® — 121b% — 2) + 5.55° + %,

evaluated for a = 77617 and b = 33096, with various precisions.
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» Can we really trust floating-point arithmetic?

» Consider the following expression [Rump '94]
g(a, b) = 333.75b5 + a2(11a26% — b® — 121b% — 2) + 5.55° + %,

evaluated for a = 77617 and b = 33096, with various precisions.

» We have to be wary of round-off errors, especially if we claim to have
proven a theorem based on some numerical computations!
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A frightening example

» Can we really trust floating-point arithmetic?

» Consider the following expression [Rump '94]

g(a, b) = 333.75b5 + a2(11a26% — b® — 121b% — 2) + 5.55° + %,

evaluated for a = 77617 and b = 33096, with various precisions.

» We have to be wary of round-off errors, especially if we claim to have
proven a theorem based on some numerical computations!

» In our “proof” of existence of a period 3 orbit, how can we be certain

that the quantity € that we numerically evaluated really bounds ||F(X)]|,
or that e < ﬁ?

Maxime Breden Computer-assisted proofs MAX team seminar



Calling interval arithmetic to the rescue
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-
sion, and
V,A:R—=TF,

the round-down and round-up operators.
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-

sion, and
V,A:R—=TF,

the round-down and round-up operators.

» Example: consider x = 0.1. In base 2, x writes
x =(1.1001100110011001100...), X 274,
With 8 bits of precision (for the mantissa), we have

v(x) = (1.1001100), x 2=* and A (x) = (1.1001101), x 27*.
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-

sion, and
V,A:R—=TF,

the round-down and round-up operators.

» Instead of using floats, we now represent each real number by an interval
which contains it:

xeR —  [x]:=[v(x), AX)].
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-

sion, and
V,A:R—=TF,

the round-down and round-up operators.

» Instead of using floats, we now represent each real number by an interval
which contains it:

xeR —  [x]:=[v(x), AX)].

» On can then extend the elementary operations (4, —, X, +) to intervals,
in such a way that the result always contain the true value:

x+y = X[+
where [+] is defined as follows

X1 [+ ] = [V (V) + (), A(AK) + A))]-
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-

sion, and
V,A:R—=TF,

the round-down and round-up operators.

» Instead of using floats, we now represent each real number by an interval
which contains it:

xeR —  [x]:=[v(x), AX)].

» On can then extend the elementary operations (4, —, X, +) to intervals,
in such a way that the result always contain the true value:

x+y = X[+
where [+] is defined as follows (doable in practice, IEEE 754 standard)

X1 [+ ] = [V (V) + (), A(AK) + A))]-
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Calling interval arithmetic to the rescue

> Let IF bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-

sion, and
V,A:R—=TF,

the round-down and round-up operators.

» Instead of using floats, we now represent each real number by an interval
which contains it:

xeR —  [x]:=[v(x), AX)].

» On can then extend the elementary operations (4, —, X, +) to intervals,
in such a way that the result always contain the true value:

x+y — X[+
where [+] is defined as follows (doable in practice, IEEE 754 standard)
X [+ ] = [V (V) + V() » A (AX) + AW)]-
» We then have x + y € [x] [+] [y].
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A computer-assisted proof a chaos, summary

Xn+1 = f1xn(1 = Xn)
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Xn+1 = f1xn(1 = Xn)

@ We reformulate the search of a period 3 orbit as a zero-finding problem
F(X)=0.
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A computer-assisted proof a chaos, summary

Xn+1 = f1xn(1 = Xn)

@ We reformulate the search of a period 3 orbit as a zero-finding problem
F(X)=0.

@ We numerically find an approximate solution.
© We estimate a posteriori
IFCON, IDFX)7Y| and  [|D*F(X)],

and do so rigorously using interval arithmetic.
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A computer-assisted proof a chaos, summary

Xn+1 = f1xn(1 = Xn)

@ We reformulate the search of a period 3 orbit as a zero-finding problem
F(X)=0.

@ We numerically find an approximate solution.
© We estimate a posteriori
IFGOIl, IDF(X)™| and [ D2F(X)],
and do so rigorously using interval arithmetic.
@ We use these estimates to prove that
T:X— X—DF(X)"1F(X)

is a contraction on a small neighborhood of X.
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© Validated integration of ODEs using Chebyshev series
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How to use these ideas in a broader context?
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How to use these ideas in a broader context?

@ Reformulate the problem we are interested in (ODE, PDE, etc) in the
form F(X) = 0.
» Several possible choices for F.
» We also need to chose a Banach space X, and in particular a norm.
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How to use these ideas in a broader context?

@ Reformulate the problem we are interested in (ODE, PDE, etc) in the
form F(X) = 0.
» Several possible choices for F.
» We also need to chose a Banach space X, and in particular a norm.

@ Find numerically an approximate zero X.

» Choice of discretization method, of a finite dimensional space X}, in
which we look for the approximate solution.
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How to use these ideas in a broader context?

@ Reformulate the problem we are interested in (ODE, PDE, etc) in the
form F(X) = 0.
» Several possible choices for F.
» We also need to chose a Banach space X, and in particular a norm.

@ Find numerically an approximate zero X.

» Choice of discretization method, of a finite dimensional space X}, in
which we look for the approximate solution.

© Estimate a posteriori

IFCGON, IDF(X)7H| and  [ID?F(X)].
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How to use these ideas in a broader context?

@ Reformulate the problem we are interested in (ODE, PDE, etc) in the
form F(X) = 0.
» Several possible choices for F.
» We also need to chose a Banach space X, and in particular a norm.

@ Find numerically an approximate zero X.

» Choice of discretization method, of a finite dimensional space X}, in
which we look for the approximate solution.

© Estimate a posteriori
IFCON, IDFX) Y| and  [|D*F(X)].

» The main difficulty lies in controlling ||DF (X)~||.
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A new validation criteria

Theorem a la Newton-Kantorovich bis
Let €,%, L, > 0 such that

IFX)II < e, Al <&, [DF(X) = DF(X)|| < LIX = X],

|l — ADF(X)|| < 6 < 1.

(1-0)°

< =57
© 2Kk2L

- )_<” <r r= 1767\/(1—6)272:@%-

rlL

then F has a unique zero X* satisfying || X*
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A new validation criteria

Theorem a la Newton-Kantorovich bis
Let €,%, L, > 0 such that

IFX)II < e, Al <&, [DF(X) = DF(X)|| < LIX = X],

|l — ADF(X)|| < 6 < 1.

(1-0)°

< =57
© 2Kk2L

- )_<” <r r= 1767\/(1—6)272:@%-

rlL

then F has a unique zero X* satisfying || X*

> An equivalent way to interpret this strategy is to say that we replace the
former fixed-point operator T : x + x — DF(X)"1F(x) by

T :x— x — AF(x).
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Setting for validated integration of ODEs

{u’(t) = f(u(t)) t €10,27]
u(0) = u™

with f : RY — R9 smooth and 7 > 0 fixed.
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Setting for validated integration of ODEs

{u’(t) = f(u(t)) t €10,27]
u(0) = u™

with f : RY — R9 smooth and 7 > 0 fixed.

» Goal: given an approximate solution @ : [0,27] — RY, prove that the
exact solution v satisfies |u — u|| < r for some explicit r.
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Setting for validated integration of ODEs

{u’(t) = f(u(t)) t €10,27]
u(0) = u™

with f : RY — R9 smooth and 7 > 0 fixed.

» Goal: given an approximate solution @ : [0,27] — RY, prove that the
exact solution v satisfies |u — u|| < r for some explicit r.

» Main idea for the zero-finding problem:

F(u)(t) = u(t) — <u"" + /0 t f(u(s))ds> .
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Setting for validated integration of ODEs

{u’(t) = f(u(t)) t €10,27]
u(0) = u™

with f : RY — R9 smooth and 7 > 0 fixed.

» Goal: given an approximate solution @ : [0,27] — RY, prove that the
exact solution v satisfies |u — u|| < r for some explicit r.

> Main idea for the zero-finding problem:

F(u)(t) = u(t) — <u"" + /0 t f(u(s))ds> .
> Key observation:

DF(@(R)(e) = h(6) — [ DF(a(s))h(s)ds,

i.e., DF(u) is a compact perturbation of the identity.
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Chebyshev series

{ d(6) = 7f(u(t)  rel-11]
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Chebyshev series

{ U (t) = 7f(u(t)) te[-1,1]
u(—1) = u™m

» Look for the solution as a Chebyshev series:

u(t) = up +2 i un Th(t), Thn(cos ) = cos(nd).
n=1
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Chebyshev series

{ J(t) = 7f(u(t)) te[-1,1]
u(—1) = u™

» Look for the solution as a Chebyshev series:
o
u(t) =up+2> unTa(t),  Ta(cos®) = cos(nb).
n=1

» The unknown is the sequence u = (up),sq of Chebyshev coefficients.
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Chebyshev series

U (t) = 7f(u(t)) te[-1,1]
u(—1) = u™
» Look for the solution as a Chebyshev series:

u(t) = up +2 i un Th(t), Thn(cos ) = cos(nd).
n=1

» The unknown is the sequence u = (up),sq of Chebyshev coefficients.

» By plugging the Chebyshev series ansatz into
i t
u(t) — (u'" b7 / f(u(s))ds) — 0,
-1

we obtain our F(u) = 0 problem.

Maxime Breden Computer-assisted proofs MAX team seminar



Chebyshev series

{ U (t) = 7f(u(t)) te[-1,1]
u(—1) = u™m

» Look for the solution as a Chebyshev series:
o
u(t) =up+2> unTa(t),  Ta(cos®) = cos(nb).
n=1

» The unknown is the sequence u = (up),sq of Chebyshev coefficients.
» By plugging the Chebyshev series ansatz into

u(t) — <u’" +r [ tl f(u(s))ds) o,

we obtain our F(u) = 0 problem.
» The approximate solution o is taken as a truncated Chebyshev series.
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Chebyshev series

{ J(t) = 7f(u(t)) te[-1,1]
u(—1) = u™

» Look for the solution as a Chebyshev series:
o
u(t) =up+2> unTa(t),  Ta(cos®) = cos(nb).
n=1

» The unknown is the sequence u = (up),sq of Chebyshev coefficients.
» By plugging the Chebyshev series ansatz into

u(t) — <u’" +r [ tl f(u(s))ds) o,

we obtain our F(u) = 0 problem.
» The approximate solution o is taken as a truncated Chebyshev series.
» We look for the exact solution in the space ¢ := {u, ||u], < <},

[oe)
ull, 3=|U0|+2Z|un|1/"7 v>1.
n=1
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Why Chebyshev series?

u(t) - (u"" + T/t f(u(s))ds) ~0.

-1
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).

» Easy formulation of the antiderivative allowing to “see” the compactness

1/ 1 1
To=z(——Th1———To1).
/ " 2(n+1 S ”1>
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).

» Easy formulation of the antiderivative allowing to “see” the compactness

1/ 1 1
To=z(——Th1———To1).
/ " 2(n+1 S ”1>

» Efficient computations of nonlinearities using the FFT.
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).

» Easy formulation of the antiderivative allowing to “see” the compactness

1/ 1 1
To=z(——Th1———To1).
/ " 2(n+1 S ”1>

» Efficient computations of nonlinearities using the FFT.
o Computing ||F(u)||, is rather straightforward.
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).

» Easy formulation of the antiderivative allowing to “see” the compactness

1/ 1 1
To=z(——Th1———To1).
/ " 2(n+1 S ”1>

» Efficient computations of nonlinearities using the FFT.
o Computing ||F(u)||, is rather straightforward.

» (1 is a Banach algebra: ||uxv|, < |lull,|v],.
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Why Chebyshev series?

u(t) - (u"" +r /_ tl f(u(s))ds) ~0.

» Excellent approximation properties (similar to Fourier series for periodic
functions).

» Easy formulation of the antiderivative allowing to “see” the compactness

1/ 1 1
To=z(——Th1———To1).
/ " 2(n+1 S ”1>

» Efficient computations of nonlinearities using the FFT.
o Computing ||F(u)||, is rather straightforward.

» (1 is a Banach algebra: ||uxv|, < |lull,|v],.
o Simplifies the estimation of ||D2F )|, for u in a neighborhood of .
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How to construct the approximate inverse A
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How to construct the approximate inverse A

DF (@) =
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How to construct the approximate inverse A

DF(u)

%
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How to construct the approximate inverse A
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Quality of this approximate inverse
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Quality of this approximate inverse

» Using this constructing, when keeping the first N Chebyshev modes in
the finite block, we get
oI @),

I — ADF(u)||, ~
[ @, ~
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Quality of this approximate inverse

» Using this constructing, when keeping the first N Chebyshev modes in
the finite block, we get

T IF @),

I — ADF(u)||, ~
[ @, ~

» Up to taking N large enough, we can therefore get ||/ — A DF(u)||, < 1,
and hope to apply the entire a posteriori validation procedure.
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Quality of this approximate inverse

» Using this constructing, when keeping the first N Chebyshev modes in
the finite block, we get

T IF @),

I — ADF(u)||, ~
[ @, ~

» Up to taking N large enough, we can therefore get ||/ — A DF(u)||, < 1,
and hope to apply the entire a posteriori validation procedure.

» [Lessard Reinhardt '14]
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main decomposition
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Domain decomposition

» It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0=y <y < ... <7y =T.
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Domain decomposition

» It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0=y <y < ... <7y =T.
» We then look for u = (¢, u® ... uM) so that each u(™ solves the

equation on [Tm—1, Tm]:
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Domain decomposition

» It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0=y <y < ... <7y =T.

» We then look for u = (¢, u® ... uM) so that each u(™ solves the
equation on [Tm—1, Tm]:

uukt)—-<d”+:étf(M1Ks»ds)
u@Mt)-<u“0@1)+»lff(w2ks»ds)

v T1

0 tG[O,Tl],

0 t e [7’1,7’2]7

uM(t) — (W1WM1+/ <Mm)>=o t € [rm_t, 7.
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Domain decomposition

» It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0=y <y < ... <7y =T.

» We then look for u = (¢, u® ... uM) so that each u(™ solves the
equation on [Tm—1, Tm]:

O (t) — <u"" + /O t f(u(l)(s))ds)
() — <u(1)(7'1) + / t f(u(z)(s))ds)

v T1

0 tG[O,Tl],

0 t e [7’1,7’2]7

uM(t) — ( (M=) (74,_1) +/ (u™ (s))ds) =0 te [T

» Each u(™ is then represented by a Chebyshev series, and this leads to a
big F(u) = 0 problem.
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Domain decomposition

» It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0=y <y < ... <7y =T.

» We then look for u = (¢, u® ... uM) so that each u(™ solves the
equation on [Tm—1, Tm]:

O (t) — <u"" + /O t f(u(l)(s))ds)
() — <u(1)(7'1) + / t f(u(z)(s))ds)

v T1

0 tG[O,Tl],

0 t e [7’1,7’2]7

uM(t) — ( (M=) (74,_1) +/ (u™ (s))ds) =0 te [T

» Each u(™ is then represented by a Chebyshev series, and this leads to a
big F(u) = 0 problem.
» [van den Berg Sheombarsing '21]
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Some examples from [van den Berg Sheombarsing '21]

x'=10(x — y)
y' =28x —y — xz
7 =-8z/3+xy

Integration time 7 & 25
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Some examples from [van den Berg Sheombarsing '21]

25 —

20 —

x'=10(x — y)
y =28x —y —xz " "]
7 =-8z/3+xy 5

Integration time 7 = 100
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Some examples from [van den Berg Sheombarsing '21]

25

220

x'=10(x — y)
y' =28x —y — xz T k
7 =-8z/3+xy °

Integration time 7 = 100
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Some related works
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Some related works

» Chebyshev methods for linear ODEs, with special emphasis on studying
and potentially reducing computational complexity [Benoit Joldes Mez-
zarobba '17; Brehard Brisebarre Joldes '18; Brehard '21].
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Some related works

» Chebyshev methods for linear ODEs, with special emphasis on studying
and potentially reducing computational complexity [Benoit Joldes Mez-
zarobba '17; Brehard Brisebarre Joldes '18; Brehard '21].

» Many other methods, some of which are more in the spirit of tradi-

tional numerical methods for ODEs. A particularly successful one is the
CAPD::DynSys library [Kapela Mrozek Wilczak Zgliczynski '21].
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© Alternate strategy
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A different fixed point reformulation

t €[0,7]
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A different fixed point reformulation

{u/(t) = f.(u(t)) t €[0,7]

» We started by converting the equation into an F(u) = 0 problem:

F(u)(t) = u(t) — <u"" 4 /0 t f(u(s))ds) ,

and then into a fixed point problem T(u) = u— AF(u).
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A different fixed point reformulation

{u/(t) = f.(u(t)) t €[0,7]

» We started by converting the equation into an F(u) = 0 problem:

F(u)(t) = u(t) - <u"" + t f(u(s))ds) ,
and then into a fixed point problem T(u) = u— AF(u).

» One could also directly get a fixed point problem:

T(u)(t) = u + /o " F(u(s))ds.
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A different fixed point reformulation

{u/(t) = f.(u(t)) t €[0,7]

» We started by converting the equation into an F(u) = 0 problem:

F(u)(t) = u(t) — <u"" 4 /0 t f(u(s))ds) ,
and then into a fixed point problem T(u) = u— AF(u).
» One could also directly get a fixed point problem:
Fu)(t) = u" + /0 " Fu(s))ds.

» T has no reason to be contracting near u, except for 7 small.
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A different fixed point reformulation

{u’(t) - L.u(t) = f(u(t)) — Lu(t) te][0,7]
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A different fixed point reformulation

{u’(t) — Lu(t) = f(u(t)) — Lu(t) te€0,7]
u(0) = u™

» Using Duhamel’s principle/the variation of constants formula, we get

F(u)(t) = et m+/ et =)L (f(u(s)) — Lu(s))ds.
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A different fixed point reformulation

{u’(t) — Lu(t) = f(u(t)) — Lu(t) te€0,7]
u(0) = u™

» Using Duhamel’s principle/the variation of constants formula, we get

F(u)(t) = et m+/ et =)L (f(u(s)) — Lu(s))ds.

» Looking at the derivative of T at &

BT = [ el (DF(a(s)) — L) h(s)ds.

0
we see that T should be contracting if L ~ Df(@(s)).
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A different fixed point reformulation

{u’(t) — Lu(t) = f(u(t)) — Lu(t) te€0,7]
u(0) = u™

» Using Duhamel’s principle/the variation of constants formula, we get

F(u)(t) = et m+/ et =)L (f(u(s)) — Lu(s))ds.

» Looking at the derivative of T at &

BT = [ el (DF(a(s)) — L) h(s)ds.

0
we see that T should be contracting if L ~ Df(@(s)).

» We again split the time interval 0 = 19 < 71 < ... < Ty = 7, and take
a different approximation on each smaller subinterval:
L( ™ Df( (m))( )7 se [TmaTerl]-
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Application to parabolic PDEs 1: Fisher-KPP

ou  0%u
E_ﬁ"i_u(l_u) (t7X)6(0a4]XT4TF7
u(0,) = u™.
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: Swift-Hohenberg
Application to parabolic PDEs 2: Swift-Ho
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u(0,-) = u".
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Application to parabolic PDEs 2: Swift-Hohenberg

2 2
‘;‘t’ __ (({i@—i—l) UA5u—1®  (t,x) € (0,15] x Tey,
u(0,-) = u™.

17— ul] < 4e7° \

3 N =30
0 K:S
M =100
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THANK YOU FOR YOUR ATTENTION!
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