
Using Algebraic Geometry for Solving Differential
Equations

Sebastian Falkensteiner

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany

March 20th, 2023



Overview

1 Motivation

2 Preliminaries
Differential algebra
Algebraic structures

3 First order autonomous AODEs
Rational solutions
Formal Puiseux series solutions
Algebraic solutions

4 Systems of dimension one
(Differential) elimination

5 Further results

6 Open problems

S. Falkensteiner (MPI Leipzig) The algebraic-geometric approach March 20th, 2023 2 / 37



Motivation

Assume that you want to solve the following differential equations, how
would you proceed?

20y3 + y2 + 20y y ′ − 25y ′2 + y ′ = 0

{−8y ′3 + 27y = 0, z5 − y3 = 0,−5z4z ′ + 3y2y ′ = 0}
√
x y ′′ − y3/2 = 0

4y2 + 2y − y ′2 − exp(2x) = 0

It highly depends on the solution space you are working with.
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Differential algebra

Let K be a field of characteristic zero, R be a differential ring and

R{y1, . . . , yn} = R[y1, y
′
1, y

′′
1 , . . . , yn, y

′
n, y

′′
n , . . .]

be the ring of differential polynomials in the differential indeterminates
y1, . . . , yn with coefficients in R.

Given F ∈ R{y1, . . . , yn}, we define the
order of F in yi as the highest occurring derivative of yi in F .
We define for a finite set of differential polynomials

S = {F1 = 0, . . . ,FM = 0} ⊂ R{y1, . . . , yn} (1)

the corresponding algebraic set as

VK (S) = {a ∈ Km+n | F1(a) = · · · = FM(a) = 0}

where m = m1 + · · ·+mn and mi is the order of S in yi and K ⊂ R is a
field.
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The corresponding algebraic set VR(S) of the following system defines a
space curve.

S = {−8y ′3 + 27y = 0, z5 − y3 = 0,−5z4z ′ + 3y2y ′ = 0}.
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Algebraic structures

K (x) ... rational functions

K [[x ]] ... formal power series

K ((x)) = K [[x ]][x−1] ... formal Laurent series

K{{x}} ... algebraic functions, i.e. y(x) such that Q(x , y(x)) = 0 for a
Q ∈ K [x , y ] \ K [x ]

K ⟨⟨x⟩⟩ =
⋃

n∈N∗ K ((x1/n)) ... formal Puiseux series (expanded around
zero)

Observe that
K (x) ⊂ K{{x}} ⊂ K ⟨⟨x⟩⟩.

Let y(x) ∈ K ((x1/n)) be such that there is no m | n and
y(x) ∈ K ((x1/m)). Then n is called the ramification index of y(x).
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Algebraic structures

√
x + 1

3√
x5

... algebraic function (seen as formal Puiseux series:

ramification index 6 and order −3/5)∑
i≥1

1
i x

i/6 ... formal Puiseux series with ramification index 6, order 1/6∑
i∈Z x

i ... is not a formal Puiseux series∑
i≥1 x

1/i ... is not a formal Puiseux series

Puiseux’s theorem

Let F ∈ C(x)[y ]. Then every solution y(x) of F (y) = 0 is a formal
Puiseux series and convergent.

Moreover, all solutions can be computed (via the Newton-polygon
method).
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Main goal

Given: F ∈ Q[y , y ′] (or S ⊂ Q{y1, . . . , yn} of dimension one).

Goal: Find the rational / algebraic / formal Puiseux series solutions of
F (y , y ′) = 0 (or S) and analyze the following properties:

Existence and uniqueness of solutions.

Convergence.

Necessary field extensions.
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First order autonomous AODEs

Consider first order algebraic ordinary differential equations (AODEs) with
constant coefficients, i.e.

F (y , y ′) = 0, (2)

with F ∈ Q[y , y ′].

For a non-constant solution y(x) of F (y , y ′) = 0, the pair (y(t), y ′(t)), or
(y(tn), d

dt y(t
n)) in case of formal Puiseux series, is a parametrization of

the corresponding plane curve VC(F ), called a solution parametrization.

Necessary condition

Let K ∈ {Q,R,C}. A necessary condition on the existence of a
non-constant rational solution in K (x) (or formal Puiseux series solution in
K ⟨⟨x⟩⟩) is that VK (F ) is not finite and admits a rational (local)
parametrization.
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Rational solutions

It is well-known that a curve VC(F ) admits a (bi-)rational parametrization
P(t) iff it is of genus zero. In the affirmative case, we can compute
P(t) ∈ K (t)2 in an optimal field K ⊂ C.

Theorem [R. Feng, X.S. Gao; 2004]

Assume that VC(F ) has a birational parametrization
P(t) = (p(t), q(t)) ∈ K (t)2. Then F (y , y ′) = 0 has a (non-constant)
rational solution iff

q(t) = a p′(t) or q(t) = a p′(t) · (t − b)2

for some a, b ∈ K , a ̸= 0. In the affirmative case, p(a x + c) or
p(b − 1

a x+c ) defines all rational solutions and they are in K (x).
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Example

Consider

F (y , y ′) = 20y3 + y2 + 20y y ′ − 25y ′2 + y ′ = 0.
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The corresponding curve VC(F ) has the rational parametrization

(p(t), q(t)) =

(
(1 + 6 t) t

(t + 1)2
,−(1 + 11 t) t2

(t + 1)3

)
∈ Q(t)2.

Since q(t) = −p′(t) t2, we obtain the solutions

y(x) = p( 1
x−c ) =

x − c + 6

(x − c + 1)2
∈ Q(c, x).
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Places

Local parametrizations of the plane curve VC(F ) exist around every curve
point (y0, p0) ∈ C2

∞. Let P(t),Q(t) ∈ C((t))2 be such local
parametrizations. The relation

P(t) ∼ Q(t) iff P(s(t)) = Q(t) for some s(t) ∈ C[[t]], ordt(s(t)) = 1

is an equivalence relation such that P(0) = Q(0). The equivalence classes
of irreducible local parametrizations are called places, centered at the
common curve-point P(0). Places can be seen as the algebraic
counterpart to branches.
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Necessary and sufficient condition

Let [(p(t), q(t))] be a place containing a solution parametrization
(y(tn), d

dt y(t
n)) ∈ K ((t))2. Then

m = ordt(p
′(t))− ordt(q(t)) + 1 > 0. (3)

Note that (3) is independent of the representative of the place.

Key Theorem [J. Cano, J.R. Sendra, F.; 2019]

Let P be a place of VC(F ). Then P contains a solution parametrization if
and only if (3) holds for m ∈ N∗.
In the affirmative case, there are exactly m solution parametrizations in P.
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Implicit function theorem

Implicit function theorem

Let (y0, p0) ∈ VK (F ) be a finite point such that ∂F
∂y ′ (y0, p0) ̸= 0 and

p0 ̸= 0. Then there is a unique formal power series solution y(x) ∈ K [[x ]]
of F (y , y ′) = 0.

If the implicit function theorem is applicable, then (3) is fulfilled with
m = 1.

We call the exceptional curve points

VK (F ) ∩
(
VK (

∂F

∂y ′
) ∪ VK (y

′) ∪ VK (lcy ′(F ))

)
where the implicit function theorem does not hold critical points.
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Algorithm

Algorithm arising from the proof of Theorem 1

Given F ∈ Q[y , y ′] irreducible.

1) Compute a generic power series solution (by the implicit function
theorem).

2) Compute the critical points (y0, p0) ∈ VC(F ).

3) For every critical point compute a representative (p(t), q(t)) of every
place at (y0, p0) and determine m.

4) Take s(t) = s1t + s2t
2 + · · · with si undetermined and compute them

from
p′(s(t)) s ′(t) = m tm−1 q(s(t)). (4)

Equation (4) is called the associated differential equation and can be
solved for example with the Newton-polygon method for differential
equations. Note that in every step we can ensure convergence.

S. Falkensteiner (MPI Leipzig) The algebraic-geometric approach March 20th, 2023 16 / 37



Algorithm

Algorithm arising from the proof of Theorem 1

Given F ∈ Q[y , y ′] irreducible.

1) Compute a generic power series solution (by the implicit function
theorem).

2) Compute the critical points (y0, p0) ∈ VC(F ).

3) For every critical point compute a representative (p(t), q(t)) of every
place at (y0, p0) and determine m.

4) Take s(t) = s1t + s2t
2 + · · · with si undetermined and compute them

from
p′(s(t)) s ′(t) = m tm−1 q(s(t)). (4)

Equation (4) is called the associated differential equation and can be
solved for example with the Newton-polygon method for differential
equations. Note that in every step we can ensure convergence.

S. Falkensteiner (MPI Leipzig) The algebraic-geometric approach March 20th, 2023 16 / 37



Results

Theorem 1 (Convergence)

Let F ∈ Q[y , y ′]∗. Then all formal Puiseux series solutions y(x) of
F (y , y ′) = 0, expanded around a finite point or infinity, are convergent.

Theorem 2 (Existence, Uniqueness)

Let N = 2(degy ′(F )− 1) degy (F ) + 1 and φ(x) ∈ C[x1/n, x−1/n] be a
truncated solution of F (y , y ′) = 0, where the first N terms are computed.
Then there exists exactly one y(x) ∈ C⟨⟨x⟩⟩ with F (y , y ′) = 0 extending
φ(x).
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Puiseux series solutions with real / rational coefficients

Places can be represented by a local parametrization of the form
(α tn, q(t)) ∈ K ((t))2 with coefficients in an optimal field K ⊂ C, called
rational Puiseux parametrizations.

Necessary condition

Let K ∈ {Q,R}. If y(x) ∈ K ((xn)) is a solution of F (y , y ′) = 0, then the
rational Puiseux parametrization (p(t), q(t)) of the place
[(y(tn), d

dt (y(t
n)))] has coefficients in K .

Recall that every non-constant solution is of the form y(x) = p(s(x1/n)).
If (p(t) = α tn, q(t)) ∈ K ((t))2 is a rational Puiseux parametrization, then
y(x) ∈ K (s1)((x

1/n)) with sn1 = n q1
p1

∈ K . Hence, after computing s1, we
know whether y(x) has coefficients in K ∈ {Q,R}.
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Example

Consider F (y , y ′) = ((y ′ − 1)2 + y2)3 − 4(y ′ − 1)2y2 = 0.
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The generic power series solution is given as y0 + p0 x +O(x2) with
(y0, p0) ∈ C2 and F (y0, p0) = 0 or, in case we are interested in solutions
with real / rational coefficients, by the topological graph of VC(F ).

The critical curve-points are

B = {(0, 1)} ∪
{
(α, 0) |α6 + 3α4 − α2 + 1 = 0

}
∪{(

4β
9 , γ

)
|β2 = 3, 27γ2 − 54γ + 19 = 0

}
• At c1 = (0, 1) there are 4 places defined by

(p(t), q(t)) = (2t2, 1 + 2t − 3t2

2 +O(t3)) suitable with m = 2

(−2t2, 1− 2t − 3t2

2 +O(t3)) suitable with m = 2

(t, 1 + t2

2 + 3t4

16 +O(t6)) suitable with m = 1

(t, 1− t2

2 − 3t4

16 +O(t6)) suitable with m = 1
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2 +O(t3)) suitable with m = 2

(−2t2, 1− 2t − 3t2

2 +O(t3)) suitable with m = 2

(t, 1 + t2

2 + 3t4

16 +O(t6)) suitable with m = 1

(t, 1− t2

2 − 3t4

16 +O(t6)) suitable with m = 1
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For (p(t), q(t)) the associated differential equation is

s(t) s ′(t) = t

(
1 + 2s(t)− 3s(t)2

2

)
with the solutions

s1(t) =
t√
2
+ t2

3 +
√
2t3

36 +O(t4),

s2(t) =
−t√
2
+ t2

3 −
√
2t3

36 +O(t4).

By considering all places at c1 we obtain
p(s1(x

1/2)) = x + 2
√
2x3/2

3 + x2

3 +O(x5/2),

p(s2(x
1/2)) = x − 2

√
2x3/2

3 + x2

3 +O(x5/2),

x + 2
√
2ix3/2

3 − x2

3 +O(x5/2), x − 2
√
2ix3/2

3 − x2

3 +O(x5/2),

x + x3

6 + 17x5

240 +O(x6), x − x3

6 + 17x5

240 +O(x6)


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• For cα = (α, 0) we obtain the rational Puiseux parametrizations(
α+ t,

(
11

19
α5 +

36

19
α3 +

4

19
α

)
t +O(t2)

)
,

which are not suitable.

• Let cβ,γ =
(
4β
9 , γ

)
, where β2 = 3, and 27γ2 − 54γ + 19 = 0. Then

the places represented by(
4β

9
− t2, γ −

4
√
27

3
t +O(t2)

)

are suitable with m = 2 leading to eight Puiseux series solutions given
by

4β
9 + γx ± 2

√
−γ β

3
√
3

x3/2 +
(
5γ
32 − 143

864

)
βx2 +O(x5/2).

where four are real ((β, γ) ∈ {(−
√
3, 1 + 2

√
6

9 ), (−
√
3, 1− 2

√
6

9 )}).
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Algebraic solutions

Theorem 3

Let F ∈ Q[y , y ′] be irreducible with a non-constant algebraic solution
y(x) ∈ C{{x}}. Then all non-constant formal Puiseux series solutions of
F (y , y ′) = 0 are algebraic over C(x).

Moreover, if Q(x , y) ∈ C[x , y ] is the minimal polynomial of y(x), then all
non-constant formal Puiseux series solutions are given by Q(x + c , y).

Based on this theorem, we just compute one (non-constant) formal
Puiseux series solution and check whether it is algebraic.
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Example

Consider F (y , y ′) = y4 + 3y ′ = 0 and the initial value (1,−1/3) ∈ VQ(F ).
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By the implicit function theorem, we obtain the formal power series
solution

y(x) = 1− x

3
+

2x2

9
− 14x3

81
+O(x4)

with the minimal polynomial Q(x , y) = x y3 − 1. All solutions, namely
z(x) = ζ

3√x+c
for ζ3 = 1, are then determined by Q(x + c , y).
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Simple systems

By using algebraic and differential reduction (here we use the Thomas
decomposition), differential systems S ⊂ Q{y1, . . . , yn} can be
decomposed into a finite collection of simple subsystems (Sk ,Uk)
representing a set of equalities

S = {G1 = 0, . . . ,GM = 0} ⊂ Q{y1, . . . , yn}

and inequalities

U = {U1 ̸= 0, . . . ,UN ̸= 0} ⊂ Q{y1, . . . , yn}.

The simple subsystems have as algebraic equations the same zeros as the
given system. In particular, the decompositions has the same solution set,
i.e.

SolC⟨⟨x⟩⟩(S) =
⋃̇

SolC⟨⟨x⟩⟩(Sk ,Uk).
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Simple systems

Simple systems have in particular the following properties:

• G1, . . . ,GM ,U1, . . . ,UN have pairwise distinct leading variables (they
are in triangular form);

• G1, . . . ,GM are pairwise differentially reduced and U1, . . . ,UN are
reduced with respect to the Gi ’s.

Systems S, where VC(S) is of dimension one, can be decomposed into
simple subsystems leading to constant solution components and to simple
subsystems of the form

G1(y1, y
′
1) = 0,

Gs(y1, y
′
1, y2, . . . , ys) = 0, s ∈ {2, . . . , n},

U(y1) ̸= 0,

(I)

where the leading variables (w.r.t. the ordering
y1 < y ′1 < · · · < yn < y ′n < · · · ) are lv(G1) = y ′1, lv(Gs) = ys and
U ∈ Q[y1] \ {0}.
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Results

Recalling that formal Puiseux series solutions of first order autonomous
AODEs are convergent, we obtain the following result.

Theorem 4 (Convergence)

Let S ⊂ Q{y1, . . . , yn} be such that VC(S) is of dimension one. Then
every component of a formal Puiseux series solution, expanded around a
finite point or at infinity, is convergent or can be chosen arbitrarily.
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Algebraic solutions

Computations with Puiseux series vectors are an algorithmically intricate
problem. For algebraic solutions, however, computations simplify.

For a
system of the type (I)

G1(y1, y
′
1) = 0,

Gs(y1, y
′
1, y2, . . . , ys) = 0, s ∈ {2, . . . , n},

U(y1) ̸= 0,

and a polynomial relation P1(x , y1) = 0 with P1 ∈ C[x , y1] and
lv(P1) = y1, we can again compute a decomposition into finitely many
algebraic simple subsystems of the type{

Gs(x , y1, . . . , ys) = 0, s ∈ {1, . . . , n}, (II)

where Gs ∈ K [x , y1, . . . , ys ] with lv(Gs) = ys .
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Algebraic solutions

Combining this observation with Theorem 3, we get:

Corollary

Let (S,U) be a simple system of the form (I) such that G1 ∈ C[y1, y ′1] is
irreducible with an algebraic solution

y1(x) ∈ C⟨⟨x⟩⟩ \ C.

Then all formal Puiseux series solutions of (S,U) are algebraic over C(x).

The description of the algebraic solutions can be done either as

• algebraic simple subsystems of the form (II), namely
{G1(x , y1) = 0, . . . ,Gn(x , y1, . . . , yn) = 0}; or

• the minimal polynomials {Q1(x , y1) = 0, . . . ,Qn(x , yn) = 0}.
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Summary

Algorithm arising from the proof of Theorem 4

Given S ⊂ Q{y1, . . . , yn} such that VC(S) is of dimension one.

1) Compute a Thomas decomposition of S.
2) For every simple subsystem involving no derivatives, there are only

constant solutions. For the simple subsystems (S̃, Ũ) of the type (I),
check whether G1(y1, y

′
1) has an algebraic solution y1(x) ∈ C⟨⟨x⟩⟩.

3) In the affirmative case, compute a Thomas decomposition of
(S̃ ∪ {Q1}, Ũ) where Q1 is the minimal polynomial of y1(x).

4) The algebraic solutions are then given as algebraic simple systems (or
can be expressed as a vector of minimal polynomials).
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{−8y ′3 + 27y = 0, z5 − y3 = 0,−5z4z ′ + 3y2y ′ = 0} (5)

is already a simple system.

The first equation has the algebraic solutions
y1(x) = x3/2, y2(x) = −x3/2 implicitly defined by

Q1(x , y) = y2 − x3.

The Thomas decomposition finds the algebraic simply subsystem

{Q1(x , y) = y2 − x3, G2(x , y , z) = z5 − x3 y}. (6)

The solutions of (5) and (6) are the same: Let
z1(x) = ζ x9/10, z2(x) = −ζ x9/10 with ζ5 = 1. Then (yi (x), zi (x)) is a
solution (but neither (y1(x), z2(x)) nor (y2(x), z1(x))).
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The algebraic simple system (6),

{Q1(x , y) = y2 − x3, G2(x , y , z) = z5 − x3 y},

leads to the vector of minimal polynomials

{Q1(x , y) = y2 − x3, Q2(x , z) = z10 − x9}. (7)

The system (7), however, has (y1(x), z2(x)) and (y2(x), z1(x)) as
solutions.
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Further results

A generalization to parametric differential equations F ∈ K [y , y ′]
where K = Q(a1, . . . , am) for some variables a1, . . . , am of the above
results is generically possible. For particular choices of ai or when the
ai are functions in x , generalizations are not straight-forward
anymore. In these cases, some results can still be recovered, but
connections to classical unsolved questions appear (e.g. Hilbert’s
irreducibility problem).

By using methods from algebraic geometry, we present a procedure
for transforming a given system of radical differential equations
S ⊂ Km(x) with a radical tower

K0 = C(y1, . . . , yn) ⊆ K1 ⊆ · · · ⊆ Km,

where Ki = Ki−1(δi ), δ
ei
i ∈ Ki−1 for some ei ∈ N, can be transformed

into a system of AODEs. Solutions are in one-to-one correspondence
and standard-techniques are applicable to the transformed system.
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Further results

In mathematical biology, one is interested in a representation of F in
terms of a dynamical system which gives a one-to-one relation
between solutions, so-called realizations.

The associated system of a
given F ∈ Q[y , y ′] is of the form s ′(t) = f (t, s(t)). If VC(F ) admits a
rational parametrization (p(t), q(t)) ∈ K (t)2, then f ∈ K (s). In this
case, a realization of F is given by{

s ′ = f (s),

y = p(s).
(8)

In the case of input-output equations F ∈ Q(u, u′)[y , y ′], finding a
rational parametrization over K (u, u′) is a necessary but not a
sufficient condition for finding a realization with f , p ∈ K (s, u). We
give an algorithm for deciding the existence of complex and real
realizations, i.e. when K ∈ {C,Q}.
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Open problems

For F (y , y ′) ∈ Q[y , y ′], we expect similar results (existence,
uniqueness and convergence) for more general type of solutions such
as transseries.

We conjecture that every formal Puiseux series solution of
F (y , y (r)) = 0 is convergent. A proof for r > 3 is missing.

Can we find all real solutions of systems S ⊂ Q{y1, . . . , yn} of
dimension one?

There are first results on rational and algebraic solutions of
non-autonomous F (x , y , y ′) = 0 (or F (y , y ′, y ′′) = 0) with
F ∈ Q[x , y , y ′] where VC(F ) is rational. What about algebraic and
local solutions if VC(F ) is not rational?

etc.
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