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[ Outline

PartI: Computing critical points for invariant algebraic systems

Part II : Deciding the emptiness of invariant algebraic sets over real fields
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Let K be a field and f1, . . ., /s be polynomials in K[xy, ..., X

Solve fi = -+ = f, = 0 ~= solution set in K"
cK=QandK=RorK=C
* or K = K a prime field

Exact/Symbolic methods : compute an algebraic data-structure which
* can be exploited to extract global information on its solutions in K

« determines the dimension of the solution set in K"

Algebraic sets : the solution set of the ideal I = (fi,... . f; ) C Klxy, ...
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[ Dimension of algebraic sets

W C K" : anon-empty algebraic set given as the zero set of I = (fj, ...

E, : a generic d-dimensional affine subspace of K"

Geometric definition :
dim(W) = the maximum integer d s.t. O < card(W N E;) < oo

Algebraic definition :
dim(W) = Krull dimension of the polynomial functions over W

Folklore procedure :
* compute a Grobner basis of 1

* deduce the Hilbert series % of I
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[ Zero-dimensional algebraic sets

W C K" : a non-empty algebraic set given as the zero set of I = (fi,...,f; )
W has finitely many points

Representation of zero-dimensional sets : using univariate polynomials

v(t) =0, xp=vi(t)/vo(t) (1<i<n), wlt)=
Example : Consider W C K? with v(t) = —t,v; =t,v», =3t — 1,and vy = 21 — 1.

Then
=t/(2t—1) and x=3r—1)/(2t—1)

Ifv(z) =0,thent =0orz=1. Thus W ={(0,1), (1,2)}

Normally, we have (v, vy, ..., v,), then exploint information for W.
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[ Critical points

Minimize : & (x1, X2, x3) = x1x2x3 — 3(x1 + x2 + x3) subject to

glxi, x2,x3) =x1 +x3 +x3 — 6 =0.
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[ Critical points

Minimize : & (x1, X2, x3) = x1x2x3 — 3(x1 + x2 + x3) subject to

glxi, x2,x3) =x1 +x3 +x3 — 6 =0.
The minima satisfy

G+ +x3-6=0
and
2x1 2x2 2x3

XoX3 — 3 X1X3 — 3 X1Xp — 3
* optimization

¢ real algebraic geometry (decide the emptiness over the reals)
(will see in the 2nd half of the talk)

< 2.
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[ Critical points and Our goal

Let ¢ and f = (f1,...,f;) be polynomials in Kl[xi, ..., x,] withs < ns.t.
Assumption (A) : the Jacobian matrix of f has full rank at any solution of f

Then, V(f) is smooth and (n — s)-equidimensional and the set of critical points of ¢
restricted to V(f) :

W(d, f):={x K" : f(x) =0 and (all (s+ 1) minors of jac(f, ¢))(x) =0}

Input : symmetric polynomials ¢ and (fi, . . ., fi)inKlxy, ..., X,
Condition : f = (f},...,f;) satisfies (A) and W (¢, f) is of zero-dimensional
Output : a representation for W(d, f)
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[ Main result

Suppose ¢ and f = (fi, ..., f;) are symmetric polynomials in K[xi, ..., x,]
* the Jacobian matrix of f has full rank at any solution of

* the degrees of f and ¢ are at most d

+ the set W(¢, f) C K" is finite
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Main result

Suppose ¢ and f = (f1, ..., f;) are symmetric polynomials in Klxp, .. ., x,]
* the Jacobian matrix of f has full rank at any solution of

* the degrees of f and ¢ are at most d

* the set W(¢, f) € K" is finite

* There is a randomized algorithm that takes as input f and ¢ and outputs a

o(1)
representation for W (¢, f) with the runtime is (ds ("+d) (" )) .

n s+1

* The size of the output of our algorithm is at most d* ("+Z_1).
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[ Previous work

[Labahn-Hubert]

* scaling invariants and symmetry reduction of dynamical systems

[Busé-Karasoulou]

* resultant of an equivariant polynomial system

[Riener]
* deciding the emptiness symmetric semi-algebraic sets, fixed degree
[Riener-Safey El Din]

* real root finding for equivariant semi-algebraic systems

[Faugére-Rahmany|

* use SAGBI-Grobner bases to solve symmetric systems

[Faugére-Svartz |

* globally invariant systems
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[ Determinantal systems

Given f = (fi, ..., fs) C Klxq, ..., x,] and G € Klxy, ..., xplP x4
o wdeg(x;)) =w; = 1fori=1,..., n
* wedeg(G, j) == max; gigp(wdeg(gij))) = b,

Compute V,(f, G) :={x € K" : f(x) = 0 and rank(G(x)) < p}
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Determinantal systems

Givenf = (f1,....f;) CKlx,...,x,J and G € K[xy, ..., x,]P>4
o wdeg(x;)) =w; = 1fori=1,...,n
* wedeg(G, j) == max; g, (wdeg(gij))) = 9;

Compute V,(f, G) :={x € K" : f(x) = 0 and rank(G(x)) < p}

Theorem

Assume that n = g—p-+s+1 and E(-) the k-th elementary symmetric function.
Then there are at most

c =wdeg(fi) - - - wdeg(fy) - En—s(81,...,84)/AWith A =w; ---w,

isolated points, counted with multiplicities, in V,(f, G), which can be com-
puted by a randomized algorithm Homotopy weighted with runtime being poly-
nomial in c.

\. J

In classical domains, i.e., wdeg(x;) = 1 for all i.
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Determinantal systems

Givenf = (f1,....f;) CKlx,...,x,J and G € K[xy, ..., x,]P>4
o wdeg(x;)) =w; = 1fori=1,...,n

+ wedeg(G, ) := max <<, (wdeg(gi;))) = d;
Compute V,(f, G) :={x € K" : f(x) = 0and rank(G(x)) < p}

Example : K[x;, x, x3] with wdeg(x;) = k

Consider fi = x} — 3x1x2 + 3x3 — 8 and wdeg(G) = (32 ; (1)> , then

wdeg(f1) = 3, wedeg(G) =(3,2,1)

andc = 3-E»(3,2,1)/(1-2-3) =3-(3:24+3-142-1)/(1 - 2-3) =30/6 = 5.
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Determinantal systems and the critical points problem

Givenf = (f1,....f;) CKlx,...,x,J and G € K[xy, ..., x,]P>4
o wdeg(x;)) =w; = 1fori=1,...,n
* wedeg(G, j) == max; g, (wdeg(gij))) = 9;

Compute V,(f, G) :={x € K" : f(x) = 0 and rank(G(x)) < p}

Theorem

Assume that n = g—p-+s+1 and E(-) the k-th elementary symmetric function.
Then there are at most

¢ =wdeg(fi) - - - wdeg(fs) - E,—s(51,...,84)/AWith A =w; ---w,

isolated points, counted with multiplicities, in V,(f, G), which can be com-
puted by a randomized algorithm Homotopy weighted with runtime being poly-
nomial in c.

W(d, ) = Vi (f, jac(f, §))
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Compute V,(f, G) :={x € K" : f(x) = 0 and rank(G(x)) < p}

Theorem

Assume that n = g—p-+s+1 and E(-) the k-th elementary symmetric function.
Then there are at most

¢ =wdeg(fi) - - - wdeg(fs) - E,—s(51,...,84)/AWith A =w; ---w,

isolated points, counted with multiplicities, in V,(f, G), which can be com-
puted by a randomized algorithm Homotopy weighted with runtime being poly-
nomial in c.

W(db, f) = Vo (f,jac(f, d)) Not exploint the symmetry
10/25



[ Symmetry polynomials

A polynomial f is symmetric (or S,-invariant) if

FxXo(ry, - Xgn)) =fforallo €S,
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Symmetry polynomials

A polynomial f is symmetric (or S,-invariant) if
fxeay, -, Xgn)) =fforallo €S,
A sequence of polynomials f = (f1, ..., f;) is symmetric (or S,-invariant) if
fiis symmetric foralli=1,...,s
A set W C K" is S,-invariant if
o(x) e Wforallo € S, andx € W

Example : x7 + X3 + x3 + x5 — 6x1x2x3x4 — 1 is Sy-invariant
2 2 2 . . .
Example : x7 + x5 + x3 — 1 is S3-invariant

Property : if f = (f1,...,f;) and ¢ are symmetric,
then W(¢, ) is S,-invariant
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[ Data-structure for invariant sets

A list of positive integers A = (nl, R/ PUR / FR ,n,) is a partition of n if
—— ~—

o ¢,
iy +nlo+---+nd, =nwith € := £, + - -- 4+ {, is the length of A.
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[ Data-structure for invariant sets

A list of positive integers A = (nl, R/ PUR / FR ,n,) is a partition of n if
—— ~—

4 ¢,
nily +nlo + -+ +nd, =nwith £ := £; + - - - + {, is the length of A.
Example: A = (1,2) of n =3,thenn; = 1,n, =2,; =1, =1,and { =2

Denote C» C K" contains

7}1 . . .
a= (o apg, -, aLgy g arteestnyy e angenang,) € Kt a;; are distinct
—_— —

m n ny ny

Example : C(I,ZJ z{(a|,1,a2,|,a2,|) € K3 Dap #azj}, e.g., (3,4,4—) S C(1,2)

W C K" a S,-invariant set, then W = LI\ W (disjoint union) with Wy := S,(W N Cy)
Example : Suppose n =3 and W ={(5,5,5), (3,4,4),(3,4,4), (4,4,3)}. Then
W(I,Z] = {(3, 4, 4), (4, 3, 4), [4, 4, 3}, W(g) = {(5, 5, 5)}, and W(l,l,l] = @
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[ Data-structure for invariant sets (cont.)

For a partition A = (n‘f' ...n%)anda = (aij)i<i<ri<j<e» the compression mapping :
=
Ex(a) = (Ei(air, . aig), - Eiglain, - aig)) e, €K
where E; ;’s the j-th elementary symmetric function ofa; 1, . . ., g,
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Ex(a) = (Ei(air, . aig), - Eiglain, - aig)) e, €K
where E; ;’s the j-th elementary symmetric function ofa; 1, . . ., g,

Example : A = (1,2,2) of n = 5, then
E(122)(3,4,4,5,5) = (E11(3),E»1(4,5),E>»(4,5)) = (3,9,20)

W C K" a S,-invariant set Wy := S,(W N Cy), W = EA(WN Cy) C K¢
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[ Data-structure for invariant sets (cont.)

&

For a partition A = (n;' ... n')and a = (aij)i<i<ri<j<e» the compression mapping :

Eﬂa):(EJWMP-wame-wEmeJw-wamﬂthrERK

where E; ;’s the j-th elementary symmetric function ofa; 1, . . ., g,
Example : A = (1,2,2) of n = 5, then

E122)(3,4,4,5,5) = (Ei1(3), E21(4,5), E»2(4,5)) = (3,9, 20)

W C K" a S,-invariant set Wy := S,(W N Cy), W = EA(WN Cy) C K¢
Example : Suppose n =3 and W ={(5,5,5),(3,4,4),(3,4,4), (4,4,3)}. Then

Wao =1{(3,4,4),(4,3,4),(4,4,3}, W) ={(5,5,5)}, and W, 1 1y =0
and W[, ,) ={(3,4)} and W(5) = {(5)}

card(W) n _ n! an card(Wr)
card(Wa) ~ \ny,...,mi, ... 0pr... n)  mlb-oopll card(W{)

g
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[ Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (z;, ..., Zi.¢,) sequence of {; variables
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[ Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (z;, ..., Zi.¢,) sequence of {; variables
Define the K-algebra homomorphism T} : K[x, .. ., x,) — Klzy, ..., z,]

(1v e x) = (2 Tls e TG Tl e Zndre e ity e Zrtr 12ty
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[ Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (z;, ..., Zi.¢,) sequence of {; variables
Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z
(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )

n n ny ny

Example : A = (1,2,2) of n = 5, then

N
(5]
29
%)
(5]
I
35
o
=

T(]‘zyz)()C],)Cz,)Cg,)m,Xs) = (Zl,]vz 1

©
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[ Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (z;, ..., Zi.¢,) sequence of {; variables
Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )
n n n, ny

Example : A = (1,2,2) of n = 5, then

T2 (07 +25 + 03+ +x3) =20, +225, +23,
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Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (1, . .. . Zi,e;) sequence of {; variables
Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )
n n n, ny

Example : A = (1,2,2) of n = 5, then

T122)(G) = (Talgij))ij for G = (gi;) € Klxy, ..., x,]"*7
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[ Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (z;, ..., Zi.¢,) sequence of {; variables

Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )
n n n, ny

Example : A = (1,2,2) of n = 5, then

T(LZQ}(X]YXZYX}YX%XS) = (Zl,]vz 1,22,1,22,2,22,2)

©

Properties : Denote Sy := S, X --- X Sg, and let f be a S,,-invariant. Then

o TA(f) is Sx-invariant if f is S,-invariant
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Back to polynomial systems

LetA = (nf‘ ... n%) apartitionof nand z; = (z;1, ... . Zi,e;) sequence of {; variables

Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )
—_—— —_——— —_

ni ny

ny ny

Example : A = (1,2,2) of n = 5, then

T(l‘zl)(xlvxb)f}yxmxs) = (211,221, 22,1, 222, 22.2)

Properties : Denote Sy := S, X --- X Sg, and let f be a S,,-invariant. Then

* Tioo(d +0 +x3+x3 +x3) =21, +223, +223, i8S X Sy-invariant
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Back to polynomial systems

LetA = (nf‘ ... n') apartition of n and z; = (1, . .. . Zi,e;) sequence of {; variables
Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(1w X)) 2 (200 20 oo 200 20ty o1 Tdee e Tds <y Zntr e e 20t )
n n n, ny

Example : A = (1,2,2) of n = 5, then

) = oo
2, 1 X2, X3, Xg, X5 ) = (21,1, 22,1, 22,1, 22,2, 22,2
T(]zz)(xl X2, X3, X4, Xs) (z11, 22,1, 22,1, 222 /77)

Properties : Denote Sy := S, X --- X Sg, and let f be a S,,-invariant. Then
o TA(f) is Sx-invariant if f is S,-invariant
* discarding some duplicated columns from T (Vf) gives a Sx-equivariant system,

of af)

ox; T Ox,

vf = (
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Back to polynomial systems

LetA = (nf‘ ... n%) apartitionof nand z; = (z;1, ... . Zi,e;) sequence of {; variables

Define the K-algebra homomorphism T} : K[xy, ..., x,] — Klzy, ...,z

(X1, X)) — (21,1.-~.,11,1, B SR T Y-4 WA % PP % P Zr,z,,--.,Zr,e,)
n n n, ny

Example : A = (1,2,2) of n = 5, then

T(],z,z)(xlyxzyxwxmxs) = (21,1,Z2,1,ZZ,|,Z 2 22,2)

Properties : Denote Sy := S, X --- X Sg, and let f be a S,,-invariant. Then
* Tioo (X +8+x3 +x;+x3) =23, +223, +223, is S| x Sy-invariant
* discarding some duplicated columns from T (Vf) gives a Sy-equivariant system,

3 3 3 3 : 2 .2 .2 .2 2\ __ 2 2 2 2 2
T[] 72j(vxl +X7 +Xz +)t4 +A5) ’Yﬂq 12,2) (X],XZ,X3,X4,.X5) = 3(2 ,4,211,2211,422,\7.2'2)

the sequence (z7,23,,23,) is S| x Sy-equivariant but NOT S x S,-invariant

14/25




[ From S,-equivariant to S,-invariant

Recall
c A= (nf‘ ..., n%) a partition of n of length £ and S, := Se, X -o- X Sp,
i =(zy,... ) fori=1,...,r

We index (z1,...,2,) = (z1,...,2¢).
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[ From S)-equivariant to S,-invariant

Recall
c A= (nf‘ ..., n%) a partition of n of length £ and S, := Se, X -+ X Sy,
2=z, ..., zi) fori=1,...,r
We index (z, ..., z)=(z1,..., Z0).
A sequence of polynomials q = (¢, ...,q¢) in K[zy, ..., z] is Sx-equivariant if

qi(ZU(l),...,Zg(e)) :qg[,-)(zl,...,a) foralli=1,...,¢and o € Sy
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[ From S)-equivariant to S,-invariant

Recall
c A= (nf‘ ..., n%) a partition of n of length £ and S, := Se, X -+ X Sy,
i =(zy,... ) fori=1,...,r

We index (z;, ..., z,) = (z1,. .-, ).

Proposition : Suppose q is S)-equivariant and z; — z; divides ¢; — g;. Then there
exists an algorithm Symmetrize(A, q) which returns p = (p1, ..., pe) St

° pis Sy-invariant

* p and q generate the same ideal in a suitable localization of Kl[z1, .. ., z,], that is,
pU = q, where U has a determinant unit in K[z, ..., z,, 1/A] with

A= H1<i<j<z(zi—Zj)
* deg(p;) <6 —+iwiths =deg(q) pi=0ifl>5+i

+ the runtime is O”(3 (e“gé)) operations in K
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From S)-equivariant to S,-invariant

Recall
c A= (nf‘ ..., n%) a partition of n of length £ and S, := Se, X -+ X Sy,
i =(zy,... ) fori=1,...,r

We index (z1,...,2,) = (z1,...,2¢).

Proposition : Suppose q is S)-equivariant and z; — z; divides ¢; — g;. Then there
exists an algorithm Symmetrize(A, q) which returns p = (p1, ..., pe) St

° pis Sx-invariant

* p and q generate the same ideal in a suitable localization of Kl[z1, .. ., z,], that is,
pU = q, where U has a determinant unit in K[z, ..., z,, 1/A] with

A= H1<i<j<z(zi —z)
* deg(p;) <6 —+iwiths =deg(q) pi=0ifl>5+i
+ the runtime is O”(¢*(“}°)) operations in K

Note [Hubert, 2009] has an algorithm which symmetrizes polynomials constructed via a
generating set of rational invariants; but we wish to avoid rational functions
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[ Sketch of the main algorithm

Input : symmetric polynomials & and (f, ..., f;) in K[xp, ..., x,]
Condition : f = (f}, ..., f;) satisfies (A) and W(¢, f) is finite
Output : a representation for W(o, f)

Assumption (A) : the Jacobian matrix of f has full rank at any solution of f
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1. compute g = T (f) and T (jac(f, ))
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Input : symmetric polynomials & and (f, ..., f;) in K[xp, ..., x,]
Condition : f = (f}, ..., f;) satisfies (A) and W(¢, f) is finite
Output : a representation for W(o, f)

Assumption (A) : the Jacobian matrix of f has full rank at any solution of f

for all partitions A of n
1. compute g = T (f) and T (jac(f, ))
2. discard duplicated columns of T (jac(f, ¢)) to obtain L € Klzy, ...,z

](s+1)><€
-
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[ Sketch of the main algorithm

Input : symmetric polynomials & and (f, ..., f;) in K[xp, ..., x,]
Condition : f = (f}, ..., f;) satisfies (A) and W(¢, f) is finite
Output : a representation for W(o, f)

Assumption (A) : the Jacobian matrix of f has full rank at any solution of f

for all partitions A of n
1. compute g = T (f) and T (jac(f, ))
2. discard duplicated columns of T (jac(f, ¢)) to obtain L € K]z, . .. ,z,]Hxt
3. apply Symmetrize algorithm on row vectors of L to obtain matrix H
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Sketch of the main algorithm

Input : symmetric polynomials & and (f, ..., f;) in K[xp, ..., x,]
Condition : f = (f}, ..., f;) satisfies (A) and W(¢, f) is finite

Output : a representation for W(o, f)

Assumption (A) : the Jacobian matrix of f has full rank at any solution of f

for all partitions A of n

1.

compute g = T (f) and T (jac(f, ¢))

2. discard duplicated columns of T (jac(f, ¢)) to obtain L € K]z, . .. ,z,]Hxt
3.
4. find (g and Cy with entries in Kley, ..., e]s. t.

apply Symmetrize algorithm on row vectors of L to obtain matrix H

Cg (El,l(zl)v cee vEr,Z,(Zr)) =9 and CH(EI,](Zl)r S uEr,l’,r(zr)) =H

with deg(E;x) = k; so wdeg(eix) =k
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[ Sketch of the main algorithm

Input : symmetric polynomials & and (f, ..., f;) in K[xp, ..., x,]
Condition : f = (f}, ..., f;) satisfies (A) and W(¢, f) is finite
Output : a representation for W(o, f)

Assumption (A) : the Jacobian matrix of f has full rank at any solution of f

for all partitions A of n
1. compute g = T (f) and T (jac(f, ))
2. discard duplicated columns of T (jac(f, ¢)) to obtain L € K]z, . .. ,z,]Hxt
3. apply Symmetrize algorithm on row vectors of L to obtain matrix H
4. find (g and Cy with entries in Kley, ..., e]s. t.

Cg(Eri(z1), ..., Ere,(2,)) = gand Cu(Ey,1(z1), ..., Ere,(2,)) =H
with deg(E;x) = k; so wdeg(eix) =k
5. find #» = Homotopy weighted((g, Cu)
16/25



Part 11 :
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[ Emptiness decision and Computing sample points

Let Q be a field and f, . . ., f; be polynomials in Q[xy, . . ., x,]

Input: /i = - .- =f; = 0 that defines § C R"
Output: true iff S # () else false

This is a decision problem.
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[ Emptiness decision and Computing sample points

Let Q be a field and f, . . ., f; be polynomials in Q[xy, . . ., x,]

Input: /i = - .- =f; = 0 that defines § C R"
Output: true iff S # () else false

This is a decision problem.

Input: /i = - .- =f; = 0 that defines § C R"
Output: Some points in S whenever they exist
* how to encode them? What to do if |S] = co?
* representative points in all the connected components of S

* quantitative results on the number of connected components of S?

Exact/Symbolic computation.
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[ State-of-the-art

Collins’ Cylindrical Algebraic Decomposition algorithm

» complexity doubly exponential in n

* implementations are limited to small n

[Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning]
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[ State-of-the-art

Collins’ Cylindrical Algebraic Decomposition algorithm

» complexity doubly exponential in n

* implementations are limited to small n

[Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning]

~ Quest for algorithms singly exponential in n
The critical point method

[ Grigoriev-Vorobjov], [Canny] [Renegar], [Heintz-Roy-Solerno], [Basu-Pollack-Roy],
[ Bank-Giusti-Heintz-Mbakop ], [Aubry-Rouillier-Safey El Din], [Rouillier-Roy-Safey El Din] [Safey El
Din-Schost]
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[ Critical point method

LReduction of the dimension through Global Optimization}

Main idea : studying a map that
* reaches an extremum on each connected component of S

* whose critical locus is zero-dimensional
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Representation of finite sets : using univariate polynomials (v, vy, ..., v,)
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[ Critical point method

LReduction of the dimension through Global Optimization}

Main idea : studying a map that
* reaches an extremum on each connected component of S

* whose critical locus is zero-dimensional

Representation of finite sets : using univariate polynomials (v, vy, ..., v,)

Existence : from n-variate to univariate problems

20/25



Our goal with symmetry

Input: fi = --- = f; = 0 that defines S C R"
Output : true iff S # 0 else false
Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)
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Our goal with symmetry

f=(f1,....f;) are symmetric polynomials in Q[xy, ..., x,]

Input: f; = --- = f; = 0 that defines S C R”"
Output : true iff S # 0 else false
Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)

~ exploit the symmetry to reduce the cost of computations

There exists a randomized algorithm that takes f as input and decides the exis-
tence of real points in V(f). The runtime is polynomial in &*, (*}%), and (| -
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Our goal with symmetry

f=(f1,....f;) are symmetric polynomials in Q[xy, ..., x,]

Input: f; = --- = f; = 0 that defines S C R”"
Output : true iff S # 0 else false
Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)

~ exploit the symmetry to reduce the cost of computations

There exists a randomized algorithm that takes f as input and decides the exis-
tence of real points in V(f). The runtime is polynomial in @*, ("%, and (," ).

d s+1

Observe : The runtime is
* polynomial in » when n and d are fixed
+ equal to n°V2" whend = n
* subexponential in n when d ~ n* with & < 1
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[ Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,

* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)
* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]
(X1, %) = (21,1,---,21,1, A W R S W AT BRI 4% IR 4 PR Zr,e,,---er,e,)
n ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)
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Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,

* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)
* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]
(X1, ey X)) — (21,1,---,21,1, e 2y 20y e Tl e a Tl Zr,e,,---er,e,)
—_— [ — —_——— —_——
n ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)

Then, g := T,(f) is S\-invariant and also satisfies (A)

1

nj

Ta(jac(f)) = jac(g) - M, where M = diag(M,, ..., M,) € K*"
v 0
M, = : € K%t of rank £;; so rank(M) = ¢

I3
|—
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Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,

* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)
* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]
(X1, ey X)) — (21,1,---,21,1, e 2y 20y e Tl e a Tl Zr,e,,---,Zr,e,)
—_— [ — —_——— —_——
n ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)
Then, g := T,(f) is S\-invariant and also satisfies (A)

Ta(jac(f)) = jac(g) - M, where M € K**" of rank {

L1
2 2

Example : n =7 and A = (2,2,3). Then M = 1 % of rank 2 + 1
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Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,
* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)

* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]

(X100 X)) (21,1,---,21,1y e 2y 20y e Tl e a Tl Zr,e,,---er,e,)
—_———— —_— —_——— —_——
ny ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)
Then, g := T,(f) is S\-invariant and also satisfies (A)

Ta(jac(f)) = jac(g) - M, where M € K**" of rank {
and for ¢ € V(T (f)) N CY, there exists u € V(f) N C" s.t. Ty (jac(f))(c) = jac(f)(u). Thus

jac(f)(u) = jac(g)(c) - M

The left kernel of jac(f)(u) is trivial by (A), so is jac(g)(c).
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Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,

* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)
* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]
(X1, ey X)) — (21,1,---,21,1, e 2y 20y e Tl e a Tl Zr,e,,---er,e,)
—_— [ — —_——— —_——
n ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)
Then, (,inKle, ..., e,] is also satisfies (A), where (¢ (E;;) = g
jac(g) = jac((g)(E;;) - V, where V = diag(V;,...,V,)

with V; the Vandermonde matrix of (E;;, ..., E;g,)
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Assumption (A) with symmetry

Recall, for A = (nf‘ ... n%) a partition of n of length { = &, +--- + ¢,

* S):=8 X+ xS, and E;; : j-th elementary symmetric function in z; = (z;1, ..., Zi,)
* the K-algebra homomorphism T : K[xi, ..., x,] — Klzy, ..., 2]
(X1, ey X)) — (21,1,---,21,1, e 2y 20y e Tl e a Tl Zr,e,,---,Zr,e,)
—_— [ — —_——— —_——
n ny ny ny
Given f = (f1,....fs) in Qlxy, ..., x,]; all are symmetric

Assumption (A) : the Jacobian matrix of f has rank s at any point of V(f)

Then,
* g := T, (f) is Sx-invariant and also satisfies (A) and

* (ginKle, ..., e,] also satisfies (A), where (g (E;;) = ¢
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[ Sketch of the main algorithm

Input: fj = --- = f; = 0 that defines S C R"; all are symmetric
Output : true iff S # (0 else false
Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)

for a partition A of n of length at least s
1. compute g = Ty (f) € Qlzy, ..., 7]
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[ Sketch of the main algorithm

Input: fj = --- = f; = 0 that defines S C R"; all are symmetric
Output : true iff S # (0 else false
Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)

for a partition A of n of length at least s
1. compute g = Ty (f) € Qlzy, ..., 7]

2. construct a good Sy -invariant map ¢ in Q[z; 4] s.t

3. find (g and (¢, in Kley, ..., €] st (g(E;;) =g and (¢(Eij) =
4. compute critical point set W of (4, restricted to V((g)
* W = Homotopy weighted (g, jac(Cg, C¢))

* W is encoded by univariate polynomials (v, v 1, ..., V.¢,)
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Sketch of the main algorithm

Input: fj = --- = f; = 0 that defines S C R"; all are symmetric
Output : true iff S # (0 else false

Assumption (A) : the Jacobian matrix of f has full rank at any point of V(f)

for a partition A of n of length at least s

1.
2.
3.

compute g = Tr(f) € Qlzy, ..., 2]
construct a good Sy-invariant map ¢ in Q[z; ] s.t

find g and (¢, in Kley, ..., €] st (g(E;;) =g and (¢(Eij) =&
compute critical point set W of (g, restricted to V((g)
* W = Homotopy weighted (g, jac(Cg, C¢))

* W is encoded by univariate polynomials (v, v 1, ..., V.¢,)
existence of real roots of bi-variate polynomial systems (v, vi1, ..., Vig,)
* from e;; coordinates back to (zi, ..., z.) thento (xi,...,x,)

* use Vieta polynomials p; := u — v, (1)ub=" + -+ (—1)%e; ¢, (1) € Cldl[u]
23/25



[ Good S)-invariant maps ?

Given S -invariant polynomials g in Q[z, .. ., z; A= (ny' ..., n7)
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[ Good S)-invariant maps ?

Given S -invariant polynomials g in Q[z, .. ., Z; A = (nf‘ ant)

Construct a S)-invariant map ¢ in Q[zy, ..., z,] s.t.

(i.) reaches an extremum on each connected component of real locus of V(g)
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(i.) reaches an extremum on each connected component of real locus of V(g)
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(ii.) has finite number of critical points on V(g)

24725




[ Good S)-invariant maps ?

Given S -invariant polynomials g in Q[z, .. ., Z,; A = (nf‘ ant)

Construct a S)-invariant map ¢ in Q[zy, ..., z,] s.t.

(i.) reaches an extremum on each connected component of real locus of V(g)
* ¢ is a proper map

cd=¢;+- -+ b, where ¢y the homogeneous component of degree k
if ¢, is positive definite; then, ¢ is proper

~ the leading form of ¢ is Newton power sums of even degree

(ii.) has finite number of critical points on V(g)

~» random linear combination of Newton power sums upto high enough degrees

24725




[ Good S)-invariant maps ?

Given S -invariant polynomials g in Qlz;

Construct a S)-invariant map ¢ in Q[zy, ..., z,] s.t.

(i.) reaches an extremum on each connected component of real locus of V(g)
* ¢ is a proper map

cd=¢;+- -+ b, where ¢y the homogeneous component of degree k
if ¢, is positive definite; then, ¢ is proper

~ the leading form of ¢ is Newton power sums of even degree

(ii.) has finite number of critical points on V(g)

~» random linear combination of Newton power sums upto high enough degrees

d) Zcz 1€+I+ZZCIJ ik where Pk _Zzl+"'+zf'€,ei

i=1 k=0

with ¢;; are random numbers in Q and ¢; = 1 if {; is odd and ¢; = 0 if {; is even
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An illustrative example

Consider f =2 +x% +x3 +x3 — 6x1xx3x4 — 1, then S = V(f) N R* is non-empty
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An illustrative example

Consider f =2 +x% +x3 +x3 — 6x1xx3x4 — 1, then S = V(f) N R* is non-empty

A=(4);x, =z, foralli=1,...,4
* compute g = T(y)(f) = =62} | + 427, — 1 =2z}, — (227, —1)> <Oforallz;; € R
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An illustrative example
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Consider f =2 +x% +x3 +x3 — 6x1xx3x4 — 1, then S = V(f) N R* is non-empty

A=(4);x;=z, foralli=1,...,4

* compute g = T(y)(f) = —6zf, +427, — 1 =2z}, — (227, —1)> < Oforallz;; € R
A=1(2,2),nm=2,04=0=2x1 =211, % =211, X3 = 210, X4 = 212

s compute g = Tp2)(f) = 227, + 225, — 627 23, — 1 is Sy-invariant

* take § =5(z1; +27,) =9z +212) — 3.
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Consider f =2 +x% +x3 +x3 — 6x1xx3x4 — 1, then S = V(f) N R* is non-empty

A=4);x; =z foralli=1,...,4

* compute g = T(4)(f) = —621 | + 4z}, —1=—-2z1, — (22}, —1)? < Oforallz;; € R
A=(22),m=204=0=2x= 2,1, X = 21,1, X3 =212, X4 = 212

* compute g = T(22)(f) =221, + 223, — 627 123, — 1 is S,-invariant

* take & = 5(z7; +27,) — 9212 +212) — 3.

e find g, = 5e11% —9ey,) — 10¢;, — 3 and {, = 27 | — 6e7, —4er, — 1
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A=4);x; =z foralli=1,...,4

* compute g = T(4)(f) = —621 | + 4z}, —1=—-2z1, — (22}, —1)? < Oforallz;; € R
A=(22),m=204=0=2x= 2,1, X = 21,1, X3 =212, X4 = 212

* compute g = T(22)(f) =221, + 223, — 627 123, — 1 is S,-invariant

* take ¢ =5(z7, +21,) — 9212 +212) — 3.

e find g, = 5e11% —9ey,) — 10¢;, — 3 and {, = 27 | — 6e7, —4er, — 1

* critical point set W of (g4, restricted to , are solutions to (, = det(jac((,, (p)) = 0; Wis

encoded by v, vy 1, vi2

v = 200r* —360r° + 621> +60t—27, v,y =1, and v, » = —1/6+9/20* —31,/600t—1,/20
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Consider f =2 +x% +x3 +x3 — 6x1xx3x4 — 1, then S = V(f) N R* is non-empty

A=4);x; =z foralli=1,...,4
* compute g = T(4)(f) = —621 | + 4z}, —1=—-2z1, — (22}, —1)? < Oforallz;; € R
A=(22),m=204=0=2x= 2,1, X = 21,1, X3 =212, X4 = 212
* compute g = T(22)(f) =221, + 223, — 627 123, — 1 is S,-invariant
* take & = 5(z7; +27,) — 9212 +212) — 3.
e find g, = 5e11% —9ey,) — 10¢;, — 3 and {, = 27 | — 6e7, —4er, — 1
* critical point set W of (g4, restricted to , are solutions to (, = det(jac((,, (p)) = 0; Wis
encoded by v, vy 1, vi2
v = 200r* —360r° + 621> +60t—27, v,y =1, and v, » = —1/6+9/20* —31,/600t—1,/20
e check the system

pr=v=0, with p; =vu>—viju+wvy; €Ql,ul,

has real solutions
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See you in Tromsg this summer !
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