Faster algorithms for symmetric polynomials

Thi Xuan Vu

Department of Mathematics and Statistics UiT, The Arctic University of Norway Tromsø, Norway

based on joint works with Jean-Charles Faugère, George Labahn, Cordian Riener, Mohab Safey El Din, and Éric Schost

> MAX team seminar February 20, 2023

Outline

Part I: Computing critical points for invariant algebraic systems

Part II: Deciding the emptiness of invariant algebraic sets over real fields

Let \mathbb{K} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$

Let \mathbb{K} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$

Solve $f_1 = \cdots = f_s = 0 \rightsquigarrow$ solution set in $\overline{\mathbb{K}}^n$

- $\mathbb{K}=\mathbb{Q}$ and $\overline{\mathbb{K}}=\mathbb{R}$ or $\overline{\mathbb{K}}=\mathbb{C}$
- or $\mathbb{K} = \overline{\mathbb{K}}$ a prime field

Let \mathbb{K} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$

Solve $f_1 = \cdots = f_s = 0 \Leftrightarrow \text{solution set in } \overline{\mathbb{K}}^n$

- $\mathbb{K} = \mathbb{Q}$ and $\overline{\mathbb{K}} = \mathbb{R}$ or $\overline{\mathbb{K}} = \mathbb{C}$
- or $\mathbb{K} = \overline{\mathbb{K}}$ a prime field

Exact/Symbolic methods: compute an algebraic data-structure which

- can be exploited to extract global information on its solutions in $\overline{\mathbb{K}}$
- determines the dimension of the solution set in $\overline{\mathbb{K}}^n$

Let \mathbb{K} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$

Solve $f_1 = \cdots = f_s = 0 \Leftrightarrow \text{solution set in } \overline{\mathbb{K}}^n$

- $\mathbb{K} = \mathbb{Q}$ and $\overline{\mathbb{K}} = \mathbb{R}$ or $\overline{\mathbb{K}} = \mathbb{C}$
- or $\mathbb{K} = \overline{\mathbb{K}}$ a prime field

Exact/Symbolic methods: compute an algebraic data-structure which

- can be exploited to extract global information on its solutions in $\overline{\mathbb{K}}$
- determines the dimension of the solution set in $\overline{\mathbb{K}}^n$

Algebraic sets : the solution set of the ideal $I = \langle f_1, \dots, f_s \rangle \subset \mathbb{K}[x_1, \dots, x_n]$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \ldots, f_s \rangle$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \ldots, f_s \rangle$ E_d : a generic d-dimensional affine subspace of $\overline{\mathbb{K}}^n$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \ldots, f_s \rangle$ E_d : a generic d-dimensional affine subspace of $\overline{\mathbb{K}}^n$

Geometric definition:

 $\dim(W) = \text{the maximum integer } \frac{d}{d} \text{ s.t. } O < \operatorname{card}(W \cap E_{\underline{d}}) < \infty$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \ldots, f_s \rangle$ E_d : a generic d-dimensional affine subspace of $\overline{\mathbb{K}}^n$

Geometric definition:

 $\dim(W) = \text{the maximum integer } \frac{d}{d} \text{ s.t. } O < \operatorname{card}(W \cap E_{\underline{d}}) < \infty$

Algebraic definition:

dim(W) = Krull dimension of the polynomial functions over W

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \ldots, f_s \rangle$ E_d : a generic d-dimensional affine subspace of $\overline{\mathbb{K}}^n$

Geometric definition:

 $\dim(W)$ = the maximum integer d s.t. $O < \operatorname{card}(W \cap E_d) < \infty$

Algebraic definition:

dim(W) = Krull dimension of the polynomial functions over W

Folklore procedure:

- compute a Gröbner basis of I
- deduce the Hilbert series $\frac{N(t)}{(1-t)^d}$ of I

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

Example: Consider $W \subset \overline{\mathbb{K}}^2$ with $v(t) = t^2 - t$, $v_1 = t$, $v_2 = 3t - 1$, and $v_0 = 2t - 1$.

Then

$$x_1 = t/(2t-1)$$
 and $x_2 = (3t-1)/(2t-1)$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

Example: Consider $W \subset \overline{\mathbb{K}}^2$ with $v(t) = t^2 - t$, $v_1 = t$, $v_2 = 3t - 1$, and $v_0 = 2t - 1$.

Then

$$x_1 = t/(2t-1)$$
 and $x_2 = (3t-1)/(2t-1)$

If
$$v(t) = 0$$
, then $t = 0$ or $t = 1$. Then $x_1 = \frac{0}{2 \cdot 0 - 1} = 0$ and $x_2 = \frac{3 \cdot 0 - 1}{2 \cdot 0 - 1} = 1$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

Example: Consider $W \subset \overline{\mathbb{K}}^2$ with $v(t) = t^2 - t$, $v_1 = t$, $v_2 = 3t - 1$, and $v_0 = 2t - 1$.

Then

$$x_1 = t/(2t-1)$$
 and $x_2 = (3t-1)/(2t-1)$

If
$$v(t) = 0$$
, then $t = 0$ or $t = 1$. Then $x_1 = \frac{1}{2 \cdot 1 - 1} = 1$ and $x_2 = \frac{3 \cdot 1 - 1}{2 \cdot 1 - 1} = 2$.

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

Example: Consider $W \subset \overline{\mathbb{K}}^2$ with $v(t) = t^2 - t$, $v_1 = t$, $v_2 = 3t - 1$, and $v_0 = 2t - 1$.

Then

$$x_1 = t/(2t-1)$$
 and $x_2 = (3t-1)/(2t-1)$

If v(t) = 0, then t = 0 or t = 1. Thus $W = \{(0, 1), (1, 2)\}.$

 $W \subset \overline{\mathbb{K}}^n$: a non-empty algebraic set given as the zero set of $I = \langle f_1, \dots, f_s \rangle$

W has finitely many points

Representation of zero-dimensional sets: using univariate polynomials

$$v(t) = 0,$$
 $x_i = v_i(t)/v_0(t)$ $(1 \leqslant i \leqslant n),$ $v_0(t) = \frac{\partial v(t)}{\partial t}$

Example: Consider $W \subset \overline{\mathbb{K}}^2$ with $v(t) = t^2 - t$, $v_1 = t$, $v_2 = 3t - 1$, and $v_0 = 2t - 1$.

Then

$$x_1 = t/(2t-1)$$
 and $x_2 = (3t-1)/(2t-1)$

If v(t) = 0, then t = 0 or t = 1. Thus $W = \{(0, 1), (1, 2)\}$.

Normally, we have (v, v_1, \dots, v_n) , then exploint information for W.

Critical points

Minimize:
$$\phi(x_1, x_2, x_3) = x_1 x_2 x_3 - 3(x_1 + x_2 + x_3)$$
 subject to
$$g(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 6 = 0.$$

Critical points

Minimize:
$$\phi(x_1, x_2, x_3) = x_1 x_2 x_3 - 3(x_1 + x_2 + x_3)$$
 subject to

$$g(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 6 = 0.$$

The minima satisfy

$$x_1^2 + x_2^2 + x_3^2 - 6 = 0$$

and

rank
$$\begin{bmatrix} 2x_1 & 2x_2 & 2x_3 \\ x_2x_3 - 3 & x_1x_3 - 3 & x_1x_2 - 3 \end{bmatrix} < 2.$$

Critical points

Minimize:
$$\phi(x_1, x_2, x_3) = x_1 x_2 x_3 - 3(x_1 + x_2 + x_3)$$
 subject to

$$g(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 6 = 0.$$

The minima satisfy

$$x_1^2 + x_2^2 + x_3^2 - 6 = 0$$

and

rank
$$\begin{bmatrix} 2x_1 & 2x_2 & 2x_3 \\ x_2x_3 - 3 & x_1x_3 - 3 & x_1x_2 - 3 \end{bmatrix} < 2$$
.

- optimization
- real algebraic geometry (decide the emptiness over the reals)
 (will see in the 2nd half of the talk)
- . . .

Let ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ be polynomials in $\mathbb{K}[x_1, \dots, x_n]$ with $s \leq n$ s.t.

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

Let ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ be polynomials in $\mathbb{K}[x_1, \dots, x_n]$ with $s \leq n$ s.t.

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

Then, V(f) is smooth and (n-s)-equidimensional and the set of critical points of φ restricted to V(f):

$$W(\phi, \mathbf{f}) := \left\{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \operatorname{rank}(\operatorname{jac}(\mathbf{f}, \phi)(\mathbf{x})) < s + 1 \right\}$$

Let ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ be polynomials in $\mathbb{K}[x_1, \dots, x_n]$ with $s \leq n$ s.t.

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

Then, V(f) is smooth and (n-s)-equidimensional and the set of critical points of φ restricted to V(f):

$$W(\phi, \mathbf{f}) := \left\{ \mathbf{x} \in \overline{\mathbb{K}}^n \ : \ \mathbf{f}(\mathbf{x}) = 0 \quad \text{and} \quad \left(\text{all } (s+1) \text{ minors of } \mathrm{jac}(\mathbf{f}, \phi) \right)(\mathbf{x}) = 0 \right\}$$

Let ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ be polynomials in $\mathbb{K}[x_1, \dots, x_n]$ with $s \leq n$ s.t.

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

Then, $V(\mathbf{f})$ is smooth and (n-s)-equidimensional and the set of critical points of ϕ restricted to $V(\mathbf{f})$:

$$W(\phi, \mathbf{f}) := \left\{ \mathbf{x} \in \overline{\mathbb{K}}^n \ : \ \mathbf{f}(\mathbf{x}) = 0 \quad \text{and} \quad \left(\text{all } (s+1) \text{ minors of } \mathrm{jac}(\mathbf{f}, \phi) \right)(\mathbf{x}) = 0 \right\}$$

Input : symmetric polynomials ϕ and (f_1, \ldots, f_s) in $\mathbb{K}[x_1, \ldots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is of zero-dimensional

Output: a representation for $W(\phi, \mathbf{f})$

Main result

Suppose ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ are symmetric polynomials in $\mathbb{K}[x_1, \dots, x_n]$

- the Jacobian matrix of f has full rank at any solution of f
- the degrees of f and ϕ are at most d
- the set $W(\phi, \mathbf{f}) \subset \overline{\mathbb{K}}^n$ is finite

Main result

Suppose ϕ and $\mathbf{f} = (f_1, \dots, f_s)$ are symmetric polynomials in $\mathbb{K}[x_1, \dots, x_n]$

- the Jacobian matrix of f has full rank at any solution of f
- the degrees of f and ϕ are at most d
- the set $W(\phi, \mathbf{f}) \subset \overline{\mathbb{K}}^n$ is finite

Theorem [Labahn-Safey El Din-Schost-Vu, 2023]

- There is a randomized algorithm that takes as input **f** and ϕ and outputs a representation for $W(\phi, \mathbf{f})$ with the runtime is $\left(d^s\binom{n+d}{n}\binom{n}{s+1}\right)^{O(1)}$.
- The size of the output of our algorithm is at most $d^{s}\binom{n+d-1}{n}$.

Previous work

[Labahn-Hubert]

· scaling invariants and symmetry reduction of dynamical systems

Busé-Karasoulou

· resultant of an equivariant polynomial system

[Riener]

• deciding the emptiness symmetric semi-algebraic sets, fixed degree

[Riener-Safey El Din]

· real root finding for equivariant semi-algebraic systems

[Faugère-Rahmany]

use SAGBI-Gröbner bases to solve symmetric systems

[Faugère-Svartz]

· globally invariant systems

Determinantal systems

Given f = $(f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$ and $\mathbf{G} \in \mathbb{K}[x_1, \ldots, x_n]^{p \times q}$

- $wdeg(x_i) = w_i \ge 1 \text{ for } i = 1, ..., n$
- $\operatorname{wcdeg}(\mathbf{G}, j) := \max_{1 \leqslant i \leqslant p} (\operatorname{wdeg}(g_{i,j}))) = \delta_j$

Compute $V_p(\mathbf{f}, \mathbf{G}) := \{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \mathrm{rank}(\mathbf{G}(\mathbf{x}))$

Determinantal systems

Given f = $(f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$ and $\mathbf{G} \in \mathbb{K}[x_1, \ldots, x_n]^{p \times q}$

- $wdeg(x_i) = w_i \ge 1 \text{ for } i = 1, ..., n$
- $\operatorname{wcdeg}(\mathbf{G}, j) := \max_{1 \leq i \leq p} (\operatorname{wdeg}(g_{i,j})) = \delta_j$

Compute $V_p(\mathbf{f}, \mathbf{G}) := \{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \mathrm{rank}(\mathbf{G}(\mathbf{x}))$

Theorem [Hauenstein-Labahn-Safey El Din-Schost-Vu, 2021]

Assume that n = q - p + s + 1 and $E_k(\cdot)$ the k-th elementary symmetric function. Then there are at most

$$c = \operatorname{wdeg}(f_1) \cdots \operatorname{wdeg}(f_s) \cdot E_{n-s}(\delta_1, \dots, \delta_q)/\Delta \text{ with } \Delta = w_1 \cdots w_n$$

isolated points, counted with multiplicities, in $V_p(\mathbf{f}, \mathbf{G})$, which can be computed by a randomized algorithm Homotopy_weighted with runtime being polynomial in c.

In classical domains, i.e., $wdeg(x_i) = 1$ for all *i*.

Determinantal systems

Given f =
$$(f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$$
 and $\mathbf{G} \in \mathbb{K}[x_1, \ldots, x_n]^{p \times q}$

- $wdeg(x_i) = w_i \ge 1$ for i = 1, ..., n
- $\operatorname{wcdeg}(\mathbf{G}, j) := \max_{1 \leq i \leq p} (\operatorname{wdeg}(g_{i,j})) = \delta_j$

Compute $V_p(\mathbf{f}, \mathbf{G}) := \{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \mathrm{rank}(\mathbf{G}(\mathbf{x}))$

Example : $\mathbb{K}[x_1, x_2, x_3]$ with $wdeg(x_k) = k$

Consider
$$f_1 = x_1^2 - 3x_1x_2 + 3x_3 - 8$$
 and wdeg(\mathbf{G}) = $\begin{pmatrix} 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}$, then

$$wdeg(f_1) = 3$$
, $wcdeg(G) = (3, 2, 1)$

and
$$c = 3 \cdot E_2(3, 2, 1)/(1 \cdot 2 \cdot 3) = 3 \cdot (3 \cdot 2 + 3 \cdot 1 + 2 \cdot 1)/(1 \cdot 2 \cdot 3) = 30/6 = 5$$
.

Determinantal systems and the critical points problem

Given f =
$$(f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$$
 and $\mathbf{G} \in \mathbb{K}[x_1, \ldots, x_n]^{p \times q}$

- $wdeg(x_i) = w_i \ge 1 \text{ for } i = 1, ..., n$
- $\operatorname{wcdeg}(\mathbf{G}, j) := \max_{1 \leq i \leq p} (\operatorname{wdeg}(g_{i,j})) = \delta_j$

Compute $V_p(\mathbf{f}, \mathbf{G}) := \{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \mathrm{rank}(\mathbf{G}(\mathbf{x}))$

Theorem [Hauenstein-Labahn-Safey El Din-Schost-Vu, 2021]

Assume that n = q - p + s + 1 and $E_k(\cdot)$ the k-th elementary symmetric function. Then there are at most

$$c = \operatorname{wdeg}(f_1) \cdots \operatorname{wdeg}(f_s) \cdot E_{n-s}(\delta_1, \dots, \delta_q) / \Delta \text{ with } \Delta = w_1 \cdots w_n$$

isolated points, counted with multiplicities, in $V_p(\mathbf{f}, \mathbf{G})$, which can be computed by a randomized algorithm Homotopy_weighted with runtime being polynomial in c.

$$W(\phi, \mathbf{f}) = V_{s+1}(\mathbf{f}, \mathrm{jac}(\mathbf{f}, \phi))$$

Determinantal systems and the critical points problem

Given f =
$$(f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$$
 and $\mathbf{G} \in \mathbb{K}[x_1, \ldots, x_n]^{p \times q}$

- $\operatorname{wdeg}(x_i) = w_i \ge 1 \text{ for } i = 1, \dots, n$
- $\operatorname{wcdeg}(\mathbf{G}, j) := \max_{1 \leqslant i \leqslant p} (\operatorname{wdeg}(g_{i,j})) = \delta_j$

Compute $V_p(\mathbf{f}, \mathbf{G}) := \{ \mathbf{x} \in \overline{\mathbb{K}}^n : \mathbf{f}(\mathbf{x}) = 0 \text{ and } \mathrm{rank}(\mathbf{G}(\mathbf{x}))$

Theorem [Hauenstein-Labahn-Safey El Din-Schost-Vu, 2021]

Assume that n = q - p + s + 1 and $E_k(\cdot)$ the k-th elementary symmetric function. Then there are at most

$$c = \operatorname{wdeg}(f_1) \cdots \operatorname{wdeg}(f_s) \cdot E_{n-s}(\delta_1, \dots, \delta_q)/\Delta \text{ with } \Delta = w_1 \cdots w_n$$

isolated points, counted with multiplicities, in $V_p(\mathbf{f}, \mathbf{G})$, which can be computed by a randomized algorithm Homotopy_weighted with runtime being polynomial in c.

$$W(\phi, \mathbf{f}) = V_{s+1}(\mathbf{f}, \text{jac}(\mathbf{f}, \phi))$$
 Not exploint the symmetry

Symmetry polynomials

A polynomial f is symmetric (or S_n -invariant) if

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f$$
 for all $\sigma\in S_n$

Symmetry polynomials

A polynomial f is symmetric (or S_n -invariant) if

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f$$
 for all $\sigma\in S_n$

A sequence of polynomials $\mathbf{f} = (f_1, \dots, f_s)$ is symmetric (or S_n -invariant) if

 f_i is symmetric for all i = 1, ..., s

Symmetry polynomials

A polynomial f is symmetric (or S_n -invariant) if

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f$$
 for all $\sigma\in S_n$

A sequence of polynomials $\mathbf{f} = (f_1, \dots, f_s)$ is symmetric (or S_n -invariant) if

 f_i is symmetric for all $i = 1, \ldots, s$

A set $W \subset \overline{\mathbb{K}}^n$ is S_n -invariant if

$$\sigma(\mathbf{x}) \in W$$
 for all $\sigma \in S_n$ and $\mathbf{x} \in W$

Symmetry polynomials

A polynomial f is symmetric (or S_n -invariant) if

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f \text{ for all } \sigma \in S_n$$

A sequence of polynomials $\mathbf{f} = (f_1, \dots, f_s)$ is symmetric (or S_n -invariant) if

$$f_i$$
 is symmetric for all $i = 1, \ldots, s$

A set $W \subset \overline{\mathbb{K}}^n$ is S_n -invariant if

$$\sigma(\mathbf{x}) \in W$$
 for all $\sigma \in S_n$ and $\mathbf{x} \in W$

Example :
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - 6x_1x_2x_3x_4 - 1$$
 is S_4 -invariant

Symmetry polynomials

A polynomial f is symmetric (or S_n -invariant) if

$$f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f$$
 for all $\sigma \in S_n$

A sequence of polynomials $\mathbf{f} = (f_1, \dots, f_s)$ is symmetric (or S_n -invariant) if

$$f_i$$
 is symmetric for all $i = 1, \ldots, s$

A set $W \subset \overline{\mathbb{K}}^n$ is S_n -invariant if

$$\sigma(\mathbf{x}) \in W$$
 for all $\sigma \in S_n$ and $\mathbf{x} \in W$

Example:
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - 6x_1x_2x_3x_4 - 1$$
 is S_4 -invariant

Example : $x_1^2 + x_2^2 + x_3^2 - 1$ is S_3 -invariant

Property: if $\mathbf{f} = (f_1, \dots, f_s)$ and ϕ are symmetric, then $W(\phi, \mathbf{f})$ is S_n -invariant

A list of positive integers $\lambda = (\underbrace{n_1, \dots, n_1}_{\ell_1}, \dots, \underbrace{n_r, \dots, n_r}_{\ell_r})$ is a partition of n if $n_1\ell_1 + n_2\ell_2 + \dots + n_r\ell_r = n$ with $\ell := \ell_1 + \dots + \ell_r$ is the length of λ .

A list of positive integers $\lambda = (\underbrace{n_1, \ldots, n_1}_{\ell_1}, \ldots, \underbrace{n_r, \ldots, n_r}_{\ell_r})$ is a partition of n if $n_1\ell_1 + n_2\ell_2 + \cdots + n_r\ell_r = n$ with $\ell := \ell_1 + \cdots + \ell_r$ is the length of λ .

Example: $\lambda = (1, 2)$ of n = 3, then $n_1 = 1, n_2 = 2, \ell_1 = 1, \ell_2 = 1$, and $\ell = 2$

A list of positive integers $\lambda = (\underbrace{n_1, \dots, n_1}_{\ell_1}, \dots, \underbrace{n_r, \dots, n_r}_{\ell_r})$ is a partition of n if

$$n_1\ell_1 + n_2\ell_2 + \cdots + n_r\ell_r = n$$
 with $\ell := \ell_1 + \cdots + \ell_r$ is the length of λ .

Example : $\lambda = (1, 2)$ of n = 3, then $n_1 = 1$, $n_2 = 2$, $\ell_1 = 1$, $\ell_2 = 1$, and $\ell = 2$

$$\mathbf{a} = (\underbrace{a_{1,1}, \dots, a_{1,1}}_{n_1}, \dots, \underbrace{a_{1,\ell_1}, \dots, a_{1,\ell_1}}_{n_1}, \dots, \underbrace{a_{r,1}, \dots, a_{r,1}}_{n_r}, \dots, \underbrace{a_{r,\ell_r}, \dots, a_{r,\ell_r}}_{n_r}) \in \overline{\mathbb{K}}^n : a_{i,j} \text{ are distinct}$$

A list of positive integers $\lambda = (\underbrace{n_1, \dots, n_1}_{\ell_1}, \dots, \underbrace{n_r, \dots, n_r}_{\ell_r})$ is a partition of n if

$$n_1\ell_1 + n_2\ell_2 + \cdots + n_r\ell_r = n$$
 with $\ell := \ell_1 + \cdots + \ell_r$ is the length of λ .

Example : $\lambda = (1, 2)$ of n = 3, then $n_1 = 1, n_2 = 2, \ell_1 = 1, \ell_2 = 1$, and $\ell = 2$

$$\mathbf{a} = (\underbrace{{}_{\underline{a_{1,1},\ldots,a_{1,1}}}}_{n_1},\ldots,\underbrace{{}_{\underline{a_{1,\ell_1},\ldots,a_{1,\ell_1}}}}_{n_1},\ldots,\underbrace{{}_{\underline{a_{r,1},\ldots,a_{r,1}}}}_{n_r},\ldots,\underbrace{{}_{\underline{a_{r,\ell_r},\ldots,a_{r,\ell_r}}}}_{n_r}) \in \overline{\mathbb{K}}^n \ : \ a_{i,j} \ \text{are distinct}$$

Example:
$$C_{(1,2)} = \{(a_{1,1}, a_{2,1}, a_{2,1}) \in \overline{\mathbb{K}}^3 : a_{1,1} \neq a_{2,1}\}, \text{ e.g., } (3,4,4) \in C_{(1,2)}$$

A list of positive integers $\lambda = (\underbrace{n_1, \dots, n_1}_{\ell_1}, \dots, \underbrace{n_r, \dots, n_r}_{\ell_r})$ is a partition of n if $n_1\ell_1 + n_2\ell_2 + \dots + n_r\ell_r = n$ with $\ell := \ell_1 + \dots + \ell_r$ is the length of λ .

Example:
$$\lambda = (1, 2)$$
 of $n = 3$, then $n_1 = 1, n_2 = 2, \ell_1 = 1, \ell_2 = 1$, and $\ell = 2$

$$\mathbf{a} = (\underbrace{{}_{a_{1,1},\ldots,a_{1,1}},\ldots,\underbrace{{}_{a_{1,\ell_1},\ldots,a_{1,\ell_1}},\ldots,\underbrace{{}_{a_{r,1},\ldots,a_{r,1}},\ldots,\underbrace{{}_{a_{r,\ell_r},\ldots,a_{r,\ell_r}},n_r}}) \in \overline{\mathbb{K}}^n : a_{i,j} \text{ are distinct}$$

Example:
$$C_{(1,2)} = \{(a_{1,1}, a_{2,1}, a_{2,1}) \in \overline{\mathbb{K}}^3 : a_{1,1} \neq a_{2,1}\}, \text{ e.g., } (3,4,4) \in C_{(1,2)}$$

$$W \subset \overline{\mathbb{K}}^n$$
 a S_n -invariant set, then $W = \sqcup_{\lambda} W_{\lambda}$ (disjoint union) with $W_{\lambda} := S_n(W \cap C_{\lambda})$

A list of positive integers $\lambda = (\underbrace{n_1, \dots, n_1}_{\ell_1}, \dots, \underbrace{n_r, \dots, n_r}_{\ell_r})$ is a partition of n if $n_1\ell_1 + n_2\ell_2 + \dots + n_r\ell_r = n$ with $\ell := \ell_1 + \dots + \ell_r$ is the length of λ .

Example:
$$\lambda = (1, 2)$$
 of $n = 3$, then $n_1 = 1, n_2 = 2, \ell_1 = 1, \ell_2 = 1$, and $\ell = 2$

$$\mathbf{a} = (\underbrace{{}_{a_{1,1},\ldots,a_{1,1}},\ldots,\underbrace{{}_{a_{1,\ell_1},\ldots,a_{1,\ell_1}},\ldots,\underbrace{{}_{a_{r,1},\ldots,a_{r,1}},\ldots,\underbrace{{}_{a_{r,\ell_r},\ldots,a_{r,\ell_r}},n_r}}) \in \overline{\mathbb{K}}^n : a_{i,j} \text{ are distinct}$$

Example:
$$C_{(1,2)} = \{(a_{1,1}, a_{2,1}, a_{2,1}) \in \overline{\mathbb{K}}^3 : a_{1,1} \neq a_{2,1}\}, \text{ e.g., } (3,4,4) \in C_{(1,2)}$$

$$W \subset \overline{\mathbb{K}}^n$$
 a S_n -invariant set, then $W = \sqcup_{\lambda} W_{\lambda}$ (disjoint union) with $W_{\lambda} := S_n(W \cap C_{\lambda})$

Example : Suppose
$$n = 3$$
 and $W = \{(5, 5, 5), (3, 4, 4), (3, 4, 4), (4, 4, 3)\}$. Then

$$W_{(1,2)} = \{(3,4,4), (4,3,4), (4,4,3), W_{(3)} = \{(5,5,5)\}, \text{ and } W_{(1,1,1)} = \emptyset$$

For a partition $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ and $\mathbf{a} = (a_{i,j})_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant \ell_i}$, the compression mapping :

$$E_{\lambda}(\mathbf{a}) = (E_{i,1}(a_{i,1},\ldots,a_{i,\ell_i}),\ldots,E_{i,\ell_i}(a_{i,1},\ldots,a_{i,\ell_i}))_{1 \leqslant i \leqslant r} \in \overline{\mathbb{K}}^{\ell},$$

where $E_{i,j}$'s the j-th elementary symmetric function of $a_{i,1}, \ldots, a_{i,\ell_i}$.

For a partition $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ and $\mathbf{a} = (a_{i,j})_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant \ell_i}$, the compression mapping :

$$E_{\lambda}(\mathbf{a}) = \left(E_{i,1}(a_{i,1},\ldots,a_{i,\ell_i}),\ldots,E_{i,\ell_i}(a_{i,1},\ldots,a_{i,\ell_i})\right)_{1\leqslant i\leqslant r} \in \overline{\mathbb{K}}^{\ell},$$

where $E_{i,j}$'s the j-th elementary symmetric function of $a_{i,1}, \ldots, a_{i,\ell_i}$.

$$E_{(1,2,2)}(3,4,4,5,5) = (E_{1,1}(3), E_{2,1}(4,5), E_{2,2}(4,5)) = (3,9,20)$$

For a partition $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ and $\mathbf{a} = (a_{i,j})_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant \ell_i}$, the compression mapping :

$$E_{\lambda}(\mathbf{a}) = (E_{i,1}(a_{i,1},\ldots,a_{i,\ell_i}),\ldots,E_{i,\ell_i}(a_{i,1},\ldots,a_{i,\ell_i}))_{1 \leq i \leq r} \in \overline{\mathbb{K}}^{\ell},$$

where $E_{i,j}$'s the j-th elementary symmetric function of $a_{i,1}, \ldots, a_{i,\ell_i}$.

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$E_{(1,2,2)}(3,4,4,5,5) = (E_{1,1}(3), E_{2,1}(4,5), E_{2,2}(4,5)) = (3,9,20)$$

 $W \subset \overline{\mathbb{K}}^n$ a S_n -invariant set $W_{\lambda} := S_n(W \cap C_{\lambda}), W'_{\lambda} := E_{\lambda}(W \cap C_{\lambda}) \subset \overline{\mathbb{K}}^{\ell}$

For a partition $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ and $\mathbf{a} = (a_{i,j})_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant \ell_i}$, the compression mapping :

$$E_{\lambda}(\mathbf{a}) = (E_{i,1}(a_{i,1},\ldots,a_{i,\ell_i}),\ldots,E_{i,\ell_i}(a_{i,1},\ldots,a_{i,\ell_i}))_{1 \leq i \leq r} \in \overline{\mathbb{K}}^{\ell},$$

where $E_{i,j}$'s the j-th elementary symmetric function of $a_{i,1}, \ldots, a_{i,\ell_i}$.

$$E_{(1,2,2)}(3,4,4,5,5) = (E_{1,1}(3), E_{2,1}(4,5), E_{2,2}(4,5)) = (3,9,20)$$

$$W \subset \overline{\mathbb{K}}^n$$
 a S_n -invariant set $W_{\lambda} := S_n(W \cap C_{\lambda}), W'_{\lambda} := E_{\lambda}(W \cap C_{\lambda}) \subset \overline{\mathbb{K}}^{\ell}$

Example : Suppose
$$n = 3$$
 and $W = \{(5, 5, 5), (3, 4, 4), (3, 4, 4), (4, 4, 3)\}$. Then

$$W_{(1,2)} = \{(3,4,4), (4,3,4), (4,4,3), W_{(3)} = \{(5,5,5)\}, \text{ and } W_{(1,1,1)} = \emptyset$$

and
$$W'_{(1,2)} = \{(3,4)\}$$
 and $W_{(3)} = \{(5)\}$

For a partition $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ and $\mathbf{a} = (a_{i,j})_{1 \le i \le r, 1 \le j \le \ell_i}$, the compression mapping :

$$E_{\lambda}(\mathbf{a}) = \left(E_{i,1}(a_{i,1},\ldots,a_{i,\ell_i}),\ldots,E_{i,\ell_i}(a_{i,1},\ldots,a_{i,\ell_i})\right)_{1 \leq i \leq r} \in \overline{\mathbb{K}}^{\ell},$$

where $E_{i,j}$'s the j-th elementary symmetric function of $a_{i,1}, \ldots, a_{i,\ell_i}$.

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$E_{(1,2,2)}(3,4,4,5,5) = (E_{1,1}(3), E_{2,1}(4,5), E_{2,2}(4,5)) = (3,9,20)$$

$$W \subset \overline{\mathbb{K}}^n$$
 a S_n -invariant set $W_{\lambda} := S_n(W \cap C_{\lambda}), W'_{\lambda} := E_{\lambda}(W \cap C_{\lambda}) \subset \overline{\mathbb{K}}^{\ell}$

Example : Suppose n = 3 and $W = \{(5, 5, 5), (3, 4, 4), (3, 4, 4), (4, 4, 3)\}$. Then

$$W_{(1,2)} = \{(3,4,4), (4,3,4), (4,4,3), W_{(3)} = \{(5,5,5)\}, \text{ and } W_{(1,1,1)} = \emptyset$$

and $W'_{(1,2)} = \{(3,4)\}$ and $W_{(3)} = \{(5)\}$

$$\frac{\operatorname{card}(W)}{\operatorname{card}(W_{\lambda})} = \binom{n}{n_1, \dots, n_1, \dots, n_r} = \frac{n!}{n_1!^{\ell_1} \cdots n_r!^{\ell_2}} \text{ and } \frac{\operatorname{card}(W_{\lambda})}{\operatorname{card}(W_{\lambda}')} = \ell_1! \cdots \ell_r!$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[x_1, \dots, x_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[x_1, \dots, x_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

$$\mathbb{T}_{(1,2,2)}(x_1,x_2,x_3,x_4,x_5) = (z_{1,1},z_{2,1},z_{2,1},z_{2,2},z_{2,2})$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[x_1, \dots, x_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

$$\mathbb{T}_{(1,2,2)}(x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3) = z_{1,1}^3 + 2z_{2,1}^3 + 2z_{2,2}^3$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[x_1, \dots, x_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

$$\mathbb{T}_{(1,2,2)}(\mathbf{G}) = (\mathbb{T}_{\lambda}(g_{i,j}))_{i,j} \text{ for } \mathbf{G} = (g_{i,j}) \in \mathbb{K}[x_1,\ldots,x_n]^{p \times q}$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Define the
$$\mathbb{K}$$
-algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$\mathbb{T}_{(1,2,2)}(x_1,x_2,x_3,x_4,x_5)=(z_{1,1},z_{2,1},z_{2,1},z_{2,2},z_{2,2})$$

Properties: Denote $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and let f be a S_n -invariant. Then

• $\mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant if f is S_n -invariant

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables

Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$\mathbb{T}_{(1,2,2)}(x_1,x_2,x_3,x_4,x_5)=(z_{1,1},z_{2,1},z_{2,1},z_{2,2},z_{2,2})$$

Properties: Denote $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and let f be a S_n -invariant. Then

•
$$\mathbb{T}_{(1,2,2)}(x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3) = z_{1,1}^3 + 2z_{2,1}^3 + 2z_{2,2}^3$$
 is $S_1 \times S_2$ -invariant

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

Define the
$$\mathbb{R}$$
-algebra nomomorphism $\mathbb{I}_{\lambda}: \mathbb{R}[x_1,\ldots,x_n] \to \mathbb{R}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$\mathbb{T}_{(1,2,2)}(x_1,x_2,x_3,x_4,x_5)=(z_{1,1},z_{2,1},z_{2,1},z_{2,2},z_{2,2})$$

Properties: Denote $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and let f be a S_n -invariant. Then

- $\mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant if f is S_n -invariant
- discarding some duplicated columns from $\mathbb{T}_{\lambda}(\nabla f)$ gives a S_{λ} -equivariant system,

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Let $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n and $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ sequence of ℓ_i variables Define the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda} : \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_n] \to \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Example : $\lambda = (1, 2, 2)$ of n = 5, then

$$\mathbb{T}_{(1,2,2)}(x_1,x_2,x_3,x_4,x_5)=(z_{1,1},z_{2,1},z_{2,1},z_{2,2},z_{2,2})$$

Properties: Denote $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and let f be a S_n -invariant. Then

- $\mathbb{T}_{(1,2,2)}(x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3) = z_{1,1}^3 + 2z_{2,1}^3 + 2z_{2,2}^3$ is $S_1 \times S_2$ -invariant
- discarding some duplicated columns from $\mathbb{T}_{\lambda}(\nabla f)$ gives a S_{λ} -equivariant system,

$$\mathbb{T}_{(1,2,2)}(\nabla x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3) = 3\mathbb{T}_{(1,2,2)}(x_1^2, x_2^2, x_3^2, x_4^2, x_5^2) = 3(z_{1,1}^2, z_{2,1}^2, z_{2,1}^2, z_{2,2}^2, z_{2,2}^2)$$

the sequence $(z_{1,1}^2, z_{2,1}^2, z_{2,2}^2)$ is $S_1 \times S_2$ -equivariant but NOT $S_1 \times S_2$ -invariant

Recall

- $\lambda = (n_1^{\ell_1} \dots, n_r^{\ell_r})$ a partition of n of length ℓ and $S_{\lambda} := S_{\ell_1} \times \dots \times S_{\ell_r}$
- $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ for $i = 1, \dots, r$

We index $(\mathbf{z}_1, ..., \mathbf{z}_r) = (z_1, ..., z_\ell)$.

Recall

- $\lambda=(n_1^{\ell_1}\ldots,n_r^{\ell_r})$ a partition of n of length ℓ and $S_{\lambda}:=S_{\ell_1}\times\cdots\times S_{\ell_r}$
- $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ for $i = 1, \dots, r$

We index $(\mathbf{z}_1, ..., \mathbf{z}_r) = (z_1, ..., z_\ell)$.

A sequence of polynomials $\mathbf{q} = (q_1, \dots, q_\ell)$ in $\mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$ is S_{λ} -equivariant if

$$q_i(z_{\sigma(1)},\ldots,z_{\sigma(\ell)})=q_{\sigma(i)}(z_1,\ldots,z_\ell) \text{ for all } i=1,\ldots,\ell \text{ and } \sigma\in S_\lambda$$

Recall

- $\lambda = (n_1^{\ell_1} \dots, n_r^{\ell_r})$ a partition of n of length ℓ and $S_{\lambda} := S_{\ell_1} \times \dots \times S_{\ell_r}$
- $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ for $i = 1, \dots, r$

We index $(\mathbf{z}_1,\ldots,\mathbf{z}_r)=(z_1,\ldots,z_\ell)$.

Proposition : Suppose \mathbf{q} is S_{λ} -equivariant and $z_i - z_j$ divides $q_i - q_j$. Then there exists an algorithm Symmetrize (λ, \mathbf{q}) which returns $\mathbf{p} = (p_1, \dots, p_{\ell})$ s.t.

- **p** is S_{λ} -invariant
- **p** and **q** generate the same ideal in a suitable localization of $\mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$, that is, $\mathbf{pU} = \mathbf{q}$, where **U** has a determinant unit in $\mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r, 1/\Delta]$ with $\Delta = \prod_{1 \le i < j \le \ell} (z_i z_j)$
- $\deg(p_i) \leqslant \delta \ell + i$ with $\delta = \deg(\mathbf{q})$ $p_i = 0$ if $\ell \geqslant \delta + i$
- the runtime is $O^{\sim}(\ell^3\binom{\ell+\delta}{\delta})$ operations in \mathbb{K}

Recall

- $\lambda = (n_1^{\ell_1} \dots, n_r^{\ell_r})$ a partition of n of length ℓ and $S_{\lambda} := S_{\ell_1} \times \dots \times S_{\ell_r}$
- $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$ for $i = 1, \dots, r$

We index $(\mathbf{z}_1, ..., \mathbf{z}_r) = (z_1, ..., z_\ell)$.

Proposition : Suppose \mathbf{q} is S_{λ} -equivariant and $z_i - z_j$ divides $q_i - q_j$. Then there exists an algorithm Symmetrize (λ, \mathbf{q}) which returns $\mathbf{p} = (p_1, \dots, p_{\ell})$ s.t.

- **p** is S_{λ} -invariant
- **p** and **q** generate the same ideal in a suitable localization of $\mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]$, that is, $\mathbf{pU} = \mathbf{q}$, where **U** has a determinant unit in $\mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r, 1/\Delta]$ with $\Delta = \prod_{1 \leq i \leq \ell} (z_i z_i)$
- $\deg(p_i) \leqslant \delta \ell + i$ with $\delta = \deg(\mathbf{q})$ $p_i = 0$ if $\ell \geqslant \delta + i$
- the runtime is $O(\ell^3(\ell^{+\delta}))$ operations in \mathbb{K}

Note [Hubert, 2009] has an algorithm which symmetrizes polynomials constructed via a generating set of rational invariants; but we wish to avoid rational functions

Input: symmetric polynomials ϕ and (f_1, \ldots, f_s) in $\mathbb{K}[x_1, \ldots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

Input: symmetric polynomials ϕ and (f_1, \ldots, f_s) in $\mathbb{K}[x_1, \ldots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

for all partitions λ of n

1. compute $g = \mathbb{T}_{\lambda}(f)$ and $\mathbb{T}_{\lambda}(\text{jac}(f,\varphi))$

Input : symmetric polynomials ϕ and (f_1, \dots, f_s) in $\mathbb{K}[x_1, \dots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

for all partitions λ of n

- 1. compute $g = \mathbb{T}_{\lambda}(f)$ and $\mathbb{T}_{\lambda}(jac(f, \phi))$
- 2. discard duplicated columns of $\mathbb{T}_{\lambda}(\mathrm{jac}(\mathbf{f}, \phi))$ to obtain $\mathbf{L} \in \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]^{(s+1) \times \ell}$

Input : symmetric polynomials ϕ and (f_1, \dots, f_s) in $\mathbb{K}[x_1, \dots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

for all partitions λ of n

- 1. compute $g = \mathbb{T}_{\lambda}(f)$ and $\mathbb{T}_{\lambda}(jac(f, \phi))$
- 2. discard duplicated columns of $\mathbb{T}_{\lambda}(\mathrm{jac}(\mathbf{f}, \phi))$ to obtain $\mathbf{L} \in \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]^{(s+1) \times \ell}$
- 3. apply Symmetrize algorithm on row vectors of L to obtain matrix H

Input: symmetric polynomials ϕ and (f_1, \dots, f_s) in $\mathbb{K}[x_1, \dots, x_n]$

Condition: $f = (f_1, ..., f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

for all partitions λ of n

- 1. compute $g = \mathbb{T}_{\lambda}(f)$ and $\mathbb{T}_{\lambda}(jac(f, \phi))$
- 2. discard duplicated columns of $\mathbb{T}_{\lambda}(\mathrm{jac}(\mathbf{f}, \phi))$ to obtain $\mathbf{L} \in \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]^{(s+1) \times \ell}$
- 3. apply Symmetrize algorithm on row vectors of L to obtain matrix H
- 4. find $\zeta_{\mathbf{q}}$ and $\zeta_{\mathbf{H}}$ with entries in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ s. t.

$$\zeta_{\mathfrak{g}}(E_{1,1}(\mathbf{z}_1),\ldots,E_{r,\ell_r}(\mathbf{z}_r))=\mathfrak{g}$$
 and $\zeta_{\mathbf{H}}(E_{1,1}(\mathbf{z}_1),\ldots,E_{r,\ell_r}(\mathbf{z}_r))=\mathbf{H}$

with
$$deg(E_{i,k}) = k$$
; so $wdeg(e_{i,k}) = k$

Input : symmetric polynomials ϕ and (f_1, \ldots, f_s) in $\mathbb{K}[x_1, \ldots, x_n]$

Condition : $f = (f_1, \dots, f_s)$ satisfies (A) and $W(\phi, f)$ is finite

Output: a representation for $W(\phi, \mathbf{f})$

Assumption (A): the Jacobian matrix of f has full rank at any solution of f

for all partitions λ of n

- 1. compute $g = \mathbb{T}_{\lambda}(f)$ and $\mathbb{T}_{\lambda}(jac(f, \phi))$
- 2. discard duplicated columns of $\mathbb{T}_{\lambda}(\mathrm{jac}(\mathbf{f}, \phi))$ to obtain $\mathbf{L} \in \mathbb{K}[\mathbf{z}_1, \dots, \mathbf{z}_r]^{(s+1) \times \ell}$
- 3. apply Symmetrize algorithm on row vectors of L to obtain matrix H
- 4. find $\zeta_{\mathbf{q}}$ and $\zeta_{\mathbf{H}}$ with entries in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ s. t.

$$\zeta_{\mathfrak{g}}(E_{1,1}(\mathbf{z}_1),\ldots,E_{r,\ell_r}(\mathbf{z}_r))=\mathfrak{g}$$
 and $\zeta_{\mathbf{H}}(E_{1,1}(\mathbf{z}_1),\ldots,E_{r,\ell_r}(\mathbf{z}_r))=\mathbf{H}$

with
$$deg(E_{i,k}) = k$$
; so $wdeg(e_{i,k}) = k$

5. find $\mathcal{R}_{\lambda} = \mathsf{Homotopy_weighted}(\zeta_{\mathbf{g}}, \zeta_{\mathbf{H}})$

Part II:

Emptiness decision and Computing sample points

Let \mathbb{Q} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output: true iff $S \neq \emptyset$ else false

This is a decision problem.

Emptiness decision and Computing sample points

Let \mathbb{Q} be a field and f_1, \ldots, f_s be polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output: true iff $S \neq \emptyset$ else false

This is a decision problem.

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output: Some points in *S* whenever they exist

- how to encode them? What to do if $|S| = \infty$?
- representative points in all the connected components of S
- quantitative results on the number of connected components of S?

Exact/Symbolic computation.

State-of-the-art

Collins' Cylindrical Algebraic Decomposition algorithm

- complexity doubly exponential in *n*
- implementations are limited to small *n*

[Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning]

State-of-the-art

Collins' Cylindrical Algebraic Decomposition algorithm

- complexity doubly exponential in n
- implementations are limited to small *n*

[Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning]

 \sim Quest for algorithms singly exponential in n

The critical point method

```
[Grigoriev-Vorobjov], [Canny] [Renegar], [Heintz-Roy-Solerno], [Basu-Pollack-Roy], [Bank-Giusti-Heintz-Mbakop], [Aubry-Rouillier-Safey El Din], [Rouillier-Roy-Safey El Din] [Safey El Din-Schost]
```

Critical point method

Reduction of the dimension through Global Optimization

Main idea: studying a map that

- reaches an extremum on each connected component of S
- · whose critical locus is zero-dimensional

Critical point method

Reduction of the dimension through Global Optimization

Main idea: studying a map that

- reaches an extremum on each connected component of S
- · whose critical locus is zero-dimensional

Representation of finite sets: using univariate polynomials (v, v_1, \dots, v_n)

Critical point method

Reduction of the dimension through Global Optimization

Main idea: studying a map that

- reaches an extremum on each connected component of S
- · whose critical locus is zero-dimensional

Representation of finite sets: using univariate polynomials (v, v_1, \dots, v_n)

Existence : from *n*-variate to univariate problems

Our goal with symmetry

 $\mathbf{f} = (f_1, \dots, f_s)$ are symmetric polynomials in $\mathbb{Q}[x_1, \dots, x_n]$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output : true iff $S \neq \emptyset$ else false

Assumption (A) : the Jacobian matrix of f has full rank at any point of $V(\mathbf{f})$

Our goal with symmetry

 $\mathbf{f} = (f_1, \dots, f_s)$ are symmetric polynomials in $\mathbb{Q}[x_1, \dots, x_n]$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

→ exploit the symmetry to reduce the cost of computations

Theorem [Labahn-Riener-Safey El Din-Schost-Vu, preprint 2023]

There exists a randomized algorithm that takes **f** as input and decides the existence of real points in $V(\mathbf{f})$. The runtime is polynomial in d^s , $\binom{n+d}{d}$, and $\binom{n}{s+1}$.

Our goal with symmetry

 $\mathbf{f} = (f_1, \dots, f_s)$ are symmetric polynomials in $\mathbb{Q}[x_1, \dots, x_n]$

Input : $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$

Output: true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

→ exploit the symmetry to reduce the cost of computations

Theorem [Labahn-Riener-Safey El Din-Schost-Vu, preprint 2023]

There exists a randomized algorithm that takes f as input and decides the existence of real points in V(f). The runtime is polynomial in d^s , $\binom{n+d}{d}$, and $\binom{n}{s+1}$.

Observe: The runtime is

- polynomial in n when n and d are fixed
- equal to $n^{O(1)}2^n$ when d=n
- subexponential in *n* when $d \simeq n^{\alpha}$ with $\alpha < 1$

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $f = (f_1, ..., f_s)$ in $\mathbb{Q}[x_1, ..., x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $f = (f_1, ..., f_s)$ in $\mathbb{Q}[x_1, ..., x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Then, $g := \mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant and also satisfies (A)

$$\begin{split} \mathbb{T}_{\lambda}(\mathrm{jac}(\mathsf{f})) &= \mathrm{jac}(\mathsf{g}) \cdot \mathsf{M}, \text{ where } \mathsf{M} = \mathrm{diag}(\mathsf{M}_1, \dots, \mathsf{M}_r) \in \mathbb{K}^{\ell \times n} \\ \mathsf{M}_i &= \begin{pmatrix} \frac{1}{n_i} & \cdots & \frac{1}{n_i} & \cdots & \mathbf{0} \\ & \vdots & \ddots & \vdots \\ & \mathbf{0} & \cdots & \frac{1}{n_i} & \cdots & \frac{1}{n_i} \end{pmatrix} \in \mathbb{K}^{\ell_i \times n_i \ell_i} \text{ of } \mathrm{rank } \ \ell_i; \text{ so } \mathrm{rank}(\mathsf{M}) = \ell \end{split}$$

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $\mathbf{f} = (f_1, \dots, f_s)$ in $\mathbb{Q}[x_1, \dots, x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Then, $g := \mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant and also satisfies (A)

$$\mathbb{T}_{\lambda}(\mathrm{jac}(f)) = \mathrm{jac}(g) \cdot M$$
, where $M \in \mathbb{K}^{\ell \times n}$ of rank ℓ

Example :
$$n = 7$$
 and $\lambda = (2, 2, 3)$. Then $\mathbf{M} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & & \\ & & \frac{1}{2} & \frac{1}{2} & \\ & & & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ of rank $2 + 1$

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $f = (f_1, \dots, f_s)$ in $\mathbb{Q}[x_1, \dots, x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Then, $q := \mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant and also satisfies (A)

$$\mathbb{T}_{\lambda}(\mathrm{jac}(f)) = \mathrm{jac}(g) \cdot M$$
, where $M \in \mathbb{K}^{\ell \times n}$ of rank ℓ

and for $\mathbf{c} \in V(\mathbb{T}_{\lambda}(\mathbf{f})) \cap \mathbb{C}^{\ell}$, there exists $\mathbf{u} \in V(\mathbf{f}) \cap \mathbb{C}^{n}$ s.t. $\mathbb{T}_{\lambda}(\mathrm{jac}(\mathbf{f}))(\mathbf{c}) = \mathrm{jac}(\mathbf{f})(\mathbf{u})$. Thus

$$jac(f)(\mathbf{u}) = jac(g)(c) \cdot \mathbf{M}$$

The left kernel of $jac(f)(\mathbf{u})$ is trivial by (A), so is jac(g)(c).

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $f = (f_1, ..., f_s)$ in $\mathbb{Q}[x_1, ..., x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Then,
$$\zeta_g$$
 in $\mathbb{K}[\mathbf{e}_1,\ldots,\mathbf{e}_r]$ is also satisfies (A), where $\zeta_g(E_{i,j})=g$

$$\mathrm{jac}(\mathbf{g}) = \mathrm{jac}(\zeta_{\mathbf{g}})(E_{i,j}) \cdot \mathbf{V}$$
, where $\mathbf{V} = \mathrm{diag}(\mathbf{V}_1, \dots, \mathbf{V}_r)$

with V_i the Vandermonde matrix of $(E_{i,1}, \ldots, E_{i,\ell_i})$

Recall, for $\lambda = (n_1^{\ell_1} \dots n_r^{\ell_r})$ a partition of n of length $\ell = \ell_1 + \dots + \ell_r$

- $S_{\lambda} := S_{\ell_1} \times \cdots \times S_{\ell_r}$ and $E_{i,j} : j$ -th elementary symmetric function in $\mathbf{z}_i = (z_{i,1}, \dots, z_{i,\ell_i})$
- the \mathbb{K} -algebra homomorphism $\mathbb{T}_{\lambda}: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[\mathbf{z}_1,\ldots,\mathbf{z}_r]$

$$(x_1,\ldots,x_n)\mapsto \left(\underbrace{z_{1,1},\ldots,z_{1,1}}_{n_1},\ldots,\underbrace{z_{1,\ell_1},\ldots,z_{1,\ell_1}}_{n_1},\ldots,\underbrace{z_{r,1},\ldots,z_{r,1}}_{n_r},\ldots,\underbrace{z_{r,\ell_r},\ldots,z_{r,\ell_r}}_{n_r}\right)$$

Given $f = (f_1, ..., f_s)$ in $\mathbb{Q}[x_1, ..., x_n]$; all are symmetric

Assumption (A): the Jacobian matrix of f has rank s at any point of V(f)

Then,

- $g := \mathbb{T}_{\lambda}(f)$ is S_{λ} -invariant and also satisfies (A) and
- ζ_g in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ also satisfies (A), where $\zeta_g(E_{i,j}) = g$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$; all are symmetric

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

for a partition λ of n of length at least s

1. compute $\mathbf{g} = \mathbb{T}_{\lambda}(\mathbf{f}) \in \mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$; all are symmetric

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

- 1. compute $\mathbf{g} = \mathbb{T}_{\lambda}(\mathbf{f}) \in \mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$
- 2. construct a good S_{λ} -invariant map ϕ in $\mathbb{Q}[z_{i,k}]$ s.t

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$; all are symmetric

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

- 1. compute $g = \mathbb{T}_{\lambda}(f) \in \mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$
- 2. construct a good S_{λ} -invariant map ϕ in $\mathbb{Q}[z_{i,k}]$ s.t
- 3. find ζ_g and ζ_{φ} in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ s.t $\zeta_g(E_{i,j}) = \mathbf{g}$ and $\zeta_{\varphi}(E_{i,j}) = \varphi$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$; all are symmetric

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

- 1. compute $\mathbf{g} = \mathbb{T}_{\lambda}(\mathbf{f}) \in \mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$
- 2. construct a good S_{λ} -invariant map ϕ in $\mathbb{Q}[z_{i,k}]$ s.t
- 3. find ζ_g and ζ_{φ} in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ s.t $\zeta_g(E_{i,j}) = \mathbf{g}$ and $\zeta_{\varphi}(E_{i,j}) = \varphi$
- 4. compute critical point set W of ζ_{Φ} restricted to $V(\zeta_{\mathbf{q}})$
 - $W = \mathsf{Homotopy_weighted} (\zeta_{\mathfrak{g}}, \mathsf{jac}(\zeta_{\mathfrak{g}}, \zeta_{\Phi}))$
 - W is encoded by univariate polynomials $(v, v_{1,1}, \dots, v_{r,\ell_r})$

Input: $f_1 = \cdots = f_s = 0$ that defines $S \subset \mathbb{R}^n$; all are symmetric

Output : true iff $S \neq \emptyset$ else false

Assumption (A): the Jacobian matrix of f has full rank at any point of V(f)

- 1. compute $\mathbf{g} = \mathbb{T}_{\lambda}(\mathbf{f}) \in \mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$
- 2. construct a good S_{λ} -invariant map ϕ in $\mathbb{Q}[z_{i,k}]$ s.t
- 3. find ζ_g and ζ_{φ} in $\mathbb{K}[\mathbf{e}_1, \dots, \mathbf{e}_r]$ s.t $\zeta_g(E_{i,j}) = g$ and $\zeta_{\varphi}(E_{i,j}) = \varphi$
- 4. compute critical point set W of ζ_{Φ} restricted to $V(\zeta_{\mathbf{q}})$
 - $W = \mathsf{Homotopy_weighted}(\zeta_{\mathbf{q}}, \mathsf{jac}(\zeta_{\mathbf{q}}, \zeta_{\Phi}))$
 - W is encoded by univariate polynomials $(v, v_{1,1}, \dots, v_{r,\ell_r})$
- 5. existence of real roots of bi-variate polynomial systems $(v, v_{i,1}, \dots, v_{i,\ell_i})$
 - from $e_{i,i}$ coordinates back to $(\mathbf{z}_1, \dots, \mathbf{z}_r)$ then to (x_1, \dots, x_n)
 - use Vieta polynomials $\rho_i := u^{\ell_i} v_{i,1}(t)u^{\ell_i-1} + \dots + (-1)^{\ell_i}e_{i,\ell_i}(t) \in \mathbb{C}[t][u]$

Given S_{λ} -invariant polynomials g in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

Given S_{λ} -invariant polynomials \mathbf{g} in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

Construct a S_{λ} -invariant map ϕ in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$ s.t. ϕ

(i.) reaches an extremum on each connected component of real locus of $V(\mathbf{g})$

Given S_{λ} -invariant polynomials g in $\mathbb{Q}[\mathbf{z}_1, \ldots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \ldots, n_r^{\ell_r})$

- (i.) reaches an extremum on each connected component of real locus of V(g)
 - φ is a proper map

Given S_{λ} -invariant polynomials \mathbf{g} in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

- (i.) reaches an extremum on each connected component of real locus of V(g)
 - φ is a proper map
 - $\phi = \phi_1 + \cdots + \phi_m$, where ϕ_k the homogeneous component of degree k if ϕ_m is positive definite; then, ϕ is proper

Given S_{λ} -invariant polynomials \mathbf{g} in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

- (i.) reaches an extremum on each connected component of real locus of V(g)
 - φ is a proper map
 - $\phi = \phi_1 + \cdots + \phi_m$, where ϕ_k the homogeneous component of degree k if ϕ_m is positive definite; then, ϕ is proper
 - \rightarrow the leading form of ϕ is Newton power sums of even degree

Given S_{λ} -invariant polynomials \mathbf{g} in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

- (i.) reaches an extremum on each connected component of real locus of V(g)
 - φ is a proper map
 - $\phi = \phi_1 + \cdots + \phi_m$, where ϕ_k the homogeneous component of degree k if ϕ_m is positive definite; then, ϕ is proper
 - \rightarrow the leading form of ϕ is Newton power sums of even degree
- (ii.) has finite number of critical points on V(g)

Given S_{λ} -invariant polynomials \mathbf{g} in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

- (i.) reaches an extremum on each connected component of real locus of V(g)
 - φ is a proper map
 - $\phi = \phi_1 + \cdots + \phi_m$, where ϕ_k the homogeneous component of degree k if ϕ_m is positive definite; then, ϕ is proper
 - \rightarrow the leading form of ϕ is Newton power sums of even degree
- (ii.) has finite number of critical points on $V(\mathfrak{g})$
 - → random linear combination of Newton power sums upto high enough degrees

Given S_{λ} -invariant polynomials g in $\mathbb{Q}[\mathbf{z}_1, \dots, \mathbf{z}_r]$; $\lambda = (n_1^{\ell_1}, \dots, n_r^{\ell_r})$

Construct a S_{λ} -invariant map ϕ in $\mathbb{Q}[\mathbf{z}_1, \ldots, \mathbf{z}_r]$ s.t. ϕ

- (i.) reaches an extremum on each connected component of real locus of $V(\mathfrak{g})$
 - φ is a proper map
 - $\phi = \phi_1 + \cdots + \phi_m$, where ϕ_k the homogeneous component of degree k if ϕ_m is positive definite; then, ϕ is proper
 - \rightarrow the leading form of ϕ is Newton power sums of even degree
- (ii.) has finite number of critical points on $V(\mathfrak{g})$
 - \rightsquigarrow random linear combination of Newton power sums upto high enough degrees

$$\phi := \sum_{i=1}^{r} c_i P_{i,\ell_{i+1}} + \sum_{i=1}^{r} \sum_{k=0}^{\ell_i} c_{i,j} P_{i,k} \quad \text{where} \quad P_{i,k} := z_{i,1}^k + \dots + z_{i,\ell_i}^k$$

with $c_{i,j}$ are random numbers in \mathbb{Q} and $c_i = 1$ if ℓ_i is odd and $c_i = 0$ if ℓ_i is even

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

• compute
$$g=\mathbb{T}_{(4)}(f)=-6z_{1,1}^4+4z_{1,1}^2-1=-2z_{1,1}^4-(2z_{1,1}^2-1)^2<0$$
 for all $z_{1,1}\in\mathbb{R}$

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

$$\bullet \ \ \text{compute} \ g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0 \ \text{for all} \ z_{1,1} \in \mathbb{R}$$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

Consider $f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - 6x_1x_2x_3x_4 - 1$, then $S = V(f) \cap \mathbb{R}^4$ is non-empty

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, \dots, 4$$

• compute
$$g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0$$
 for all $z_{1,1} \in \mathbb{R}$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

• compute $g = \mathbb{T}_{(2,2)}(f) = 2z_{1,1}^2 + 2z_{2,1}^2 - 6z_{1,1}^2 z_{2,1}^2 - 1$ is S_2 -invariant

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

• compute
$$g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0$$
 for all $z_{1,1} \in \mathbb{R}$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

- compute $g = \mathbb{T}_{(2,2)}(f) = 2z_{1,1}^2 + 2z_{2,1}^2 6z_{1,1}^2z_{2,1}^2 1$ is S_2 -invariant
- take $\phi = 5(z_{1,1}^2 + z_{1,2}^2) 9(z_{1,2} + z_{1,2}) 3$.

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, \dots, 4$$

• compute
$$g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0$$
 for all $z_{1,1} \in \mathbb{R}$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

- compute $g = \mathbb{T}_{(2,2)}(f) = 2z_{1,1}^2 + 2z_{2,1}^2 6z_{1,1}^2 z_{2,1}^2 1$ is S_2 -invariant
- take $\phi = 5(z_{1,1}^2 + z_{1,2}^2) 9(z_{1,2} + z_{1,2}) 3$.
- find $\zeta_{\Phi} = 5e_{1,1}^2 9e_{1,1} 10e_{1,2} 3$ and $\zeta_g = 2e_{1,1}^2 6e_{1,2}^2 4e_{1,2} 1$

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

• compute
$$g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0$$
 for all $z_{1,1} \in \mathbb{R}$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

- compute $g = \mathbb{T}_{(2,2)}(f) = 2z_{1,1}^2 + 2z_{2,1}^2 6z_{1,1}^2z_{2,1}^2 1$ is S_2 -invariant
- take $\phi = 5(z_{1,1}^2 + z_{1,2}^2) 9(z_{1,2} + z_{1,2}) 3$.
- find $\zeta_{\Phi} = 5e_{1,1}^2 9e_{1,1} 10e_{1,2} 3$ and $\zeta_g = 2e_{1,1}^2 6e_{1,2}^2 4e_{1,2} 1$
- critical point set W of ζ_{Φ} restricted to ζ_g are solutions to $\zeta_g = \det(\mathrm{jac}(\zeta_g, \zeta_{\Phi})) = 0$; W is encoded by $v, v_{1,1}, v_{1,2}$

$$v = 200t^4 - 360t^3 + 62t^2 + 60t - 27$$
, $v_{1,1} = t$, and $v_{1,2} = -1/6t^3 + 9/20t^2 - 31/600t - 1/20t^2$

Consider $f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - 6x_1x_2x_3x_4 - 1$, then $S = V(f) \cap \mathbb{R}^4$ is non-empty

$$\lambda = (4); x_i = z_{1,1} \text{ for all } i = 1, ..., 4$$

• compute $g = \mathbb{T}_{(4)}(f) = -6z_{1,1}^4 + 4z_{1,1}^2 - 1 = -2z_{1,1}^4 - (2z_{1,1}^2 - 1)^2 < 0$ for all $z_{1,1} \in \mathbb{R}$

$$\lambda = (2, 2), n_1 = 2, \ell_1 = \ell = 2; x_1 = z_{1,1}, x_2 = z_{1,1}, x_3 = z_{1,2}, x_4 = z_{1,2}$$

- compute $g = \mathbb{T}_{(2,2)}(f) = 2z_{1,1}^2 + 2z_{2,1}^2 6z_{1,1}^2 z_{2,1}^2 1$ is S_2 -invariant
- take $\phi = 5(z_{1,1}^2 + z_{1,2}^2) 9(z_{1,2} + z_{1,2}) 3$.
- find $\zeta_{\Phi} = 5e_{1,1}^2 9e_{1,1} 10e_{1,2} 3$ and $\zeta_g = 2e_{1,1}^2 6e_{1,2}^2 4e_{1,2} 1$
- critical point set W of ζ_{Φ} restricted to ζ_g are solutions to $\zeta_g = \det(\mathrm{jac}(\zeta_g, \zeta_{\Phi})) = 0$; W is encoded by $v, v_{1,1}, v_{1,2}$

$$v = 200t^4 - 360t^3 + 62t^2 + 60t - 27$$
, $v_{1,1} = t$, and $v_{1,2} = -1/6t^3 + 9/20t^2 - 31/600t - 1/20t^2 + 1/2$

check the system

$$\rho_1 = v = 0$$
, with $\rho_1 = v'u^2 - v_{1,1}u + v_{2,1} \in \mathbb{Q}[t, u]$,

has real solutions

See you in Tromsø this summer!