The Key Proposition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On the Relationship Between Differential Algebra and Tropical Differential Geometry (joint work with S. Falkensteiner and M. P. Noordman)

François Boulier

March 15, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Differential Algebra (DA) founded by J. F. Ritt (1932, 1950). Developed by E. R. Kolchin (1973). An algebraic theory for polynomial differential equations.
- Tropical Differential Algebraic Geometry (TDAG) founded by D. Grigoriev (2015). A differential analogue of tropical algebra (aka min-plus algebra) for the study of formal power series (FPS) solutions of polynomial differential equations.

Gumon topic: FPS solutions of ODE systems Fundamental Theorem of TDAG (2016) Aroca, Garay, Toghani Computing FPS Solutions

Basic Concepts of TDAG 0000000

The Key Proposition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Autonomous Equations

$$\dot{y}^2 + 8 y^3 - 1 = 0.$$

$\begin{array}{ll} \mbox{Differentiate} & \dot{y}^2 + 8\,y^3 - 1\,, \\ & 2\,\dot{y}\,\ddot{y} + 24\,y^2\,\dot{y}\,, \end{array}$

÷

Computing FPS Solutions

Basic Concepts of TDAG 0000000

The Key Proposition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Autonomous Equations

$$\dot{y}^2 + 8 y^3 - 1 = 0.$$

Differentiate $\dot{y}^2 + 8y^3 - 1$, $2 \dot{y} \ddot{y} + 24y^2 \dot{y}$,

÷

Rename $y^{(k)}$ as a_k .

Computing	FPS	Solutions	
000000			

The Key Proposition

Autonomous Equations

$$\dot{y}^2 + 8 y^3 - 1 = 0.$$

$\begin{array}{ll} \mbox{Differentiate} & \dot{y}^2 + 8\,y^3 - 1\,, \\ & 2\,\dot{y}\,\ddot{y} + 24\,y^2\,\dot{y}\,, \end{array}$

Rename $y^{(k)}$ as a_k . Solve and get some (truncated) arc <u>a</u>

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots) = (0, 1, 0, 0, -24, 0, 0, 2880, \ldots).$

The Key Proposition

Autonomous Equations

$$\dot{y}^2 + 8 y^3 - 1 = 0.$$

 $\begin{array}{ll} \mbox{Differentiate} & \dot{y}^2 + 8\,y^3 - 1\,, \\ & 2\,\dot{y}\,\ddot{y} + 24\,y^2\,\dot{y}\,, \end{array}$

Rename $y^{(k)}$ as a_k . Solve and get some (truncated) arc <u>a</u>

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots) = (0, 1, 0, 0, -24, 0, 0, 2880, \ldots).$

Plug in
$$\Psi(\underline{a}) = \sum \frac{a_i}{i!} x^i$$
.

A FPS solution (centered at the origin) is obtained

$$\bar{y}(x) = x - x^4 + 4/7 x^7 + \cdots$$

The Key Proposition

Autonomous Equations

$$\dot{y}^2 + 8 y^3 - 1 = 0.$$

 $\begin{array}{ll} \mbox{Differentiate} & \dot{y}^2 + 8\,y^3 - 1\,, \\ & 2\,\dot{y}\,\ddot{y} + 24\,y^2\,\dot{y}\,, \end{array}$

Rename $y^{(k)}$ as a_k . Solve and get some (truncated) arc <u>a</u>

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots) = (0, 1, 0, 0, -24, 0, 0, 2880, \ldots).$

Plug in
$$\Psi_{\alpha}(\underline{a}) = \sum \frac{a_i}{i!} (x - \alpha)^i$$
.

A FPS solution (centered at $x = \alpha$) is obtained

$$\bar{y}(x) = (x-\alpha) - (x-\alpha)^4 + \frac{4}{7} (x-\alpha)^7 + \cdots$$

The Key Proposition

Non Autonomous Equation

$$x\dot{y}^2 + 8xy^3 - 1 = 0.$$

Differentiate $x\dot{y}^2 + 8xy^3 - 1$, $2x\dot{y}\ddot{y} + \dot{y}^2 + 24xy^2\dot{y} + 8y^3$,

Rename $y^{(k)}$ as a_k . Replace x by the expansion point (say) $\alpha = 1$. Solve and get some (truncated) arc <u>a</u>

$$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots) = (0, 1, -\frac{1}{2}, \frac{3}{4}, -\frac{207}{8}, \frac{489}{16}, \ldots).$$

Plug in
$$\Psi_{\alpha=1}(\underline{a}) = \sum \frac{a_i}{i!} (x-1)^i$$
.

A FPS solution (centered at $x = \alpha = 1$) is obtained

$$\bar{y}(x) = (x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{8}(x-1)^3 - \frac{69}{64}(x-1)^4 + \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary — The Issue

- An issue on the expansion point (x = α) or on the initial values (y(α) = a₀, ẏ(α) = a₁,...) arises if the leading coefficients of the differentiated system (the initial and separant of the differential polynomial) vanish at these values
- Such a cancellation may prevent FPS solutions to exist or to be unique at x = α
- Reduction to the autonomous case is always possible but transforms issues on the expansion point into issues on initial values
 Developed on the 2 next slides

Computing FPS Solutions

Basic Concepts of TDAG

The Key Proposition

Existence Problem of Solutions

Start with any polynomial $f \in \mathbb{Q}[z]$

. The PDE CER, Hilbert's 10th Problem

-1

$$f(z) = z^2-2.$$

Obtain
$$p \in \mathbb{Q}\{y\}$$
 by $p = f\left(x \frac{\mathrm{d}}{\mathrm{d}x}\right) y$.
= $x^2 \ddot{y} + x \dot{y} - 2y$.

Fact 1. If
$$\underline{a} = (a_0, a_1, \ldots)$$
 is any arc $p(\Psi(\underline{a})) = \sum_{i \ge 0} a_i f(i) x^i$.

Fact 2. The following identity holds

$$\frac{1}{1-x} = \sum_{i\geq 0} x^{i}.$$
Thus $(1-x)p-1 = 0$ has a FPS solution iff $a_{i} = 1/f(i).$

 \therefore iff A has no positive integer cost

The Key Proposition

Reduction to Autonomous Equations

$$p(x,y,\dot{y},\ddot{y},\ldots) = 0,$$

View x and y as two unknown functions $x(\xi)$ and $y(\xi)$ and add

$$\dot{x} = 1.$$

Compute a FPS solution

If $x = \alpha$ was a problematic expansion point before reduction then $b_0 = \alpha$ is a problematic initial value after reduction.

Summary — Ritt DA Approach

- Ritt only considers autonomous systems Σ ⊂ ℱ{y₁,..., y_n} (say ℱ = ℚ)
- The existence problem of FPS solutions at any α and unspecified initial values is equivalent to the decision problem $1 \in [\Sigma]$ (the differential ideal generated by Σ). It is algorithmic.

For non autonomous systems

• Thanks to the reduction process, the existence problem of FPS solutions at unspecified α and unspecified initial values is equivalent to the decision problem $1 \in [\Sigma]$

The Key Proposition

Summary — The TDAG Approach

TDAG considers general systems $\Sigma \subset \mathscr{F}[[x]]\{y_1, \ldots, y_n\}$ \mathscr{F} field of constants, characteristic zero Reduction to the autonomous case is impossible FPS solutions are sought at the origin

- This problem (over $\mathbb{Q}[x]$) is decidable (I have not understood the proof).
- The existence problem of nonzero solutions is undecidable.
- The fundamental theorem of TDAG only states an equivalence.
 - Provided that Σ is a differential ideal and the base field is an algebraically closed, uncountable, field of characteristic zero
 - The tropicalization of the FPS solutions of Σ exactly is the solution set of the tropicalization of Σ:

 $trop(sol(\Sigma)) = sol(trop(\Sigma))$ new result on bot slide

The Key Proposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tropicalization of a FPS

$$\varphi = \sum_{i \in \mathbb{N}} a_i \, x^i$$

- The support of φ is the set $\{i \in \mathbb{N} \mid a_i \neq 0\}$.
- The valuation of φ is ∞ if $\varphi = 0$ else it is the minimal element of its support.
- \mathbf{D}_{e} The tropicalization of φ is its support.

Thus $\operatorname{trop}(\operatorname{sol}(\Sigma))$ is the set of supports of all FPS solutions of Σ .

A D N A 目 N A E N A E N A B N A C N

Tropicalization of a differential monomial

Let

- y_1, \ldots, y_n be *n* differential indeterminates
- S_1, \ldots, S_n be *n* supports
- $m = c v_1^{d_1} \cdots v_r^{d_r}$ be a monomial $(c \in \mathscr{F}[[x]]$ and each v_i a derivative $(y^{(j)})^k$

Then trop(m) [at S_1, \ldots, S_n] is the valuation of the FPS obtained by evaluating m at any tuple of n FPS with supports S_1, \ldots, S_n .

Computing FFS Solutions	Basic Concepts of TDAG
	000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Examples

> TropicalizePolynomial
$$(x^2*y, \{y = \{0, 1, 2\}\}, R);$$

(3) Valuchan $(x^2y) = \{0, 1, 2\}$

Computing	FPS	Solutions

The Key Proposition

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Examples

> TropicalizePolynomial (x²*y, {y = {0,1,2}}, R); [2]

Computing	FPS	Solutions

The Key Proposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

 $y(x) = o_{x} + o_{x} x^{2} \quad (a; \neq a)$ > TropicalizePolynomial (x^2*y, {y = {0,1,2}}, R); [2] $y(x) = o_{1} x^{2} \quad (o_{2} \neq a)$ > TropicalizePolynomial (x^2*y, {y = {2}}, R); () Valuction (x²y) = ?

Computing FPS Solutions	Basic Concepts of TDAG
	000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

 $y(x) = o_{x} + a_{y} x^{2} \quad (a; \neq 0)$ > TropicalizePolynomial (x^2*y, {y = {0,1,2}}, R); [2] $y(x) = a_{y} x^{2} (a_{y} \neq 0)$ > TropicalizePolynomial (x^2*y, {y = {2}}, R); [4]

Computing	FPS	Solutions

The Key Proposition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

 $y(x) = \sigma_{x} + \sigma_{y} \times + \sigma_{y} \times (a; \neq 0)$ > TropicalizePolynomial (x^2*y, {y = {0,1,2}}, R); [2] $y(x) = \sigma_{x} \times (c_{x} \neq 0)$ > TropicalizePolynomial (x^2*y, {y = {2}}, R); [4] $y(x) = \sigma_{y} \times (a, \neq 0)$ > TropicalizePolynomial (y[x]^3, {y = {0,3}}, R); (y[x]^3, {y = {0,3}}, R);

Computing	FPS	Solutions

The Key Proposition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

Computing	FPS	Solutions

The Key Proposition

Examples

y(x) = 0, + 0, x + 0, x (2; +) > TropicalizePolynomial (x²*y, {y = {0,1,2}}, R); [2] $y(x) = a_{1}x^{2}(a_{1} \neq 0)$ > TropicalizePolynomial (x^2*y, {y = {2}}, R); $[4] , y(x) = q_{0} + a_{3} x^{3} (q_{0} \neq a)$ > TropicalizePolynomial (y[x]^3, {y = {0,3}}, R); [6] $y(x) = a_{1} + a_{1}x$ (a) a_{1} > TropicalizePolynomial $(y[x,x]^3, \{y = \{0,1\}\}, R);$ (valuation of y = !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Computing	FPS	Solutions

The Key Proposition

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Examples

Computing FPS Solutions	Basic Concepts o
	0000000

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

•
$$y(x) = 0$$
 (support \varnothing) and
• $y(x) = (x + c)^2$ (supports {0,1,2} and {2})
Support ψ solutions
> TropicalizePolynomial ($y[x]^2 - 4*y$, { $y = {}$ }, R);
what is the list of the trop (m;) ?
C should be a min !

TDAG

Computing FPS Solutions	Basic Concepts of TDAG
	0000000

>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

•
$$y(x) = 0$$
 (support \emptyset) and
• $y(x) = (x + c)^2$ (supports $\{0, 1, 2\}$ and $\{2\}$)
• TropicalizePolynomial ($y[x]^2 - 4*y$, $\{y = \{\}\}$, R);
Both monomials y_{anish} [infinity, infinity]

Computing	FPS	Solutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

•
$$y(x) = 0$$
 (support \emptyset) and
• $y(x) = (x + c)^2$ (supports {0,1,2} and {2})
• $y(x) = (x + c)^2$ (supports {0,1,2} and {2})
• TropicalizePolynomial ($y[x]^2 - 4*y$, { $y = {}$ }, R);
• TropicalizePolynomial ($y[x]^2 - 4*y$, { $y = {}$ }, R);
• TropicalizePolynomial ($y[x]^2 - 4*y$, { $y = {}$ }, R);

Computing	FPS	Solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

• y(x) = 0 (support \emptyset) and • $y(x) = (x + c)^2$ (supports $\{0, 1, 2\}$ and $\{2\}$) supports ae> TropicalizePolynomial ($y[x]^2 - 4*y$, $\{y = \{\}\}$, R); Both monomials Vanish [infinity, infinity] $y(x) = a_2 x^2 (a_2 t - a_3 x^2 (a_3 t -$

Computing	FPS	Solutions

The Key Proposition

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

The Key Proposition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

Tropicalization of a polynomial. Support of solutions

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

• y(x) = 0 (support \emptyset) and all subports are • $y(x) = (x + c)^2$ (supports $\{0, 1, 2\}$ and $\{2\}$) Support $\sqrt[4]{behaves 1}$ 4(x)=0 > TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R); Both monomials vanish [infinity, infinity] y(x) = a2x2 (a,to) > TropicalizePolynomial $(y[x]^2 - 4*y, \{y = \{2\}\}, R);$ Both monomials may concel ead over [2. 2] > dp := Differentiate $(y[x]^2 - 4*y, x, x, R);$ dp := 2 y[x] y[x, x, x] + 2 y[x, x] - 4 y[x, x]> TropicalizePolynomial (dp, {y = {2}}, R); One monomial vanishes [infinity, 0, 0] Two monomials may cancel each other (日本本語を本書を本書を入事)の(で)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tropicalization. Not the support of any solution

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

•
$$y(x) = 0$$
 (support \varnothing) and

•
$$y(x) = (x + c)^2$$
 (supports {0, 1, 2} and {2})

> TropicalizePolynomial $(y[x]^2 - 4*y, \{y = \{0,1\}\}, R);$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tropicalization. Not the support of any solution

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

> TropicalizePolynomial $(y[x]^2 - 4*y, \{y = \{0,1\}\}, R);$ You don't see it on the ODE [0, 0]

Tropicalization. Not the support of any solution

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

- y(x) = 0 (support \emptyset) and
- $y(x) = (x + c)^2$ (supports {0, 1, 2} and {2}) $y(x) = a_x + a_x + a_x$
- > TropicalizePolynomial $(y[x]^2 4*y, \{y = \{0,1\}\}, R);$ You don't set it on the ODE [0, 0]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Tropicalization. Not the support of any solution

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

- y(x) = 0 (support \emptyset) and
- $y(x) = (x + c)^2$ (supports {0, 1, 2} and {2})
- > TropicalizePolynomial $(y[x]^2 4*y, \{y = \{0,1\}\}, R);$ You don't see it on the ODE [0, 0]
- > TropicalizePolynomial (dp, {y = {0,1}}, R);

Tropicalization. Not the support of any solution

The differential polynomial $\dot{y}^2 - 4y$ admits as FPS solutions

- y(x) = 0 (support \emptyset) and
- $y(x) = (x + c)^2$ (supports {0,1,2} and {2})
- > TropicalizePolynomial $(y[x]^2 4*y, \{y = \{0,1\}\}, R);$ You don't see it on the ODE [0, 0]
- > TropicalizePolynomial (dp, {y = {0,1}}, R);

You see it on the [infinity, 0] first derivative of the ODE

The Key Proposition

Solution of a Tropical Expression

$$f=m_1+m_2+\cdots+m_r$$

be a differential polynomial in expanded form. View

 $\operatorname{trop}(f)$

as a function of *n* unknown supports.

Then $S = (S_1, ..., S_n)$ is said to be a solution of $\operatorname{trop}(f)$ if either a each $\operatorname{trop}(m_i) = \infty$ or b there exists m_i, m_j $(i \neq j)$ such that b $m_i = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$

$$\operatorname{trop}(m_i) = \operatorname{trop}(m_j) = \min_{k=1}^r (\operatorname{trop}(m_k)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Fundamental Theorem of TDAG

If $\Sigma \subset \mathscr{F}[[x]]\{y_1,\ldots,y_n\}$ then

 $\operatorname{trop}(\operatorname{sol}(\Sigma)) \ \subset \ \operatorname{sol}(\operatorname{trop}(\Sigma)) \,.$

The converse inclusion is difficult. It needs

- Σ to be a differential ideal (i.e. $\dot{p} \in \Sigma$ whenever $p \in \Sigma$)
- \mathscr{F} to be algebraically closed and uncountable (if we look for FPS with coefficients in \mathscr{F})

New unalt on the last slide

Computing FPS Solutions

Basic Concepts of TDAG 0000000

The Key Proposition

The Key Proposition

- Present Σ ⊂ ℱ[[x]]{y₁,..., y_n} by finitely many differential polynomials g_i.
- Enumerate the derivatives of the y_i as v_0, v_1, v_2, \ldots
- Enumerate the derivatives of the g_i , evaluated at x = 0, as f_0, f_1, f_2, \ldots
- For any k let κ and Σ_k be such that

$$\Sigma_k \stackrel{=}{=} \{f_i \mid 0 \leq i \leq k\} \subset \mathscr{F}[v_0, \ldots, v_{\kappa}].$$

• Define (S being any support) $\int alg \cdot vac \cdot of \sum_{k}$

$$A_k = \{a \in \mathscr{F}^{\kappa+1} \mid f_0(a) = \cdots = f_k(a) = 0\},\$$

 Computing FPS Solutions

Basic Concepts of TDAG 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sketch of Proof

Assume
$$A_{k,S} \neq \emptyset$$
 for each k
 K_{ei} prop proved in [AGTIG]
This proof is due to M.P.
 $A_{k,S} = \{a \in A_k \mid a_i \neq 0 \text{ if and only if } i \in S \cap [0, \kappa]\}.$

• Pick one solution in each $A_{k,S}$ and deduce a solution of $\Sigma_{\infty} = \{f_0, f_1, f_2, \ldots\}$ in an ultrapower of \mathscr{F} .

• Thus the following ring is not the null ring

qualitation $\mathscr{F}[v_i, v_j^{-1} \mid i \in \mathbb{N}, j \in S]/(f_i, v_j \mid i \in \mathbb{N}, j \notin S).$

- Thus \mathscr{R} contains a maximal ideal \mathfrak{m} .
- Since ℱ is uncountable and ℛ has countable dimension as a vector space over ℱ, the field ℛ/m is algebraic over ℱ.
- Since \mathscr{F} is algebraically closed $\mathscr{R}/\mathfrak{m} \simeq \mathscr{F}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sktech of Proof (new, countable version)

Assume
$$A_{k,S} \neq \emptyset$$
 for each k
 $A_{k,S} = \{a \in A_k \mid a_i \neq 0 \text{ if and only if } i \in S \cap [0, \kappa]\}.$

• Pick one solution in each $A_{k,S}$ and deduce a solution of $\Sigma_{\infty} = \{f_0, f_1, f_2, \ldots\}$ in an ultrapower of \mathscr{F} .

Thus the following ring is not the null ring quarket by ideal $\mathscr{R} = \mathscr{F}[v_i, v_j^{-1} \mid i \in \mathbb{N}, j \in S]/(f_i, v_j \mid i \in \mathbb{N}, j \notin S).$

Thus *R* contains a maximal ideal m.

• The field \mathscr{R}/\mathfrak{m} contains a solution and is a field extension of \mathscr{F} with at most countable transcendence degree over \mathscr{F} . Gnew argument

Computing	FPS	Solutions

Bibliography

- J. F. Ritt. Differential Algebra. Dover. 1950
- E. R. Kolchin. *Differential Algebra and Algebraic Groups*. Acad. Press. 1973.
 - J. Denef, L. Lipshitz. *Power Series Solutions of Algebraic Differential Equations*. Math. Annalen. 1984
 - M. Singer. *The Model Theory of Ordered Differential Fields.* J. Symb. Logic. 1978
 - D. Grigoriev. Tropical Differential Equations. ArXiv. 2015
 - F. Aroca, C. Garay, Z. Toghani. *The Fundamental Theorem of Tropical Differential Algebraic Geometry*. Pacif. J. Math. 2016
 - S. Falkensteiner, C. Garay, M. Haiech, M. P. Noordman, Z. Toghani, F. Boulier. *The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry*. ISSAC 2020