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DA vs TDAG

Differential Algebra (DA) founded by J. F. Ritt (1932, 1950).
Developed by E. R. Kolchin (1973). An algebraic theory for
polynomial differential equations.

Tropical Differential Algebraic Geometry (TDAG) founded by
D. Grigoriev (2015). A differential analogue of tropical algebra
(aka min-plus algebra) for the study of formal power series
(FPS) solutions of polynomial differential equations.
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A FPS solution (centered at the origin) is obtained

ȳ(x) = x − x4 + 4/7 x7 + · · ·
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Autonomous Equations

ẏ2 + 8 y3 − 1 = 0 .

Differentiate ẏ2 + 8 y3 − 1 ,
2 ẏ ÿ + 24 y2 ẏ ,
...

Rename y (k) as ak . Solve and get some (truncated) arc a

(a0, a1, a2, a3, a4, a5, a6, a7, . . .) = (0, 1, 0, 0,−24, 0, 0, 2880, . . .) .

Plug in Ψα(a) =
� ai

i !
(x − α)i .

A FPS solution (centered at x = α) is obtained

ȳ(x) = (x − α)− (x − α)4 + 4/7 (x − α)7 + · · ·
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Non Autonomous Equation

x ẏ2 + 8 x y3 − 1 = 0 .

Differentiate x ẏ2 + 8 x y3 − 1 ,
2 x ẏ ÿ + ẏ2 + 24 x y2 ẏ + 8 y3 ,

...

Rename y (k) as ak . Replace x by the expansion point (say) α = 1.
Solve and get some (truncated) arc a

(a0, a1, a2, a3, a4, a5, . . .) = (0, 1,−1
2 ,

3
4 ,−207

8 , 48916 , . . .) .

Plug in Ψα=1(a) =
� ai

i !
(x − 1)i .

A FPS solution (centered at x = α = 1) is obtained

ȳ(x) = (x − 1)− 1

4
(x − 1)2 +

1

8
(x − 1)3 − 69

64
(x − 1)4 + · · ·
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Summary — The Issue

1 An issue on the expansion point (x = α) or on the initial
values (y(α) = a0, ẏ(α) = a1, . . .) arises if the leading
coefficients of the differentiated system (the initial and
separant of the differential polynomial) vanish at these values

2 Such a cancellation may prevent FPS solutions to exist or to
be unique at x = α

3 Reduction to the autonomous case is always possible but
transforms issues on the expansion point into issues on initial
values
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Existence Problem of Solutions

Start with any polynomial f ∈ Q[z ]

f (z) = z2 − 2 .

Obtain p ∈ Q{y} by p = f

�
x

d

dx

�
y .

= x2 ÿ + x ẏ − 2 y .

Fact 1. If a = (a0, a1, . . .) is any arc p(Ψ(a)) =
�

i≥0

ai f (i) x
i .

Fact 2. The following identity holds
1

1− x
=

�

i≥0

x i .

Thus (1− x) p − 1 = 0 has a FPS solution iff ai = 1/f (i).
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Reduction to Autonomous Equations

p(x , y , ẏ , ÿ , . . . ) = 0 ,

View x and y as two unknown functions x(ξ) and y(ξ) and add

ẋ = 1 .

Compute a FPS solution

y(ξ) = a0 + a1 ξ + (a2/2) ξ
2 + · · ·

x(ξ) = b0 + ξ .

If x = α was a problematic expansion point before reduction then
b0 = α is a problematic initial value after reduction.
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Summary — Ritt DA Approach

Ritt only considers autonomous systems Σ ⊂ F{y1, . . . , yn}
(say F = Q)

The existence problem of FPS solutions at any α and
unspecified initial values is equivalent to the decision problem
1 ∈ [Σ] (the differential ideal generated by Σ). It is
algorithmic.

For non autonomous systems

Thanks to the reduction process, the existence problem of
FPS solutions at unspecified α and unspecified initial values is
equivalent to the decision problem 1 ∈ [Σ]
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Summary — The TDAG Approach

TDAG considers general systems Σ ⊂ F [[x ]]{y1, . . . , yn}
F field of constants, characteristic zero
Reduction to the autonomous case is impossible
FPS solutions are sought at the origin

This problem (over Q[x ]) is decidable (I have not understood
the proof).

The existence problem of nonzero solutions is undecidable.

The fundamental theorem of TDAG only states an equivalence.

Provided that Σ is a differential ideal and the base field is an
algebraically closed, uncountable, field of characteristic zero

The tropicalization of the FPS solutions of Σ exactly is the
solution set of the tropicalization of Σ:

trop(sol(Σ)) = sol(trop(Σ))
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Tropicalization of a FPS

ϕ =
�

i∈N
ai x

i .

The support of ϕ is the set {i ∈ N | ai �= 0}.
The valuation of ϕ is ∞ if ϕ = 0 else it is the minimal
element of its support.

The tropicalization of ϕ is its support.

Thus trop(sol(Σ)) is the set of supports of all FPS solutions of Σ.
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Tropicalization of a differential monomial

Let

y1, . . . , yn be n differential indeterminates

S1, . . . , Sn be n supports

m = c vd11 · · · vdrr be a monomial (c ∈ F [[x ]] and each vi a
derivative (y (j))k)

Then trop(m) [at S1, . . . , Sn] is the valuation of the FPS obtained
by evaluating m at any tuple of n FPS with supports S1, . . . , Sn.
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Examples

> TropicalizePolynomial (x^2*y, {y = {0,1,2}}, R);

[2]

> TropicalizePolynomial (x^2*y, {y = {2}}, R);

[4]

> TropicalizePolynomial (y[x]^3, {y = {0,3}}, R);

[6]

> TropicalizePolynomial (y[x,x]^3, {y = {0,1}}, R);

[infinity]
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Tropicalization of a polynomial. Support of solutions

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R);
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The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R);
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Tropicalization of a polynomial. Support of solutions

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R);

[infinity, infinity]

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {2}}, R);

[2, 2]
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Tropicalization of a polynomial. Support of solutions
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Tropicalization of a polynomial. Support of solutions

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R);

[infinity, infinity]

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {2}}, R);

[2, 2]

> dp := Differentiate (y[x]^2 - 4*y, x, x, R);

2

dp := 2 y[x] y[x, x, x] + 2 y[x, x] - 4 y[x, x]

> TropicalizePolynomial (dp, {y = {2}}, R);
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Tropicalization of a polynomial. Support of solutions

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {}}, R);

[infinity, infinity]

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {2}}, R);

[2, 2]

> dp := Differentiate (y[x]^2 - 4*y, x, x, R);

2

dp := 2 y[x] y[x, x, x] + 2 y[x, x] - 4 y[x, x]

> TropicalizePolynomial (dp, {y = {2}}, R);

[infinity, 0, 0]
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Tropicalization. Not the support of any solution

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {0,1}}, R);
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Tropicalization. Not the support of any solution

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {0,1}}, R);

[0, 0]
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Tropicalization. Not the support of any solution

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {0,1}}, R);

[0, 0]

> dp := Differentiate (y[x]^2 - 4*y, x, R);

dp := 2 y[x] y[x, x] - 4 y[x]
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Tropicalization. Not the support of any solution

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {0,1}}, R);

[0, 0]

> dp := Differentiate (y[x]^2 - 4*y, x, R);

dp := 2 y[x] y[x, x] - 4 y[x]

> TropicalizePolynomial (dp, {y = {0,1}}, R);
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Tropicalization. Not the support of any solution

The differential polynomial ẏ2 − 4 y admits as FPS solutions

y(x) = 0 (support ∅) and

y(x) = (x + c)2 (supports {0, 1, 2} and {2})

> TropicalizePolynomial (y[x]^2 - 4*y, {y = {0,1}}, R);

[0, 0]

> dp := Differentiate (y[x]^2 - 4*y, x, R);

dp := 2 y[x] y[x, x] - 4 y[x]

> TropicalizePolynomial (dp, {y = {0,1}}, R);

[infinity, 0]
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Solution of a Tropical Expression

f = m1 +m2 + · · ·+mr

be a differential polynomial in expanded form. View

trop(f )

as a function of n unknown supports.

Then S = (S1, . . . , Sn) is said to be a solution of trop(f ) if either

1 each trop(mi ) = ∞ or

2 there exists mi ,mj (i �= j) such that

trop(mi ) = trop(mj) =
r

min
k=1

(trop(mk)).
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The Fundamental Theorem of TDAG

If Σ ⊂ F [[x ]]{y1, . . . , yn} then

trop(sol(Σ)) ⊂ sol(trop(Σ)) .

The converse inclusion is difficult. It needs

Σ to be a differential ideal (i.e. ṗ ∈ Σ whenever p ∈ Σ)

F to be algebraically closed and uncountable (if we look for
FPS with coefficients in F )
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The Key Proposition

Present Σ ⊂ F [[x ]]{y1, . . . , yn} by finitely many differential
polynomials gi .

Enumerate the derivatives of the yi as v0, v1, v2, . . .

Enumerate the derivatives of the gi , evaluated at x = 0, as
f0, f1, f2, . . .

For any k let κ and Σk be such that

Σk =
def

{fi | 0 ≤ i ≤ k} ⊂ F [v0, . . . , vκ] .

Define (S being any support)

Ak = {a ∈ F κ+1 | f0(a) = · · · = fk(a) = 0} ,
Ak,S = {a ∈ Ak | ai �= 0 if and only if i ∈ S ∩ [0,κ]} .

Then if Ak,S �= ∅ for each k then A∞,S �= ∅.
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Sketch of Proof

Assume Ak,S �= ∅ for each k

Ak,S = {a ∈ Ak | ai �= 0 if and only if i ∈ S ∩ [0,κ]} .

Pick one solution in each Ak,S and deduce a solution
of Σ∞ = {f0, f1, f2, . . .} in an ultrapower of F .

Thus the following ring is not the null ring

R = F [vi , v
−1
j | i ∈ N, j ∈ S ]/(fi , vj | i ∈ N, j /∈ S) .

Thus R contains a maximal ideal m.

Since F is uncountable and R has countable dimension as a
vector space over F , the field R/m is algebraic over F .

Since F is algebraically closed R/m � F .
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Sktech of Proof (new, countable version)

Assume Ak,S �= ∅ for each k

Ak,S = {a ∈ Ak | ai �= 0 if and only if i ∈ S ∩ [0,κ]} .

Pick one solution in each Ak,S and deduce a solution
of Σ∞ = {f0, f1, f2, . . .} in an ultrapower of F .

Thus the following ring is not the null ring

R = F [vi , v
−1
j | i ∈ N, j ∈ S ]/(fi , vj | i ∈ N, j /∈ S) .

Thus R contains a maximal ideal m.

The field R/m contains a solution and is a field extension
of F with at most countable transcendence degree over F .
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